并行计算内存和性能

并行计算内存和性能
并行计算内存和性能

2011-03-09https://www.360docs.net/doc/269732184.html,/orgs/hpclab/

2011-03-09https://www.360docs.net/doc/269732184.html,/orgs/hpclab/

增加处理器加快执行速度,从而达到加速的目的。

1922-

2011-03-09https://www.360docs.net/doc/269732184.html,/orgs/hpclab/

Amdahl 定律:应用情形

2011-03-09

China Research Laboratory

2011-03-09https://www.360docs.net/doc/269732184.html,/orgs/hpclab/ Amdahl 定律:示例(2)

2011-03-09

1955-2011-03-09https://www.360docs.net/doc/269732184.html,/orgs/hpclab/

只要存储空间许可,应尽量增大问题规模以产生更好和更精确的解

的时间内求解之,

数据库性能指标

数据库种类 数据库性能指标 1查询性能 多用户与查询之前的冲突 硬件 然而并不是所有的数据库性能问题都是来自数据库本身,我们日常工作中最常见的另一个情景就是数据库的硬件有若干问题,这里我们简单的介绍一下可能会出现的情况,毕竟市面上有已经有很多工具可以监测这些问题了 1、没有足够的CPU或CPU速度太慢:更多的CPU可以分担服务器的负载,从而提高性能。 2、慢的磁盘没有足够的IOPS:磁盘性能可以描述为每秒输入/输出操作(IOPS),它表示每秒磁盘的吞吐量。 3、配置不正确的磁盘:数据库需要效果明显的磁盘访问,配置不正确的磁盘会造成相当大的性能影响。 4、没有足够的内存:受限或不好的物理内存影响数据库性能,可用的内存越多,性能越好。 1NOsql 数据库优点 处理大规模数据和高并发能力 缺点 1. 复杂的数据库:NoSQL的简洁,有效,速度,然而所有这些特性都表现在数据库任务很简单的时候。当数据库变得更复杂,NoSQL开始崩溃 。同时nosql相对sql方面行业标准还不成熟,SQL有行业标准接口,而每一个nosql都是独一无二的 2. 灵活的Schema设计:在以前的数据库模型中,程序员必须考虑他们所需要的列,以照顾所有的潜在的可能性和每行中的数据项。当使用NoSQL时,各种各样的字符串都能实现,这种灵活性使得程序员能够快速地提高应用的速度。然而,当有几个小组在同一个项目上工作,或者当新的开发团队接手某个项目时,这可能是个问题。 3. NoSQL数据库相比关系型数据库通常更多的是资源密集型。它们需要更多的内存和内存分配。出于这个原因,大多数主机托管公司不提供NoSQL,你必须使用VPS或专用服务器。另一方面,随着数据库的需求增加,硬件也必须扩展 4. 监控困难:相对于已经成熟的SQL,NoSQL现在的监控可以说是比较困难的,国内也只有听云一家公司能够支持主流的Memcached, MongoDB, Redis等非关系型数据库服务

关系型数据库性能测试参考指标 - prettyyang的个人空间 - 51testing软

关系型数据库性能测试参考指标- prettyyang的个人空间- 51Testing软... 关系型数据库性能测试参考指标----SQL Server 注:以下指标取自SQL Server自身提供的性能计数器。 指标名称 指标描述 指标范围 指标单位1.SQL Server中访问方法(Access Methods)对象包含的性能计数器全表扫描/秒 (Full Scans/sec) 指每秒全表扫描的数量。全表扫描可以是基本表扫描或全索引扫描。由于全表扫描需要耗费大量时间,因此全表扫描的

频率过高的话,会影响性能。 如果该指标的值比1或2高,应该分析设计的查询以确定是否确实需要全表扫描,以及SQL查询是否可以被优化。 次数/秒2.SQL Server中缓冲器管理器(Buffer Manager)对象包含的性能计数器缓冲区高速缓存命中率(BufferCache Hit Ratio%) 指在缓冲区高速缓存中找到而不需要从磁盘中读取的页的 百分比。该比率是缓存命中总次数与缓存查找总次数之比。经过很长时间后,该比率的变化很小。由于从缓存中读取数据比从磁盘中读取数据的开销小得多,一般希望该比率高一些。 该指标的值最好为90%或更高。通常可以通过增加SQL Server可用的内存数量来提高该指标的值。增加内存直到这指标的值持续高于90%,表示90%以上的数据请求可以从

数据缓冲区中获得所需数据。 %读的页/秒 (Page Reads/sec) 指每秒发出的物理数据库页读取数。该指标主要考察数据库从磁盘读取数据的频率。因为物理I/O会耗费大量时间,所以应尽可能地减少物理I/O以提高性能。 该指标的值应尽可能的小。可以通过使用更大的数据高速缓存、智能索引、更高效的查询或者改变数据库设计等方法,以降低该指标的值。 个数/秒写的页/秒 (Page Writes/sec) 指每秒执行的物理数据库写的页数。该指标主要考察数据库

高性能计算报告

高性能计算实验报告 学生姓名:X X 学号:XXXXXXXXXX 班号:116122 指导教师:郭明强 中国地质大学(武汉)信息工程学院 第一题

1.编写console程序 2.由下图看出,电脑是双核CPU 3.多线程程序,利用windowsAPI函数创建线程

代码 #include"stdafx.h" #include #include"windows.h" usingnamespace std; DWORD WINAPI first(PVOID pParam) { for (int i = 0;i < 10;i++) { printf("1\n"); } return 0; } DWORD WINAPI second(PVOID pParam) { for (int i = 0;i < 10;i++) { printf("2\n"); } return 0; } int main(int argc, char * argv[]) { HANDLE hHandle_Calc[2]; hHandle_Calc[0] = CreateThread(NULL, 0, first, NULL, 0, NULL); hHandle_Calc[1] = CreateThread(NULL, 0, second, NULL, 0, NULL); WaitForMultipleObjects(2, hHandle_Calc, true, INFINITE);

} 第二题多线程实现计算e和π的乘积 代码 #include"stdafx.h" #include"windows.h" #define num_steps 2000000 #include usingnamespace std; //计算e DWORD WINAPI ThreadCalc_E(PVOID pParam)//计算e子函数{ double factorial = 1; int i = 1; double e = 1; for (;i

ANSYS高性能并行计算

ANSYS高性能并行计算 作者:安世亚太雷先华 高性能并行计算主要概念 ·高性能并行计算机分类 并行计算机主要可以分为如下四类:对称多处理共享存储并行机(SMP,Symmetric Multi-Processor)、分布式共享存储多处理机(DSM,Distributied Shared Memory)、大规模并行处理机(MPP,Massively Parallel Processor)和计算机集群系统(Cluster)。 这四类并行计算机也正好反映了高性能计算机系统的发展历程,前三类系统由于或多或少需要在CPU、内存、封装、互联、操作系统等方面进行定制,因而成本非常昂贵。最后一类,即计算机集群系统,由于几乎全采用商业化的非定制系统,具有极高的性能价格比,因而成为现代高性能并行计算的主流系统。它通过各种互联技术将多个计算机系统连接在一起,利用所有被连接系统的综合计算能力来处理大型计算问题,所以又通常被称为高性能计算集群。高性能并行计算的基本原理就是将问题分为若干部分,而相连的每台计算机(称为节点)均可同时参与问题的解决,从而显著缩短解决整个问题所需的计算时间。 ·集群互联网络 计算机集群系统的互联网络大体上经历了从Ethernet到Giganet、Myrinet、Infiniband、SCI、Quadrics(Q-net)等发展历程,在“延时”和“带宽”两个最主要指标上有了非常大的改善,下表即是常用的互联方式: ANSYS主要求解器的高性能并行计算特性

ANSYS系列CAE软件体系以功能齐全、多物理场耦合求解、以及协同仿真而著称于世。其核心是一系列面向各个方向应用的高级求解器,并行计算也主要是针对这些求解器而言。 ANSYS的主要求解器包括: Mechanical:隐式有限元方法结构力学求解器; CFX :全隐式耦合多重网格计算流体力学求解器; AUTODYN:显式有限元混合方法流固耦合高度非线性动力学求解器; LS-DYNA:显式有限元方法非线性结构动力学求解器; FEKO:有限元法、矩量法、高频近似方法相互混合的计算电磁学求解器; ·高性能并行计算的典型应用 现代CAE计算的发展方向主要有两个:系统级多体耦合计算和多物理场耦合计算,前者摒弃了以往只注重零部件级CAE仿真的传统,将整个对象的完整系统(如整机、整车)一次性纳入计算范畴;后者在以往只注重单一物理场分析(如结构力学、流体力学)的基础上,将影响系统性能的所有物理因素一次性纳入计算范畴,考虑各物理因素综合起来对分析对象的影响。因此,可以说,高性能并行计算也是CAE的发展方向,因为它是大规模CAE 应用的基石。例如,在航空航天领域,需要高性能并行计算的典型CAE应用有: –飞机/火箭/导弹等大型对象整体结构静力、动力响应、碰撞、安全性分析,整体外流场分析,多天线系统电磁兼容性及高频波段RCS分析,全模型流体-结构-电磁耦合分析;–航空发动机多级转子/静子联合瞬态流动分析,流体-结构-热耦合分析; –大型运载火箭/导弹发射过程及弹道分析…… · ANSYS求解器对高性能并行计算的支持 作为大型商用CAE软件的领头雁,ANSYS在对高性能并行计算的支持方面也走在所有CAE软件的前列,其各个求解器对高性能并行系统的支持可用下表描述:

数据库集群技术指标

1.DBTwin技术指标 A.非入侵部署 与所有的系统服务一样,DBTwin也是通过唯一的入口-一对(IP,port)来向外提供数据服务。因此,应用程序及其数据库接口不需作任何修改。支持所有的数据库接口:https://www.360docs.net/doc/269732184.html,、ADO、RDO、DAO、OLE DB、ODBC、DB-LIBRARY等。 B.支持数据库 Microsoft SQL Server2005/2008的标准版和企业版。 C.事务处理同步复制 通过常用的宽带网络,快速的事务处理同步复制 D.高系统可用性 自动的错误恢复,真正把意料之内和意料之外的停机时间缩至最短。网关在错误恢复期间的停止服务间隙达到小于10秒。 E.零单点错误源 从DBTwin网关这一部件开始,整个数据库系统是完全、彻底地物理冗余。 F.数据“零”丢失 DBTwin使得系统同时拥有多个实时一致的数据集,这样从理论上讲,就真正消除了数据丢失的任何可能性。数据库可靠性达到目5个9,即99.999%。 G.动态负载均衡 DBTwin对只读数据库查询操作可以进行自动的判别和动态负载均衡,这是当前唯一实现的针对数据库的动态负载均衡技术,此技术可以大大改善整个数据库系统的性能。性能提升在30%~300%之间,具体提升比例取决于应用系统及网络结构和软硬的配置。 H.可伸缩性 可伸缩的数据库性能(负载均衡+非入侵式的数据库阵列扩展),使得数据库具有可伸缩性。需要更多的数据库性能的时候,只要增加数据库服务器就可以了。 I.容灾能力 具备即时的灾难恢复能力。 J.DBTwin自身的双机容错

DBTwin支持自身的双机主备容错切换,也可以采用第三方的HA方案解决DBTwin 自身的容错问题。 DBTwin备份(复制)软件镜像1专为数据库设计是否否 2支持数据库集群是部分支持部分支持 3支持并发数据库操作是否否 4支持动态负载均衡是部分支持部分支持 5工作方式并行串行串行 6支持多份数据集是是是 7支持多份一致数据集是否否 7单点错误源无有有 8支持业务连续性程度高低中 9数据丢失可能性零高高 10错误恢复自动化程度高低中 2.DBTwin与备份/复制软件,及数据库镜像的功能、特点比较

(完整版)数据库性能测试报告

数据库系统性能测试报告

目录 1计划概述 (3) 2参考资料 (3) 3术语解释 (3) 4系统简介 (3) 5测试环境 (3) 6测试指标 (4) 7测试工具和测试策略 (4) 8测试数据收集 (4) 9测试结果数据以及截图 (5) 10 测试结论 (10)

1计划概述 目的:找出系统潜在的性能缺陷 目标:从安全,可靠,稳定的角度出发,找出性能缺陷,并且找出系统最佳承受并发用户数,以及并发用户数下长时间运行的负载情况,如要并发100用户,如何对系统进行调优 概述:本次测试计划主要收集分析数据库处理并发请求相关数据,做出分析和调优 测试时间:*年*月**日*点*分-*点*分 2参考资料 相关性能测试资料 3术语解释 性能测试 英文解释:Performance testing 概念解释:运行性能测试确定系统处理能力,来判断系统是否需要优化 负载测试 英文解释:Load testing 概念解释:通过系统面临多资源运行或被攻击情况下进行测试 4系统简介 数据库服务器,支持整个系统对数据的存储过程 5测试环境

器 6测试指标 测试时间:*年*月*日—*年*月*日 测试范围:数据库处理服务器或客户端请求信息(插入,查询,更新,删除)语句时,服务器各项性能指标的性能测试 Jmeter指标:(由于Apache旗下性能测试工具Jmeter收集的性能指标偏少,下面的数据选取代表性指标)1.Average/ms:服务器处理事物平均响应时间(表示客户端请求到服务器处理信息且反馈客户端的时间) 2.Throughput/s:服务器每秒处理请求数(表示服务器每秒处理客户端请求数(单位:个/秒))3.KB/s:服务器每秒接受到的数据流量(表示服务器每秒接受到客户端请求的数据量KB表示)硬件指标: 1.%Processor time :CUP使用率(平均低于75%,低于50%更佳) 2.System:Processor Queue Length :CUP队列中的线程数(每个处理器平均低于2) 3.Memory:Pages/sec :内存错误页数(平均低于20,低于15更佳) 4.Physical Disk-%Disk Time:磁盘使用率(平均低于50%) 5.SQL Server:Buffer Manager-Buffer Cache Hit Ratio:(在缓冲区告诉缓存中找到而不需要从磁盘中读取的页的百分比,正常情况次比率超过90%,理想状态接近99%) 7测试工具和测试策略 ?测试工具:Apache-Jmeter2.3.2 ?测试策略:根据公司内部实际情况,以及业务分布设置数据库访问量即并发用户数 ?测试数据:因为涉及公司内部数据不便外泄,敬请见谅! ?数据说明:选取数据均为代表性数据,包括存储过程以及查询,更新,删除,插入 8测试数据收集 收集多轮测试的结果进行对比,绘制成几何增长图形,找出压力转折点

并行计算实验报告(高性能计算与网格技术)

高性能计算和网格技术 实验报告 实验题目OpenMP和MPI编程姓名 学号 专业计算机系统结构 指导教师 助教 所在学院计算机科学与工程学院论文提交日期

一、实验目的 本实验的目的是通过练习掌握OpenMP 和MPI 并行编程的知识和技巧。 1、熟悉OpenMP 和MPI 编程环境和工具的使用; 2、掌握并行程序编写的基本步骤; 3、了解并行程序调试和调优的技巧。 二、实验要求 1、独立完成实验内容; 2、了解并行算法的设计基础; 3、熟悉OpenMP和MPI的编程环境以及运行环境; 4、理解不同线程数,进程数对于加速比的影响。 三、实验内容 3.1、矩阵LU分解算法的设计: 参考文档sy6.doc所使用的并行算法: 在LU分解的过程中,主要的计算是利用主行i对其余各行j,(j>i)作初等行变换,各行计算之间没有数据相关关系,因此可以对矩阵A 按行划分来实现并行计算。考虑到在计算过程中处理器之间的负载均衡,对A采用行交叉划分:设处理器个数为p,矩阵A的阶数为n,??p =,对矩阵A行交叉划分后,编号为i(i=0,1,…,p-1)的处理器存有m/ n A的第i, i+p,…, i+(m-1)p行。然后依次以第0,1,…,n-1行作为主行,将

其广播给所有处理器,各处理器利用主行对其部分行向量做行变换,这实际上是各处理器轮流选出主行并广播。若以编号为my_rank的处理器的第i行元素作为主行,并将它广播给所有处理器,则编号大于等于my_rank的处理器利用主行元素对其第i+1,…,m-1行数据做行变换,其它处理器利用主行元素对其第i,…,m-1行数据做行变换。 根据上述算法原理用代码表示如下(关键代码): for(k = 0;kthread_id; //线程ID int myk = my_data->K_number; //外层循环计数K float mychushu = my_data->chushu; //对角线的值 int s, e; int i, j; s = (N-myk-1) * myid / THREADS_NUM; //确定起始循环的行数的相对位置 e = (N-myk-1) * (myid + 1) / THREADS_NUM;//确定终止循环的行数的相对位置

数据库性能监测指标

数据库性能监测指标(如Oracle、SqlServer)、LoadRunner 性能测试指标 1.%Disk Time(PhysicalDisk_Total) 2.%Processor Time(Processor_Total) 3.File Data Operations/sec(System) 4.Interrupts/sec(Processor_Total) 5.Page Faults/sec(Memory) 6.Pages/sec(Memory) 7.PoolNonpaged Bytes(Memory) 8.Private Bytes(Process_Total) 9.Processor Queue Length(System) 10.Threads(Objects) dbm: rem_cons_in 到正在被监视的数据库管理器实例的当前连接数,从远程客户端启动 agents_from_pool 代理程序池中已分配的代理程序数 agents_stolen 从应用程序中盗用代理程序的次数。重新分配与应用程序相关联的空闲代理程序,以便对其他应用程序执行操作,称作“盗用” sort_heap_allocated 拍快照时,以所选择的级别为所有排序分配的排序堆空间的总页数post_threshold_sorts 达到排序堆阈值后,已请求的堆的排序数 db: appls_cur_cons 当前已连接到数据库的应用程序数 appls_in_db2 当前已连接到数据库并且数据库管理器当前正在处理其请求的应用程序数sort_heap_allocated 拍快照时,以所选择的级别为所有排序分配的排序堆空间的总页数total_sorts 已经执行的排序总数 total_sort_time 所有已执行排序的总已用时间(以毫秒为单位) sort_overflows 用完排序堆并且可能需要临时磁盘存储空间的排序总数 hash_join_small_overflows 哈希联接数据大小超过可用排序堆空间,但超出比率小于10% 的次数 pool_data_l_reads 已经通过缓冲池的数据页逻辑读取请求数 pool_data_p_reads 要求I/O 将数据页放入缓冲池的读取请求数 pool_index_l_reads 已经通过缓冲池的索引页逻辑读取请求数 pool_index_p_reads 需要将索引页放入缓冲池的物理读取请求数 files_closed 已关闭的数据库文件的总数 pkg_cache_lookups 应用程序在程序包缓存中查找一个节或程序包的次数。在数据库级,它表示自从启动数据库或重置监视器数据以来的引用总数 pkg_cache_inserts 请求的一个节不可用,因而必须加载到程序包缓存中的总次数。此计数包括由系统执行的任何隐式准备

高性能计算和并行算法-计算物理课件

第十章高性能计算和并行算法

§10.1 引言 计算机的运算速度在日新月异地增长,计算机的市场价格却不断地下降。 当前的计算机技术仍然远远不能满足物理问题计算的需要。 高性能计算机是一个所有最先进的硬件,软件,网络和算法的综合概念,“高性能”的标准是随着技术的发展而发展的。 高性能计算系统中最为关键的要素是单处理器的最大计算速度,存贮器访问速度和内部处理器通讯速度,多处理器系统稳定性,计算能力与价格比,以及整机性能等。

传统的计算机是冯.纽曼(Von Newmann)计算机,它是由中央处理器、内存器和输入/输出设备构成。 为了要超越这个冯.纽曼“瓶颈”,人们发展了两种计算机体系结构和相关软件技术的应用原则。一个是并行算法(parallelism),另一个是流水线技术(pipelining)。 由于高性能计算机与当前能够应用的新计算技术相关联,因而它与并行算法和流水线技术有着密切的联系。

§10. 2并行计算机和并行算法 并行计算机是由多个处理器组成,并能够高速、高效率地进行复杂问题计算的计算机系统。 串行计算机是指只有单个处理器,顺序执行计算程序的计算机,也称为顺序计算机。 并行计算作为计算机技术,该技术的应用已经带来单机计算能力的巨大改进。 并行计算就是在同一时间内执行多条指令,或处理多个数据的计算。并行计算机是并行计算的载体。

为什么要采用并行计算呢? z并行计算可以大大加快运算速度,即在更短的时间内完成相同的计算量,或解决原来根本不能计算的非常复杂的问题。 z提高传统的计算机的计算速度一方面受到物理上光速极限和量子效应的限制,另一方面计算机器件产品和材料的生产受到加工工艺的限制,其尺寸不可能做得无限小。因此我们只能转向并行算法。

数据库优化

近期因工作需要,希望比较全面的总结下SQL SERVER数据库性能优化相关的注意事项,在网上搜索了一下,发现很多文章,有的都列出了上百条,但是仔细看发现,有很多似是而非或者过时(可能对SQL 以前的版本或者ORACLE是适用的)的信息,只好自己根据以前的经验和测试结果进行总结了。 我始终认为,一个系统的性能的提高,不单单是试运行或者维护阶段的性能调优的任务,也不单单是开发阶段的事情,而是在整个软件生命周期都需要注意,进行有效工作才能达到的。所以我希望按照软件生命周期的不同阶段来总结数据库性能优化相关的注意事项。 一、分析阶段 一般来说,在系统分析阶段往往有太多需要关注的地方,系统各种功能性、可用性、可靠性、安全性需求往往吸引了我们大部分的注意力,但是,我们必须注意,性能是很重要的非功能性需求,必须根据系统的特点确定其实时性需求、响应时间的需求、硬件的配置等。最好能有各种需求的量化的指标。 另一方面,在分析阶段应该根据各种需求区分出系统的类型,大的方面,区分是OLTP(联机事务处理系统)和OLAP(联机分析处理系统)。 二、设计阶段 设计阶段可以说是以后系统性能的关键阶段,在这个阶段,有一个关系到以后几乎所有性能调优的过程—数据库设计。 在数据库设计完成后,可以进行初步的索引设计,好的索引设计可以指导编码阶段写出高效率的代码,为整个系统的性能打下良好的基础。 以下是性能要求设计阶段需要注意的: 1、数据库逻辑设计的规范化 数据库逻辑设计的规范化就是我们一般所说的范式,我们可以这样来简单理解范式: 第1规范:没有重复的组或多值的列,这是数据库设计的最低要求。 第2规范: 每个非关键字段必须依赖于主关键字,不能依赖于一个组合式主关键字的某些组成部分。消除部分依赖,大部分情况下,数据库设计都应该达到第二范式。 第3规范: 一个非关键字段不能依赖于另一个非关键字段。消除传递依赖,达到第三范式应该是系统中大部分表的要求,除非一些特殊作用的表。 更高的范式要求这里就不再作介绍了,个人认为,如果全部达到第二范式,大部分达到第三范式,系统会产生较少的列和较多的表,因而减少了数据冗余,也利于性能的提高。

高性能并行计算初步(整理)

第一部分:并行程序设计基础 1.什么是并行计算机: 并行计算机即能在同一时间内执行多条指令或处理多个数据的计算机,并行计算机是并行计算的物理载体。 2.并行计算机的基本划分: 根据一个并行计算机能够同时执行的指令与处理数据的多少可以把 并行计算机分为S IMD (S ing le-Instructio n Mu ltip le-Data )单指令多数据并行计算机和MIMD (Mult ip le-Instructio n Mult ip le-Data )多指令多数据并行计算机。SIMD计算机同时用相同的指令对不同的数据进行操作;S IMD计算机同时用相同的指令对不同的数据进行操作。 按同时执行的程序和数据的不同又提出了S PMD(S ing le-Pro gram Multup le-Data )单程序多数据并行计算机和MPMD (Mult ip le-P ro gramMult ip le-Data )多程序多数据并行计算机的概念,这种划分方式依据的执行单位不是指令而是程序。显然其划分粒度要大得多。一般地S PMD并行计算机是由多个地位相同的计算机或处理器组成的,而MPMD并行计算机内计算机或处理器的地位是不同的,根据分工的不同它们擅长完成的工作也不同,因此可以根据需要 将不同的程序任务放到MPMD并行计算机上执行。 3.并行计算机的存储方式: 从物理划分上:共享内存和分布式内存是两种基本的并行计算机存储方式,除此之外 分布式共享内存也是一种越来越重要的并行计算机存储方式。 对于共享内存的并行计算机,各个处理单元通过对共享内存的访问来交换信息协调各

处理器对并行任务的处理。 对于分布式内存的并行计算机,各个处理单元都拥有自己独立的局部存储器,由于不存 在公共可用的存储单元,因此各个处理器之间通过消息传递来交换信息协调和控制各个处理器的执行。这是本书介绍的消息传递并行编程模型所面对的并行计算机的存储方式。不难看出通信对分布式内存并行计算机的性能有重要的影响,复杂的消息传递语句的编写成为在这种并行计算机上进行并行程序设计的难点所在,但是对于这种类型的并行计算机由于它有很好的扩展性和很高的性能,因此它的应用非常广泛。 对于分布式共享内存的并行计算机结合了共享内存的并行计算和分布式内存的并行计算机的特点,通过提高一个局部结点内的计算能力,使它成为所谓的超结点,不仅提高了整个系统的计算能力,而且可以提高系统的模块性和扩展性,有利于快速构造超大型的计算系统。 3.物理问题在并行机上的求解( HO W ? ) 物理问题并行求解的最终目的是将该问题映射到并行机上,忽略并行机的非本质的细节特征可以得到该并行机的并行计算模型,在这一模型上可以设计各种适合该模型的并行算法,这些算法精确描述了该并行模型能够实现的功能,而这些算法是通过用特定的并行语言设计并行程序后得以实现的。 并行程序设计,需要将问题的并行求解算法转化为特定的、适合并行计算模型的并行算 法。首先是问题的并行求解算法必须能够将问题内在的并行特征充分体现出来,否则并行求解算法将无法利用这些并行特征,从而使问题的高效并行求解成为不可能;其次是并行求解模型要和并行计算模型尽量吻合,这样就为问题向并行机上的高效解决提供了前提。

多核并行高性能计算OpenMP第二章源程序

File Name: hello.f program hello print *, 'hello series word!' !$OMP PARALLEL print *,'hello parallel world!' !$OMP END PARALLEL print *, 'hello series word!' stop end program hello ------------------------------------------- ! File Name: hp1.f program hello_parallel1 !$OMP PARALLEL print *,'hello world!' !$OMP END PARALLEL stop end program hello_parallel1 ------------------------------------------- ! File Name: hp2.f program hello_parallel_2 implicit none include 'omp_lib.h' integer :: idcpu,mcpu call OMP_SET_NUM_THREADS(3) idcpu=OMP_GET_THREAD_NUM() mcpu=OMP_GET_NUM_THREADS() print *,'------before parallel' print '(a,i4,a,i4,a)','Hello from thread',idcpu,' in',mcpu,' CPUs' print * !$OMP PARALLEL DEFAULT(NONE) PRIV ATE(IDCPU,MCPU)

数据库性能监控

数据库性能监控 1.纲要: 数据库性能监控是一个常非大范围。 包含:表空间、段、索引、主键、数据缓冲区、库缓冲、用户锁、等待事件、回滚段、I/O、共享池等等。(空间、索引、等待事件) 2.概述: 在日常生产系统中,我们的系统都使用相当长的时间,SGA 中重做日志缓存区的命中率,应该小于1%、高速缓存命中>=90%率等等一般都是正常的,当然一个非常低的命中率的确意味着系统配置或应用存在严重问题;非常高的缓存命中率存在严重低效率的SQL语句(极差的SQL造成%99以上的命中率), 但命中率的多少义意不是很大,主要是查看系统的等待事件,系统的反应时间,吞吐率(I/O)。 在系统的配置都没有问题情况下,影响性能的主要方面集中在: 1、索引 2、oracle、操作系统某些资源利用的不合理 3、系统的等待事件 3.索引 要开始监控一个索引的使用,使用这个命令: ALTER INDEX pk_addr MONITORING USAGE;

要停止监控一个索引,输入: ALTER INDEX pk_addr NOMONITORING USAGE; 开始监控索引的使用之后,就可以在sys.v$object_usage视图中查到你所监控的索引的使用情况。 所有被使用过至少一次的索引都可以被监控并显示到这个视图中。不过,一个用户只可以接收它自己schema中的索引使用。Oracle并没有提供一个视图来接收所有模式中的索引。 4.oracle、操作系统某些资源利用的不合理 内存分配不合理 内存的利用率多于80%时,这时说明内存方面应该调节一下。方法大体有以下几项: 划给Oracle使用的内存不要超过系统内存的1/2,一般保在系统内存的40%为益。 为系统增加内存; 如果你的连接特别多,可以使用MTS的方式;(MTS(Multi-Threaded Server)是ORACLE SERVER的一个可选的配置选择,是相对DEDICATE方式而言,它最大的优点是在以不用增加物理资源(内存)的前提下支持更多的并发的连接。) 打全补丁,防止内存漏洞。 表空间分配的不合理 表空间不足的时候,系统前台根本无法使用。 回滚段空间的不足,持行脚本就回失败。 --监控表空间使用率与剩余空间大小的语句 SELECT D.TABLESPACE_NAME,SPACE "空间(M)", BLOCKS ,SPACE-NVL(FREE_SPACE,0) "使用空间(M)", ROUND((1-NVL(FREE_SPACE,0)/SPACE)*100,2) "使用率(%)", FREE_SPACE "空闲空间(M)" FROM (SELECT TABLESPACE_NAME, ROUND(SUM(BYTES)/(1024*1024),2) SPACE, SUM(BLOCKS) BLOCKS FROM DBA_DATA_FILES GROUP BY TABLESPACE_NAME) D,

ABAQUS软件关于并行计算的测试报告

Abaqus软件关于并行计算的测试报告 现代CAE分析的发展对计算能力提出了越来越高的需求,Abaqus作为功能最为强大的CAE分析软件之一,在生产和研究中为各国的工程师和研究人员所广泛采用。Abaqus提供了强大的并行功能,它采用Threads和MPI两种并行模式,可应用于SMP 或者Cluster。本文不仅对Abaqus的并行计算的功能进行了简单介绍,而且在各种不同的操作平台上对不同分析算例进行了测试,提出了一套完整的解决方案,对于用户在Abaqus软件和硬件的选取都具有一定的参考作用。 一、CAE分析对高性能计算的需求 CAE就是用计算机辅助求解工程和产品的强度、刚度、屈曲稳定性、动力响应、热传导、弹塑性等力学性能以及性能的优化设计等问题的方法。从20世纪60年代初开始,CAE 技术逐渐被应用于解决复杂的工程分析计算问题。CAE 的广泛应用使得工程和产品的设计水平发生了质的飞跃。经历了40多年的发展历史,CAE 理论和算法都经历了从蓬勃发展到日趋成熟的过程,现已成为工程和产品结构分析中(如航空、航天、机械、汽车、土木结构等领域)必不可少的数值计算工具,同时也是分析连续力学各类问题的一种重要手段。 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备,因此,要进行CAE 分析设计必须获得更高的计算能力,主要表现在:要处理更多的工程数据:现代勘探和测量技术的发展,使得在设计、生产或施工前后都能获得大量的数据,数据的及时有效处理能为后继的、生产或施工提供有力的指导; 要处理更大规模的问题:为了提高分析的精度,必须采用更精密的网格划分、模拟更加精细的结构,使得问题规模不断扩大; 要完成更加困难的分析:在分析中要考虑更多的影响因素,不仅要处理线性弹性问题,还要处理非线性、塑性、流变、损伤以及多物理场的耦合等,分析起来更加困难; 要进行更深层次的优化:为了降低成本,提高经济效益,对设计要反复进行优化,而且优化的规模也日渐增加。 因此,如何的提高求解效率就成为比较重要的问题。Abaqus拥有高性能并行计算能力,将使CAE工程师能更快、更好地解决更大、更难的实际工程和产品设计问题,从而创造更多的价值。 二、Abaqus及其并行计算功能简介 Abaqus是一款功能强大的有限元分析软件,它有两个主求解器模块——Abaqus/Standard和Abaqus/Explicit,可以分析复杂的固体力学、结构力学系统,特别是能够驾驭非常庞大复杂的问题和模拟高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以做系统级的分析和研究,Abaqus在大量的高科技产品研究中都发挥着巨大的作用。 随着并行有限元分析的发展,Abaqus的并行计算日益成熟。Abaqus支持Threads和MPI两种模式的并行,Threads模式只能在SMP 系统上运行,而MPI

高性能计算的应用

高性能计算的应用 随着高性能计算技术的发展,高性能计算开始广泛应用于各个领域。在核电,气象,工业工程,水下工程,建筑,生物医学,社会科学等方面均有重要的应用。 1、核电工程领域 在核电工程领域中,核电压力容器分析,开孔安全壳环向应力分析,核电厂房抗震分析,核反应堆压力容器与管道温度分析,核电流固耦合分析,核安全防护分析等方面均需要大规模的计算[1]。通过高性能计算,对工业仿真流程进行分析,直接减少了计算时间,降低了成本,提高了企业的竞争力。 2、气象 在气象领域中,数值天气预报模式的科学研究和业务运行需要高性能计算。目前,数值预报模式的水平分辨率已达到了15~20公里,而未来的3-5年内几乎世界各国的全球数值预报模式的水平分辨率都将要提高10~20公里[2],为适应其快速发展,气象部门需要引进和更新高性能计算机系统用以支持气象应用。 3、工业工程 对于工业和工程领域来说,使用高性能计算对于计算数学特别是用力学计算仿真手段来模拟实际产品制造、产品运行环境和工程建设环境具有不可代替的作用[3]。高性能计算降低了物理原型和实验的数量,提高了设计质量和效率,提升了企业解决复杂技术难题的手段和能力。 在石油勘测方面,由于地震波法勘测收集的数据通常都以TB计,在海洋勘测过程中的数据容量更是达到了PB级别量[4],面对这些海量的数据,只有借助性能出色的高性能计算机系统,才能缩短时间,以实现最佳的勘测效益。 在高光谱遥感数据处理方面,高光谱遥感数据的海量特性严重制约了应用的拓展和实际工程应用效率的提高,大量数据操作和处理的复杂性决定了高光谱遥感图像处理具有很强的计算性[5],普通计算机远远无法满足遥感数据处理的增长需求,因此高性能计算是解决海量数据处理效率低的有效方法。 在飞机设计方面,首先,飞机设计需要做大量的气动力预测工作,采用高性能计算比采用传统的风洞试验成本要低得多,而且在提升飞机性能时,常规基于雷诺平均方程的CFD技术并不能有效处理,因为它需要的计算网格约10亿量级,需求的计算能力比常规计算高出2个量级以上。其次,精确噪声预测,螺旋桨滑流研究,需要的计算能力比常规计算高出2个量级以上。而现代军用飞机对雷达散射截面计算的要求十分严格,只有基于高性能计算的电磁数值仿真技术有望解决RCS预测难题[6]。 在岩石力学课程教学方面,由于岩石力学需要将工程实例,实验模型和理论模型相结合,才能增强教学效果。尤其在涉及破裂问题上,从变形,损伤演化到最终失稳的过程对数值模拟而言需要网格重划分、单元消去与再生、节点释放和数据存储管理,串行CPU和内存无力做到精细表征[7]。因此,需要通过高性能计算,充分利用数值模拟辅助岩石力学教学 在电力系统工程方面,现代的电力系统分析需要越来越多的计算,包括仿真,优化,控制和分析。人们需要寻求新的方式追求计算更快的方法来进行效率性更高的计算及解决问题,以确保电力网格系统的安全性和可靠性[8]。一个很明显

切实实现高性能并行计算应用分析

切实实现高性能并行计算应用分析 高性能并行计算的应用软件位于高性能计算生态系统的最上层,针对不同的行业有专业的产品,针对各个领域的科学与工程计算应用,直接为用户创造价值。这些软件原来大多运行在大型主机上,是面向多个处理器、多进程、多任务的单节点软件,进程之间的通信通过大型主机操作系统的消息机制进行,消息机制的启动通过函数进行调用。 本系统中,应用软件面向教学和科研应用领域的多个方面基于多节点IA架构系统,进程或任务之间的通信,基于多节点集群的中间件提供的并行通信库MPI,物理层是基于标准互联以太网系统。并行库的启动,通过特定的程序语句进行调用。 高性能应用软件总体概括分类: √多媒体运算 主要使用整型和双精度运算。包括图形图像处理和三维图像生成的高性能计算系统,强调计算节点的多媒体计算功能。计算科学院的大气科学和流体力学应用中需要的许多模拟仿真计算都属于这类计算。 √科学计算 主要使用浮点运算功能,这也是目前高性能计算系统的最主要应用领域。比如:高分子运动分析、石油勘测分析等。计算科学院的大气科学、固体力学、分子力学、流体力学、有限元分析等的主体计算都属于这类计算,这类计算需要系统具有强大的浮点运算能力。本项目的计算属于此类应用。 √数据库应用 主要使用逻辑计算和I/O操作。包括数据库集群系统和网格数据库系统的应用。强调计算节点有很强的I/O处理能力,同时,整个高性能计算系统具有足够的外接存储空间。本系统结合此类应用,奠定未来网格计算的基础。 INTEL和宝德技术人员针对华南理工的项目特点和目标,投入极高的专注和热情,在华南理工项目前期进行了详细的测试分析,提出系统优化和移植的策略,帮助客户将微分方程数值计算并行模拟器勘测系统移植到IA平台上。 Intel还提供了系列的优化工具、编译工具、集群工具等众多高性能计算组件和虚拟技术,为IA架构、标准互联的高性能计算系统应用提供高效率的保证,成为本次HPC项目成功实施的关键。 解决方案

数据库内容技术参数基本情况

数据库内容、技术参数基本情况 1.银符考试模拟题库 银符考试数据库:主要购买其中计算机类、法律类、公务员类、经济类、工程类、综合类、研究生类各种等级考试历年真题及模拟题。此数据库主要针对学生考试所需。 2.畅想之星光盘数据库 畅想之星非书资源管理平台,是针对图书馆的非书资料管理的平台,主要是针对随书光盘进行高效地管理和利用。数据库主要针对教师、学生对图书馆随书光盘利用所购。 3.爱迪科森网上报告厅 系统平台:

4.读秀学术搜索 包括:整合馆藏纸书、电子资源数据库;深度检索(全文检索、目录检索等);图书原文显示,检索结果中图书可以显示17页原文(封面页、前言页、目次页、版权页、正文17页等),全文检索可显示检索点起的10页原文,文献传递服务;免费文献传递服务,参考咨询服务中心提供的局部使用,提供图书单次不超过50页、单篇文章(6页)的文献传递,同本文献一周累计咨询量不超过整本的20% ,所有文献咨询有效期为1个月;整合外文数据库,实现中外文的统一检索;一千万篇报纸、500万篇文档。 5.国道外文数据库 购买 6 个专题库赠送 2个专题库数据库:外文国外生物技术专题数据库;外文国外建筑工程专题数据库;外文国外化学专题数据库;外文国外环境专题数据库(赠送);外文国外能源专题数据库;外文国外材料专题数据库;外文国外测绘科学专题数据库;外文国外交通运输工程专题数据库(赠送) 6.新东方多媒体数据库 技术参数:

7.妙思图书馆管理系统 软件升级售后服务费 8.ASCE美国土木工程协会数据库 美国土木工程师学会是全球最大的土木工程全文文献资料库。它收录了ASCE所有专业期刊(回溯至1983年)和会议录(回溯至2000年),总计超过73,000篇全文、650,000页资料;每年新增约4,000篇文献。ASCE出版的期刊大部分被SCI收录,其中,有11本期刊在2009年JCR收录106本土木工程类期刊中,总引用量排名前40名。ASCE每年有5万多页的出版物。土木工程是我校的招牌专业,此数据库为教学科研所需。 9.超星移动图书馆

相关文档
最新文档