数学建模-机械生产

数学建模-机械生产
数学建模-机械生产

机械产品生产计划的优化设计

当今世界,瞬息万变。人们的生活节奏也越来越快,各种新产品层出不穷,已经进入了机械化时代。机械产品生产计划问题已经成为各大厂家关注的焦点。产品生产的原料配置以及销售计划急需优化。本文对一机械产品生产计划的利润进行了求解,并优化了产品生产方案,增大了产品的利润。

在合理的假设前提下,对机械产品生产计划进行分析,利用生产量、库存量、销售量之间的关系建立线性整数规划模型。运用lingo进行求解,得出最优的生产、库存、销售方案。

在原计划不变的条件下,即不改变机器设备定月检修的方案,对数据进行灵敏度分析,得出部分产品的销售价格可以上调;再固定各产品的销售价格,从设备的角度分析增加利润的,建立模型并求解,得出优化的机器设备检修方案。

把部分产品上调后的价格作为产品的价格销售方案,把调整后的设备检修表作为优化后的检修方案,建立优化线性整数规划模型。用lingo求得优化后的最大利润。

对机械产品生产逐步进行分析,从销售的价格、设备的检修等多角度寻求增加最大利润的方法。最终得出最优的生产计划方案。

关键字:机械产品生产生产量、库存量、销售量lingo求解线性整数规划模型设备检修

1.问题提出

机械加工厂生产7种产品(产品1到产品7)。该厂有以下设备:四台磨床、两台立式钻床、三台水平钻床、一台镗床和一台刨床。每种产品的利润(元/件,在这里,利润定义为销售价格与原料成本之差)以及生产单位产品需要的各种设备的工时(小时)如下表。表中的短划表示这种产品不需要相应的设备加工。

从一月份至六月份,每个月中需要检修的设备是(在检修的月份,被检修的设备全月不能用于生产):

每个月各种产品的市场销售量的上限是:

每种产品的最大库存量为100件,库存费用为每件每月0.5元,在一月初,所有产品都没有库存;而要求在六月底,每种产品都有50件库存。工厂每天开两班,每班8小时,为简单起见,假定每月都工作24天。

生产过程中,各种工序没有先后次序的要求。

问题1:制定六个月的生产、库存、销售计划,使六个月的总利润最大。

问题2:在不改变以上计划的前提下,哪几个月中哪些产品的售价可以提高以达到增加利润的目的。价格提高的幅度是多大?

问题3:哪些设备的能力应该增加?请列出购置新设备的优先顺序。

问题4:是否可以通过调整现有设备的检修计划来提高利润?提出一个新的设备检修计划,使原来计划检修的设备在这半年中都得到检修而使利润尽可能增加。

最优设备检修计划问题

对案例3中的生产计划问题。构造一个最优设备检修计划模型,使在这半年中各设备的检修台数满足案例3中的要求而使利润为最大。

2.模型假设与说明

(1).假设工厂工人每月工作24天;

(2).在进行部分产品价格上调时,机器设备的检修方案不变;

(3)在优化检修设备方案时,产品的价格是上涨后的价格。

3.符号说明

i: 表示产品;

j: 表示月份;

m: 表示机器设备;

Aij: 表示第i中产品在第j个月的产量;

Bij: 表示第i中产品在第j个月的库存量;

Cij: 表示第i中产品在第j个月的销售量;

Dmi: 生产i中产品需要的m种设备时间;

Emj: m中设备在第j月的使用时间;

Fij:第i中产品在第j月的销售上限;

Pi: 第i中产品每件的利润;

4.问题分析和模型建立

4.1 模型分析

4.1.1本题要求制定出六个月的生产、库存、销售计划并求出总利润,为了增加利润,将产品的售价提高,求出提高的价格幅度,增加设备的能力,并购置新设备,调整设备的检修方案以增加利润。利润=售价-成本价-产品的库存费用。此题目中没有给出产品的成本价,因此,我们在求最大利润是直接用产品的销售总价减去产品的库存费用。由于工厂每天开两班,每班8小时,假定每月工作24天,结合检修计划表,由此可以算出每种机器设备每月的使用时间(矩阵Emj ,求解如下),建立一个机器生产设备使用的约束条件,每种产品每个月的库存量小于等于100,并要求在第六个月底,每种产品都有50件库存,可以建立两个库存约束条件。产品在销售时,每月的产品销售量为当月的产量加上上月的库存量要小于销售上限。由于第一月无上月的库存量,故直接是产品生产产量小于销售上限。建立销售的约束条件。利用lingo 建立一个整形规划的数学模型。

4.1.2提高部分产品的销售价来提高总利润。利用(1)中的建立的模型球的的解,进行灵敏度分析来解答。将“General Solver ”选项卡中的“Dual Computation ”下拉项修改为“Prices & Ranges ”。然后,我们点“Solve ”运行程序,运行完之后,回到模型界面,点击“lingo ”菜单下的“range ”选项可以进行灵敏度分析。

4.1.3增加设备的能力来提高利润,通过看影子价格来求出答案。

4.1.4由于设备要定时的检修,在检修时设备无法使用,我们可以优化设备检修计划来增加利润。

4.1.5 利用(2)求出的增加部分产品的价格和(4)优化的机器设备的检修方案。重新建立模型。进行求解。 4.2 模型建立

在求解总利润时,建立目标函数7

6

7

6

1

1

1

1

z (*)0.5*ij i ij

i j i j C p B

=====-∑∑∑

把i p =10 6 3 4 1 9 3带入目标函数中得

6666

max (B )*10B )*6B )*3B )*1162263364461111

z A A A A j j j j j j j j =-+-+-+-∑∑∑∑====

66676

4B )*1B )*9B )*30.5*B 55666677611111

A A A j j j ij j j j i j +-+-+--∑∑∑∑∑=====

设备时间约束为

*m i i j

m j D A E <= (1)

库存约束为

100ij B <= (2)

650Bi >= (3)

销售约束为

111i i i A B F -<= (4)

1C ij ij ij ij A B F -+-<= (j>=1) (5)

A 和

B 均是整数矩阵 将约束条件用矩阵表示为

0.50 0.70 0.00 0.00 0.30 0.20 0.500.10 2.00 0.00 0.30 0.00 0.60 0.000.20 6.00 0.80 0.00 0.00 0.00 0.600.05 0.03 0.00 0.07 0.10 0.00 0.08 0.00 0.00 0.01 0.00 0.05 0.00 0.05;????????????????* 11121314 151621222324 252631323334 3536414243 44454651525354 555661626364 656671727374 7576a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ??

????????????????????<11121314 151621222324252631323334 3536414243 44454651525354 555661626364 6566e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e ??

??????

???????

????

? (1)

111213141516212213141516313233343536414243444546515253131356616263646566717273747576 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b ??????????????????????<=100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100??????????

??????

??

??

?

? (2)

[]16263646566676 b b b b b b b >=[]

50505050505050 (3)

1111212131314141515161617171a 500a 1000a 300a 300800a 200a 100a b b b b b b b ??????????????????????????????-<=??????????????????????????????

??????

(4) 121314 1516222324 2526323334 35364243 444546525354 5556626364 6566727374 7576a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ??????????????????????+-1112131415212213141531323334354142434445515253131361626364657172737475 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b ??????????????????????-121314 1516222324 2526323334 35364243 444546525354 5556626364 6566727374 7576c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c ??????????????????????<=121314 1516222324 2526323334 35364243 444546525354 5556626364 6566727374 7576f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f ??

????????

????????????(5)

运用lingo 求解

5.模型求解5.1 模型求解

5.1 运行后部分数据截取如下(具体数据见附件):

Objective value: 32468.00 Total solver iterations: 37

A( 1, 1) 600.0000 0.000000

A( 1, 2) 0.000000 0.000000 A( 1, 3) 0.000000 0.000000 A( 1, 4) 200.0000 0.000000 A( 1, 5) 0.000000 0.000000 A( 1, 6) 550.0000 0.000000 …………

Aij 第i 中产品在第j 个月的生产量

6000

020005501220010710210930020004006000A 3000050010035080050002001100030004500

25055010025001001000??????????=??????

??????

Bij 第i 种产品在第j 个月中的库存量

ij-11000000500000250000010050B 00000500100001005010005050050????????=??????????

Cij 第i 种产品在第j 个月的销售量 Ci1=Ai1-Bi1 Cij=Aij+Bi,j-1-Bij

ij 5000020005001220010710061300200040050050C =30000500030080040010020010005030005500150600100150100100050??????????????????????

5.2 进行灵敏度截取相关数据

Ranges in which the basis is unchanged:

建模与仿真

第1章建模与仿真的基本概念 参照P8例子,列举一个你相对熟悉的简单实际系统为例,采用非形式描述出来。 第2章建模方法论 1、什么是数学建模形式化的表示?试列举一例说明形式化表示与非形式化表示的区别。 模型的非形式描述是说明实际系统的本质,但不是详尽描述。是对模型进行深入研究的基础。主要由模型的实体、包括参变量的描述变量、实体间的相互关系及有必要阐述的假设组成。模型的非形式描述主要说明实体、描述变量、实体间的相互关系及假设等。 例子:环形罗宾服务模型的非形式描述: 实体 CPU,USR1,…,USR5 描述变量 CPU:Who,Now(现在是谁)----范围{1,2,…,5}; Who.Now=i表示USRi由CPU服务。 USR:Completion.State(完成情况)----范围[0,1];它表示USR完成整个程序任务的比例。参变量 X-----范围[0,1];它表示USRi每次完成程序的比率。 i 实体相互关系 (1)CPU 以固定速度依次为用户服务,即Who.Now为1,2,3,4,5,1,2…..循环运行。 X工作。假设:CPU对USR的服务时间固定,不(2)当Who.Now=I,CPU完成USRi余下的 i X决定。 依赖于USR的程序;USRi的进程是由各自的参变量 i 2、何谓“黑盒”“白盒”“灰盒”系统? “黑盒”系统是指系统内部结构和特性不清楚的系统。对于“黑盒”系统,如果允许直接进行实验测量并通过实验对假设模型加以验证和修正。对属于黑盒但又不允许直接实验观测的系统,则采用数据收集和统计归纳的方法来假设模型。 对于内部结构和特性清楚的系统,即白盒系统,可以利用已知的一些基本定律,经过分析和演绎导出系统模型。 3、模型有效性和模型可信性相同吗?有何不同? 模型的有效性可用实际系统数据和模型产生的数据之间的符合程度来度量。它分三个不同级别的模型有效:复制有效、预测有效和结构有效。不同级别的模型有效,存在不同的行为水平、状态结构水平和分解结构水平的系统描述。 模型的可信度指模型的真实程度。一个模型的可信度可分为: 在行为水平上的可信性,即模型是否重现真实系统的行为。 在状态结构水平上可信性,即模型能否与真实系统在状态上互相对应,通过这样的模型可以对未来的行为进行唯一的预测。 在分解结构水平上的可信性,即模型能否表示出真实系统内部的工作情况,而且是惟一表示出来。 不论对于哪一个可信性水平,可信性的考虑贯穿在整个建模阶段及以后各阶段,必须考虑以下几个方面: 1在演绎中的可信性。2在归纳中的可信性。3在目的方面的可信性。 4、基于计算机建模方法论与一般建模方法论有何不同?(P32) 经典的建模与仿真的主要研究思路,首先界定研究对象-实际系统的边界和建模目标,利用已有的数学建模工具和成果,建立相应的数学模型,并用计算装置进行仿真。这种经典的建

三峡大学数学建模第一题电力生产问题

电力生产问题 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 ( 只有在每个时段开始时才允许启动或关闭发电机。与启动发电机不同,关闭发电机不需要付出任何代价。 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 电力生产问题的数学模型 摘要 本文解决的是电力生产问题,在发电机的发电量能满足每日的电力需求的条件下,为了使每日的总成本达到最低,我们建立了一个最优化模型。 对于问题一:由已知条件可知有固定成本、边际成本、启用成本,据此,我们确定了三个指标:即固定总成本、边际总成本、启动总成本。总成本即为这三项总成本之和。每天分为七个时段,发电机共有四种型号,方案结果应该包括每个时段每种型号平均功率及该时段该型号发电机的数量,一共有56个未知数,为减少未知数,并将非线性约束条件转化为线性约束条件,将整数规划转化为非整数规划,我们以每个时段每种型号的几个发电机发出的总功率为变量,并列出相应的约束条件,然后通过LINGO求出个时段各种型号发电机的总功率,再采用分支定界法求出最小总成本为

146.9210万元。再根据总功率利用Matlab软件计算出总功率所对应的该型号发电机的数量(见表一)。 对于问题二:题目要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。其他条件与问题一相同,因此,只需增加一个约束条件,即发电机机组所能发出的最大总功率乘以80%后大于用电需求。为锻炼编程技术,故在第二问改用Matlab软件编程来求解,将所要求的7个时段4种型号的发电机的平均功率一共28个未知数用X1,X2,,,,X28表示,将其对应的发电机数量用X29,X30,,,X56表示,并利用矩阵列出约束条件和目标函数,然后编程并运行求解,得到的发电机数量有的不为整数,然后采用分支定界法,得到调整后的结果,最小总成本为157.5426万元。 ! 关键词:线性规划、总功率、使用数量、总成本 1.问题重述 1.1问题背景 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 任何代价。 1.2需要解决的问题 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 2.模型假设 假设1:调整发电机功率没有成本 :

农场生产计划 数学建模

农场生产计划 数学模型 问题重述 某农场有3万亩农田,欲种植玉米、大豆和小麦三种农作物.各种作物每亩需施化肥分别为 吨、吨、 吨.预计秋后玉米每亩可收获500千克,售价为 元/千克, 大豆每亩可收获200千克,售价为 元/千克,小麦每亩可收获350 千克,售价为 元 /千克.农场年初规划时考虑如下几个方面: 第一目标:年终收益不低于350万元; 第二目标:总产量不低于万吨; 第三目标:玉米产量不超过万吨,大豆产量不少于万吨,小麦产量以 万吨为宜,同时根据三种农作物的售价分配权重; 第四目标:农场现能提供5000 吨化肥;若不够,可在市场高价购买,但希望高价采购量愈少愈好. 模型假设与建立 模型假设: 1、 假设农作物的收成不会受天灾的影响 2、 假设农作物不受市场影响,价格既定 用321,,x x x 分别表示用于种植玉米、大豆、小麦的农田(单位:亩) + +---++++++=6 455433_22_11*)107 35*10735*10760*10712(**min d p d d d d p d p d p z 模型建立 约束条件 (1)刚性约束 30000321<=++x x x (2)柔性约束 第一目标:年终收益不低于350万元; {} ?????=-++++ -- 3500000 245240120min 113211 d d x x x d

第二目标:总产量不低于万吨; {} ?????=-++++ -- 12500000 350200500min 223212 d d x x x d 第三目标:玉米产量不超过万吨,大豆产量不少于万吨,小麦产量以 万吨为宜, {} ?????=-++ -+ 6000000 500min 3313 d d x d {} ?????=-++--2000000 200m in 4424d d x d {} ?? ???=-+++-+-500000035min 55255d d x d d 第四目标:农场现能提供5000 吨化肥;若不够,可在市场高价购买,但希望 高价采购量愈少愈好. {} ?????=-++++ -+ 5000000 15.02.012.0min 663216 d d x x x d 模型求解:(见附件) 种植面积: 玉米:亩 土豆:亩 小麦:亩 能够得到一个满足条件的种植计划 附件: model : sets : L/1..4/:p,z,goal; V/1..3/:x; HN/1..1/:b; SN/1..6/:g,dp,dm; HC(HN,V):a; SC(SN,V):c; Obj(L,SN):wp,wm; endsets data : p=; goal=0;

控制数学模型

第二章 控制系统的数学模型 2—1 数字模型 在控制系统的分析和设计中,首先要建立系统的数学模型。 自动控制系统: 相同的数学模型进行描述,研究自动控制系统 其内在共性运动规律。 系统的数学模型,是描述系统内部各物理量之间动态关系的数学表达式。 常用的数学模型有: 数学模型 的建立方法 一般应尽可能采用线性定常数学模型描述控制系统。 如果描述系统的数学模型是线性微分方程,则称该系统为线性系统,若方程中的系数是常数,则称其为线性定常系统。线性系统的最重要特性是可以应用叠加原理,在动态研究中,如果系统在多个输入作用下的输出等于各输入单独作用下的输出和(可加性),而且当输入增大倍数时,输出相应增大同样倍数(均匀性),就满足叠加原理,因而系统可以看成线性系统。如果描述系统的数学模型是非线性微分方程,则相应系统称为非线性系统,其特性是不能应用叠加原理。 建立系统数学模型的主要目的,是为了分析系统的性能。由数学模型求取系统性能指标的主要途径如图2—1所示。由图可见,傅里叶变换和拉普拉斯变换是分析和设计线性定常连续控制系统的主要数学工具。 电气的、 机械的、 液压的 气动的等 微(差)分方程 传递函数(脉冲传递函数研究线性离散系统的数学模型) 经典控制理论 频率特性(在频域中研究线性控制系统的数学模型) 状态空间表达式(现代控制理论研究多输入—多输出控制系统) 结构图和信号流图,数学表达式的数学模型图示型式 解析法:依据系统及元件各变量之间所遵循的物理、化学定律, 列写出各变量之间的数学关系式 实验法:对系统施加典型信号(脉冲、阶跃或正弦),记录系统的时间响应 曲线或频率响应曲线,从而获得系统的传递函数或频率特性。 图2-1 求取性能指标的主要途径

发电机组的优化配置问题数学建模论文

A题 院系 ______________ 参赛队员 ______ ______ ______ 联系电话 ______________ 题目发电机组的优化配置摘要

本文针对不同种类发电机,不同时段的实际用电情况,建立了如何合理安排发电机使用的模型。 对于问题(一),该模型灵活运用二次规划,整体考虑一天中的各个阶段,并利用lingo求得一天中最小费用为997790(元)。 在问题(二)中,应用经济学模型和统计学中线性回归分析的原理,并利用excel中丰富的统计函数和lingo软件求得结果。 问题(三),仿照问题(一)的方法,但发现最小费用没变。 正文 一、问题重述 电是我们生活中不可缺少的一部分,现考虑发电机组优化配置问题。某发电厂负责某地区的供电任务,已知该地区夏季一天的电力需求如下:

现电厂有三种类型发电机可投入运转:一型12台;二型6台;三型5台;各个型号机组相关数据如下: 正常情况下,在满足估计的负荷要求之外,每一时刻运转的发电机组应足够多,使得当负荷增加不超过15%时,能够通过调高运转的发电机组的输出来满足增载的要求。请你建立该问题的数学模型,通过求解模型回答以下问题:(1)在一天中各个时间段应安排使用那些发电机组运转可以使得在满足负荷要求的情况下总的费用最低?总的费用为多少? (2)在一天中每段时间,电力生产的边际费用是多少?即应为用电定什么价格? (3)将后备输出保障的15%降低为10%,运转费用节省的情况如何?可以降为多少? 二、问题的基本假设 1.假设每个阶段不会变更设备。 2.不考虑设备需要维护与修理。 3.假设用电需求相对稳定,不会发生突变。 4.关闭和启动发电机时均是瞬时完成,不计相应使用的时间。 5.发电机输出过程其功率始终保持不变。 三、符号说明

数学建模生产计划有关问题解析

201数学建模生产计划 摘要 本文主要研究足球生产计划的规划问题。 对于问题一足球总成本包括生产成本与储存成本,又由于足球各月的生产成本、储存成本率及需求量已知,故各月足球的生产量对总成本起决定因素。在此建立总成本与足球生产量之间的关系,运用Matlab求出了总成本的最优解。 对于问题二储存成本率的大小影响了储存成本的高低,要使总成本最低,在储存成本率变化的情况下必须不断调整足球各月生产量,我们在Matlab中运用散点法,取了501个点,进而对图形进行线性拟合,得出储存成本率减小时各月足球生产量的变化情况。 对于问题三考虑到储存容量不能用储存成本率直接由函数表达,因此在Matlab 采用散点法结合表格分析法对501个点进行分析可得到储存成本率为0.39%时,储存容量达到最大。 关键词:最优解散点法线性拟合表格分析法 问题的重述 皮革公司在6个月的规划中根据市场调查预计足球需求量分别是10,000、15,000、30,000、35,000、25,000和10,000,在满足需求量的情况下使总成本最低,其包括生产成本及库存成本。根据预测,今后六个月的足球的生产单位成本分别是$12.50、$12.55、$12.70、$12.80、$12.85和$12.95,而每一个足球在每个月中的持有成本是该月生产成本的5%。目前公司的存货是5,000,每个月足球最大产量为30,000,而公司在扣掉需求后,月底的库存量最多只能储存10,000个足球。 问题一、建立数学模型,并求出按时满足需求量的条件下,使生产总成本和储存成本最小化的生产计划。 问题二、如若储存成本率降低,生产计划会怎样变化? 问题三、储存成本率是多少时?储存容量达到极限。 问题的分析 问题一要求在足球的需求量一定的情况下,使生产总成本和储存成本最小。又足球的生产成本和储存成本率已知,故只需要建立生产总成本和储存成本与各月足球的生产量之间的优化模型,运用Matlab即可求出足球生产总成本和储存成本的最优化组合。

控制数学模型

第二章 控制系统的数学模型 2—1 数字模型 在控制系统的分析和设计中,首先要建立系统的数学模型。 自动控制系统: 相同的数学模型进行描述,研究自动控制系统 其内在共性运动规律。 系统的数学模型,是描述系统内部各物理量之间动态关系的数学表达式。 常用的数学模型有: 数学模型 的建立方法 一般应尽可能采用线性定常数学模型描述控制系统。 如果描述系统的数学模型是线性微分方程,则称该系统为线性系统,若方程中的系数是常数,则称其为线性定常系统。线性系统的最重要特性是可以应用叠加原理,在动态研究中,如果系统在多个输入作用下的输出等于各输入单独作用下的输出和(可加性),而且当输入增大倍数时,输出相应增大同样倍数(均匀性),就满足叠加原理,因而系统可以看成线性系统。如果描述系统的数学模型是非线性微分方程,则相应系统称为非线性系统,其特性是不能应用叠加原理。 建立系统数学模型的主要目的,是为了分析系统的性能。由数学模型求取系统性能指标的主要途径如图2—1所示。由图可见,傅里叶变换和拉普拉斯变换是分析和设计线性定常连续控制系统的主要数学工具。 电气的、 机械的、 液压的 气动的等 微(差)分方程 传递函数(脉冲传递函数研究线性离散系统的数学模型) 经典控制理论 频率特性(在频域中研究线性控制系统的数学模型) 状态空间表达式(现代控制理论研究多输入—多输出控制系统) 结构图和信号流图,数学表达式的数学模型图示型式 解析法:依据系统及元件各变量之间所遵循的物理、化学定律, 列写出各变量之间的数学关系式 实验法:对系统施加典型信号(脉冲、阶跃或正弦),记录系统的时间响应 曲线或频率响应曲线,从而获得系统的传递函数或频率特性。 图2-1 求取性能指标的主要途径

电力生产问题数学模型

电力生产问题数学模型

————————————————————————————————作者:————————————————————————————————日期:

电力生产问题数学模型 摘要 本文研究电力生产问题中的最优化电力资源配置,属于求解优化电力配置下的最小成本问题。由于电力生产有非线性、多变量等特点,所以我们基于在每一时间段非线性局部最优的前提下,建立整体的单目标多变量的非线性最优化模型 。 因此对于研究的课题,我们建立了一个有约束条件的目标函数的最优化模型来求解。在该模型的基础上我们建立起解决问题所需模型。 解决问题(1)时,我们运用LINGO 工具求解所建立的数学模型,得到每个时段的台数和成本如下表:(详细数据见) 时段1 时段2 时段3 时段4 时段5 时段6 时段7 总成本/元 型号1 0 2 0 2 0 1 0 0 1750 750 1750 1000 1300 750 … … … … … … … … 型号4 0 3 3 3 3 3 3 0 2166.6 1800 3500 1800 1800 解决问题(2)时,我们从节约能源和成本的前提出发,让在工作的每一台发电机保留出20%的发电能力,而不是让其发出多于需求电量的20%白白浪费,因此我们将“每个时段的电力需求”这个约束条件由问题(1)中的j ij j D P m ≤≤改为 8.0?≤≤j ij j D P m 。得到每个时段的台数和成本如下表:(详细数据见) 时段1 时段2 时段3 时段4 时段5 时段6 时段7 总成本/元 型号1 0 5 0 8 1 5 0 0 1400 1400 1400 1400 1400 0 … … … … … … … … 型号4 3 3 3 3 3 3 3 1866.6 2466.6 2466.6 2400 2000 1800 1800 关键词:非线性 整体最优化 LIGNO 软件 时 段 型 号 时 段 型 号

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

数学建模之电力的生产问题

数学建模之电力的生产问 题 Prepared on 22 November 2020

电力生产最小成本 摘要 本文是需解决发电机厂每天在不同时间段用电需求量不同的情况下,根据给定不同型号不同数量的发电机,合理分配各台发电机在不同时间段的开启和关闭以及运行时的输出功率,既使得一天内总发电成本最小,又使发电机组在一天中各个时段的总输出功率达到用电需求的问题,为解决这个问题,采用了单目标非线性规划方法,建立了所求问题的最优化模型,借助Lingo软件对模型进行求解,得到每日最小发电总成本,以此制定发电机组的启停计划。 问题一:为了使发电厂一天总的发电成本最低,同时还要考虑到不同时间段开机数量不同对启动成本的相互影响,将七个时间段的成本统一考虑,其中,启动成本与发电机开启数量有关,要让成本少,应在满足相应约束条件下尽量减少开机数量,尽量让上一阶段的发电机下一阶段依然工作,边际成本与开启发电机台数、输出功率、最小功率、时长有关,固定成本与开启发电机台数、时长有关,选取相应的约束条件对目标函数进行约束,从而给出优化模型,运用非线性规划的方法,利用Lingo编程求解,得到发电厂每天最小发电总成本为:1427179 元。具体的发电机使用方案见附录一中表一、表二。 问题二:根据题目的要求,在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升,在建模时将每台发电机的实际输出功率降至80%,所以可以按照问题一建立的模型,将其约束条件中每个时间段的实际输出功率改为功率的80%但同时要满足用电量,同样利用Lingo编程求解,得到发电厂每天最小发电总成本为:1444670元。具体的发电机使用方案见附录一中表三、表四。 在得到上述两个问题的结果后,对结果的正确性性进行检验,并且对所得结果进行分析,给出自己的评价,并且对所建模型的合理性进行判断,以及对模型做了适当的推广。 关键词:单目标非线性规划发电机的合理搭配电力生产最优解

数学建模 工厂最优生产计划模型

数学建模与数学实验 课程设计报告 学院数理学院专业数学与应用数学 班级学号 学生姓名指导教师 2015年6月 工厂最优生产计划模型 【摘要】本文针对工厂利用两种原料生产三种商品制定最优生产计划的问题,建立优化 问题的线性规划模型。在求解中得到了在不同生产计划下收益最优化的各产品的产量安排策略、最大收益,以及最优化生产计划的灵敏度分析。 对于问题一,通过合理的假设,首先根据题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函数MAX。由题目中所得,工厂原料及价格的约束条件下运用lingo 软件算出最优生产条件下最大收益为1920元,其次是不同产品的产量。 对于问题二,灵敏度分析是研究当目标函数的费用系数和约束右端项在什么范围变化时,最优基保持不变。对产品结构优化制定及调整提供了有效的帮助。根据问题一所给的数据,运用lingo软件做灵敏度分析。 关键词:最优化线性规划灵敏度分析 LINGO 一、问题重述 某工厂利用两种原料甲、乙生产A1、A2、A3三种产品。如果每月可供应的原料数量(单位:t),每万件产品所需各种原料的数量及每万件产品的价格如下表所示:(1)试制定每月和最优生产计划,使得总收益最大; (2)对求得的最优生产计划进行灵敏度分析。 、模型 假设 ( 产品加工时不考虑排队等待加工的问题。 (2)假设工厂的原材料足够多,不会出现原材料断货的情况。

(3)忽略生产设备对产品加工的影响。 (4)假设工厂的原材料得到充分利用,无原材料浪费的现象。 三、符号说明 Xij (i=1,2,;j=1,2,3;)表示两种原料分别生产出产品的数量(万件); Max 为最大总收益; A1,A2,A3为三种产品。 四、模型分析 问题一分析:对于问题一的目标是制定每月和最优生产计划,求其最大生产效益。由题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函数MAX 。由题目中所得,工厂原料工厂原料及价格的约束,列出约束条件。 问题二分析:研究当目标函数的费用系数和约束右端项在什么范围变化时,最优基保持不变。通过软件数据进行分析。 五、模型建立与求解 问题一的求解: 建立模型: 题目的目标是寻求总利益最大化,而利润为两种原料生产的六种产品所获得的利润之和。 设Xij (i=1,2,;j=1,2,3;)表示两种原料分别生产出产品的数量(万件) 则目标函数:max=12(x11+x21)+5(x12+x22)+4(x13+x23) 约束条件: 1)原料供应:4x11+3x12+x13<=180; 2x21+6x22+3x23<=200 2)非负约束:x11,x12,x13,x21,x22,x23>=0 所以模型为: max=12(x11+x21)+5(x12+x22)+4(x13+x23) 200x x 6x 2180 x x 34x 232221131211<=++<=++ 0x >=ij (i=1,2;j=1,2,3且为整数)} 模型求解: model : max =12*x11+12*x21+5*x12+5*x22+4*x13+4*x23; 4*x11+3*x12+x13<=180; 2*x21+6*x22+3*x23<=200; End 计算结果: Global optimal solution found. Objective value: Infeasibilities: Total solver iterations: 0 Variable Value Reduced Cost

数学建模电力安排问题

电力生产问题 摘要 本文解决的是电力生产中发电机的安排问题,在满足每日各时间段电力需求的条件下,安排各型号发电机来供电,以期获得最小的成本。为解决此问题,我们建立了两个最优化模型。 针对问题一:建立了非线性单目标最优化模型。从已知条件、目标函数、约束条件三方面进行综合分析可知,每天的总成本由总固定成本、总边际成本、总启动成本组成,确定总成本为目标函数,各时段各型号发电机工作数量及其总超出功率为主要变量,并列出相应约束条件。最后通过Lingo软件[2]求出最小成本为1540770元,并得出各时段各型号发电机的数量及其功率如下表(具体见表三): 针对问题二:建立了线性单目标最优化模型。引入非负变量,即为各时段新增开的各型号的发电机台数,通过此变量线性表示出启动成本。以总成本为目标函数,在模型一的基础上,只需改变一个约束条件,即发电机组在任意时间段内所能发出的最大总功率的80%要大于等于该时段的用电需求。最后通过lingo软件求出最小成本为1885420元,并得出各时段各型号发电机的数量及其功率。 关键词:非线性最优化模型线性最优化模型最小生产成本

1 问题重述 1.1 问题背景 在电力生产过程中,为满足每日的电力需求并且使生产成本达到最小,因不同发电性能的发电机成本不同,故可以选用不同型号的发电机组合使用。 1.2 题目信息 题中给出了一天中七个时段的用电需求(见表一)及四种发电机的发电性能和相应成本(见表二)。其中,所有发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于其最小输出功率,且所有发电机均存在一个启动成本,以及工作于其最小功率状态时固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。 问题(1):在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2):如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 2 模型假设 假设1:不计发电机启动时所需时间; 假设2:各发电机均在24时关闭,即不考虑循环过程; 假设3:各发电机的输出功率在时段初调整好后,保持不变; 假设4:题目所列出的成本以外的成本消耗不计。

数学建模 生产计划问题

第一题:生产计划安排 2)产品ABC的利润分别在什么范围内变动时,上述最优方案不变 3)如果劳动力数量不增,材料不足时可从市场购买,每单位元,问该厂要不要购进原材料扩大生产,以购多少为宜 4)如果生产一种新产品D,单件劳动力消耗8个单位,材料消耗2个单位,每件可获利3元,问该种产品是否值得生产 答: max3x1+x2+4x3! 利润最大值目标函数x1,x2,x3分别为甲乙丙的生产数量 st!限制条件 6x1+3x2+5x3<45! 劳动力的限制条件 3x1+4x2+5x3<30! 材料的限制条件 End!结束限制条件 得到以下结果 1.生产产品甲5件,丙3件,可以得到最大利润,27元 2.甲利润在—元之间变动,最优生产计划不变 3. max3x1+x2+4x3 st 6x1+3x2+5x3<45 end 可得到生产产品乙9件时利润最大,最大利润为36元,应该购入原材料扩大生产,购入15个单位 4. max3x1+x2+4x3+3x4 st 6x1+3x2+5x3+8x4<45 3x1+4x2+5x3+2x4<30 end ginx1 ginx2 ginx3 ginx4 利润没有增加,不值得生产 第二题:工程进度问题 某城市在未来的五年内将启动四个城市住房改造工程,每项工程有不同的开始时间,工程周期也不一样,下表提供了这些项目的基本数据。

工程1和工程4必须在规定的周期内全部完成,必要时,其余的二项工程可以在预算的限制内完成部分。然而,每个工程在他的规定时间内必须至少完成25%。每年底,工程完成的部分立刻入住,并且实现一定比例的收入。例如,如果工程1在第一年完成40%,在第三年完成剩下的60%,在五年计划范围内的相应收入是*50(第二年)+*50(第三年)+(+)*50(第四年)+(+)*50(第五年)=(4*+2*)*50(单位:万元)。试为工程确定最优的时间进度表,使得五年内的总收入达到最大。 答: 假设某年某工程的完成量为Xij, i表示工程的代号,i=1,2,3,j表示年数,j=1,2,3,如第一年工程1完成X11,工程3完成X31,到第二年工程已完成X12,工程3完成X32。 另有一个投入与完成的关系,即第一年的投入总费用的40%,该工程在年底就完成40%,工程1利润: 50*X11+50*(X11+X12)+50*(X11+X12+X13)+50*(X11+X12+X13) 工程2利润: 70*X22+70*(X22+X23)+70*(X22+X23+X24) 工程3利润: 20*X31+150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34) 工程4利润: 20*X43+20*(X43+X44) max(50*X11+50*(x11+x12)+50*(X11+X12+X13)+50*(X11+X12+X13))+(70*X22+70*(X22+X23) )+70*(X22+X23+X24)+(150*X31+150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34)) +(20*X43+20*(X43+X44)) st 5000*X11+15000*X31=3000 5000*X12+8000*X22+15000*X32=6000 5000*X13+8000*X23+15000*X33+1200*X43=7000 8000*X24+15000*X34+12000*X44=7000 8000*X25+15000*X35=7000 X11+X12+X13=1 X22+X23+X24+X25≥ X22+X23+X24+X25≤1 X31+X32+X33+X34+X35≥ X31+X32+X33+X34+X35≤1 X43+X44=1 全为大于零的数

数学建模(工厂资源规划问题)

工厂资源规划问题 冉光明 2010070102019 信息与计算科学 指导老师:赵姣珍

目录 摘要 (1) 关键词 (1) 问题的提出 (2) 问题重述与分析 (3) 符号说明 (4) 模型假设 (4) 模型建立与求解 (5) 模型检验 (9) 模型推广 (10) 参考文献 (11) 附录 (12)

摘要:本问题是个优化问题。问题首先选择合适的决策变量即各种产品数,然后通过决策变量来表达约束条件和目标函数,再利用matlab或lingo编写程序,求得最优产品品种计划;最后通过优化模型对问题作以解释,得出当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时,得到的是最优品种规划。 问题一回答:当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时, 时,若使产品品产品III不值得生产。用matlab运算分析,当产品III的利润增加至25 3 种计划最优,此时需要消耗技术服务29h,劳动力消耗46h,行政管理消耗25h。 问题二回答:利用lingo得到当技术服务增加1h时,利润增加2.5元;劳动力增加1h,利润增加1元;行政管理的增减不会影响利润。 问题三回答:增加的决策变量,调整目标函数。当技术服务消耗33h,劳动力消耗17h,不消耗行政管理,新增量50h时,管理部门采取这样的决策得到最优的产品品种规划。 问题四回答:增加新的约束条件,此时当技术服务消耗32h,劳动力消耗58h,行政管理消耗10h时,得到最优产品品种规划。 本文对模型的求解给出在线性约束条件下的获利最多的产品品种规划。 关键词:线性规划;优化模型;最优品种规划

问题的提出 某工厂制造三种产品,生产这三种产品需要三种资源:技术服务、劳动力和行政管理。下表列出了三种单位产品对每种资源的需要量: 资源利润 技术服务劳动力行政管理 产品I 1 10 2 10 II 1 4 2 6 III 1 5 6 4 现有100h的技术服务、600h劳动力和300h的行政管理时间可使用,求最优产品品种规划。且回答下列问题: ⑴若产品III值得生产的话,它的利润是多少?假使将产品III的利润增加至25/3元,求获利最多的产品品种规划。 ⑵确定全部资源的影子价格。 ⑶制造部门提出建议,要生产一种新产品,该种产品需要技术服务1h、劳动力4h 和行政管理4h。销售部门预测这种产品售出时有8元的单位利润。管理部门应有怎样的决策? ⑷假定该工厂至少生产10件产品III,试确定最优产品品种规划。

数模A题:机组组合问题

A题机组组合问题 当前的科学技术还不能有效地存储电力,所以电力生产和消费在任何时刻都要相等,否则就会威胁电力系统安全运行。又由于发电机组的物理特性限制,发电机组不能够随心所欲地发出需要的电力。为了能够实时平衡变化剧烈的电力负荷,电力部门往往需要根据预测的未来电力负荷安排发电机组起停计划,在满足电力系统安全运行条件下,追求发电成本最小。 在没有电力负荷损耗以及一个小时之内的电力负荷和发电机出力均不变的前提下,假定所有发电机组的发电成本都是由3部分组成,它们是启动成本(Startup Cost),空载成本(No load cost)和增量成本(Incremental Cost)。需要考虑的约束有: 1.负荷平衡约束:任何小时,电力负荷之和必须等于发电机发电出力之和。 2.系统备用约束:处于运行状态的发电机的最大发电能力减去其出力称为该发电机的备用容量,处于停运状态的发电机的备用容量为0。任何小时,发电机的备用容量之和必须大于系统备用要求。 3.输电线路传输容量约束:线路传输的电能必须在它的传输容量范围内。 4.发电机组出力范围约束:处于运行状态的发电机组的发电出力必须小于其最大发电能力(Pmax, MW)。 5.机组增出力约束(Ramp Up, MW/h):发电机组在增加发电出力时,不能太快,有一个增加出力的速度上限,在一定时间内(通常是10分钟,为简单起见,本题取1个小时)不能超过额定范围。 6.机组降出力约束(Ramp Down, MW/h):与机组增出力约束类似,发电机组在减少发电出力时也有一个减少出力的速度上限。 问题1:3母线系统 有一个3母线系统,其中有2台机组、1个负荷和3条输电线路,已知4个小时的负荷和系统备用要求。请求出这4个小时的最优机组组合计划。最终结果应该包括总成本、各小时各机组的状态、各小时各机组的发电出力和各小时各机组提供的备用。所有数据请见下面图及表格,“3BusData”目录中还有包含了本题所有表格数据的5个xml文件。

数学建模-生产计划问题

- - . 数学建模作业 生 产 计 划 问 题 班级数学与应用数学一班 高尚 学号

生产计划问题 摘 要 本文通过对每个季度各种产品产量、需求量和存储量之间关系的分析,建立了基于Lingo 的生产决策模型,解决了生产计划问题,并提出合理的生产方案得到了总赔偿和存储费用的最优解。 针对该问题,采用线性规划的方法,首先确定ij x 为第j 季度产品i 的产量,ij d 为第j 季度产品i 的需求量,ij s 为第j 季度末产品i 的库存量,用0-1规划来限制上述变量,然后确定这些变量所具有的约束条件,最后列出目标函数与约束条件,利用Lingo 软件(见附录)求解出总的赔偿和库存费用的最小值为5900.70元。 模型思路清晰,考虑周全,可以针对同类问题进行建模,具有一定的应用性和推广性。

关键词:Lingo、0-1规划、生产决策、线性规划 一、问题重述 对某厂I、II、III三种产品下一年各季度的合同预订数如表1所示。

该三种产品1季度初无库存,要求在4季度末各库存150件。已知该厂每季度生产工时为15000.8小时,生产I 、II 、III 产品每件分别需要2.1、4.3、2.7小时。因更换工艺装备,产品I 在2季度无法生产。规定当产品不能按期交货时,产品I 、II 每件每迟交一个季度赔偿20.5元,产品III 赔10.8元;又生产出来产品不在本季度交货的,每件每季度的库存费用为5.1元。问该厂应如何安排生产,使总的赔偿加库存的费用为最小。 二、问题分析 该问题的目标是使一年内总的赔偿加库存费用最小,需要重新建立生产计划,每种产品在每个季度的产量、贮存量、需求量都对最终决策起到了限制,因此需要对变量进行0-1规划,建立目标函数与约束条件,在此基础上实现总的赔偿加库存的费用最小的目的。 三、模型假设 1.产量、贮存量、需求量不受外界因素影响; 2.产品的生产时间互不影响; 3.变量间没有相互影响。 四、变量说明 变量 含义 z 总赔偿和库存费用 4,3,2,1,3,2,1,==j i x ij 第j 季度产品i 的产量 ,34,2,1,3,2,1,==j i d ij 第j 季度产品i 的需求量 4,3,2,1,3,2,1,==j i s ij 第j 季度末产品i 的库存量 五、模型的建立与求解

自动控制系统的数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式 的余子式 。 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式

数学建模常见问题

1 预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归); 2 归类判别:欧氏距离判别、fisher判别等; 3 图论:最短路径求法; 4 最优化:列方程组用lindo 或lingo软件解; 5 其他方法:层次分析法马尔可夫链主成分析法等; 6 用到软件:matlab lindo (lingo)excel ; 7 比赛前写几篇数模论文。 这是每年参赛的赛提以及获奖作品的解法,你自己估量着吧…… 赛题解法 93A非线性交调的频率设计拟合、规划 93B足球队排名图论、层次分析、整数规划 94A逢山开路图论、插值、动态规划 94B锁具装箱问题图论、组合数学 95A飞行管理问题非线性规划、线性规划 95B天车与冶炼炉的作业调度动态规划、排队论、图论 96A最优捕鱼策略微分方程、优化 96B节水洗衣机非线性规划 97A零件的参数设计非线性规划 97B截断切割的最优排列随机模拟、图论 98A一类投资组合问题多目标优化、非线性规划 98B灾情巡视的最佳路线图论、组合优化 99A自动化车床管理随机优化、计算机模拟 99B钻井布局0-1规划、图论 00A DNA序列分类模式识别、Fisher判别、人工神经网络 00B钢管订购和运输组合优化、运输问题 01A血管三维重建曲线拟合、曲面重建 01B 工交车调度问题多目标规划 02A车灯线光源的优化非线性规划 02B彩票问题单目标决策 03A SARS的传播微分方程、差分方程 03B 露天矿生产的车辆安排整数规划、运输问题 04A奥运会临时超市网点设计统计分析、数据处理、优化 04B电力市场的输电阻塞管理数据拟合、优化 05A长江水质的评价和预测预测评价、数据处理 05B DVD在线租赁随机规划、整数规划

数学建模生产计划问题

第一题:生产计划安排 1)确定获利最大的生产方案 2)产品ABC的利润分别在什么范围内变动时,上述最优方案不变 3)如果劳动力数量不增,材料不足时可从市场购买,每单位元,问该厂要不要购进原材料扩大生产,以购多少为宜 4)如果生产一种新产品D,单件劳动力消耗8个单位,材料消耗2个单位,每件可获利 3 元,问该种产品是否值得生产 答: max3x1+x2+4x3!利润最大值目标函数x1,x2,x3分别为甲乙丙的生产数量 st!限制条件 6x1+3x2+5x3<45! 劳动力的限制条件 3x1+4x2+5x3<30! 材料的限制条件 En d!结束限制条件 得到以下结果 1?生产产品甲5件,丙3件,可以得到最大利润,27元 2?甲利润在一元之间变动,最优生产计划不变 3. max3x1+x2+4x3 st 6x1+3x2+5x3<45 end 可得到生产产品乙9件时利润最大,最大利润为36元,应该购入原材料扩大生产,购入 15个单位 4. max3x1+x2+4x3+3x4 st 6x1+3x2+5x3+8x4<45 3x1+4x2+5x3+2x4<30 end ginxl ginx2 gin x3 gi nx4 利润没有增加,不值得生产 第二题:工程进度问题 某城市在未来的五年内将启动四个城市住房改造工程,每项工程有不同的开始时间,工程周期也不一

样,下表提供了这些项目的基本数据。 工程1和工程4必须在规定的周期内全部完成,必要时,其余的二项工程可以在预算的限制内完成部分。然而,每个工程在他的规定时间内必须至少完成25%。每年底,工程完成 的部分立刻入住,并且实现一定比例的收入。例如,如果工程1在第一年完成40%,在第三 年完成剩下的60%,在五年计划范围内的相应收入是*50 (第二年)+*50 (第三年)+( +) *50 (第四年)+( +)*50 (第五年)=(4*+2*)*50 (单位:万元)。试为工程确定最优的时间进度表,使得五年内的总收入达到最大。 答: 假设某年某工程的完成量为Xij, i表示工程的代号,i=1,2,3,j表示年数,j=1,2,3,如第一 年工程1完成X11,工程3完成X31,到第二年工程已完成X12,工程3完成X32。 另有一个投入与完成的关系,即第一年的投入总费用的40%,该工程在年底就完成40%,工程1利润: 50*X11+50*(X11+X12)+50*(X11+X12+X13)+50*(X11+X12+X13) 工程2利润: 70*X22+70*(X22+X23)+70*(X22+X23+X24) 工程3利润: 20*X31 + 150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34) 工程4利润: 20*X43+20* (X43+X44) max(50*X11+50*(x11+x12)+50*(X11+X12+X13)+50*(X11+X12+X13))+(70*X22+70*(X22+X23) )+ 70*(X22+X23+X24)+(150*X31 + 150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34)) +(20*X43+20*(X43+X44)) st 5000*X11+15000*X31=3000 5000*X12+8000*X22+15000*X32=6000 5000*X13+8000*X23+15000*X33+1200*X43=7000 8000*X24+15000*X34+12000*X44=7000 8000*X25+15000*X35=7000 X11+X12+X13=1 X22+X23+X24+X25> X22+X23+X24+X25C 1 X31+X32+X33+X34+X35> X31+X32+X33+X34+X35C 1

相关文档
最新文档