场效应管及三极管等的型号大全12页word

场效应管及三极管等的型号大全12页word
场效应管及三极管等的型号大全12页word

小功率三极管

中功率三极管

达林顿三极管

三端稳压

可控硅

场效应管

全系列三极管应用参数代换大全

名称封装极性用途耐压电流功率频率配对管 9012 贴片PNP低频放大50V 0.5A 0.625W 9013 9012 21 PNP低频放大50V 0.5A 0.625W 9013 9013 21 NPN 低频放大50V 0.5A0.625W 9012 9013 贴片NPN 低频放大50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大50V 0.1A0.4W 150HMZ 9015 9015 21 PNP低噪放大50V 0.1A0.4W 150MHZ 9014 9018 21 NPN 高频放大30V 0.05A0.4W 1000MHZ 8050 21 NPN 高频放大40V 1.5A1W 100MHZ 8550 8550 21 PNP高频放大40V 1.5A1W 100MHZ 8050 2N2222 21 NPN 通用60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大100V 15A 115W MJ2955 2N3440 6 NPN 视放开关450V 1A1W 15MHZ 2N6609 2N3773 12 NPN 音频功放开关160V 16A50W 2N3904 21E NPN 通用60V 0.2A 2N2906 21C PNP 通用40V 0.2A 2N2222A 21铁NPN 高频放大75V 0.6A 0.625W 300MHZ 2N6718 21铁NPN 音频功放开关100V 2A 2W 2N5401 21 PNP视频放大160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放开关60V 50A 300W 2N6277 12 NPN 功放开关180V 50A 250W 2N6678 12 NPN 音频功放开关650V 15A 175W 15MHZ 3DA87A 6 NPN 视频放大100V 0.1A1W 3DG6B 6 NPN 通用20V 0.02A 0.1W 150MHZ 3DG6C 6 NPN 通用25V 0.02A 0.1W 250MHZ 3DG6D 6 NPN 通用30V 0.02A 0.1W 150MHZ 3DK2B 7 NPN 开关30V 0.03A 0.2W 3DD15D 12 NPN 电源开关300V 5A 50W 3DD102C 12 NPN 电源开关300V 5A 50W 3522V 5V稳压管 5609 21 NPN 音频低频放大50V 0.8A 0.625W 5610 5610 21 PNP音频低频放大50V 0.8A 0.625W 5610 60MIAL1 电磁/微波炉1000V 60A 300W 9626 21 NPN 通用 MPSA42 21E NPN 电话视频放大300V 0.5A 0.625W MPSA92 MPSA92 21E PNP 电话视频放大300V 0.5A 0.625W MPSA42 MPS2222A 21 NPN 高频放大75V 0.6A 0.625W 300MHZ A634 28E PNP 音频功放开关40V 2A 10W A708 6 PNP 音频开关80V 0.7A 0.8W A715C 29 PNP 音频功放开关35V 2.5A 10W 160MHZ A733 21 PNP 通用50V 0.1A180MHZ

常用三极管型号及参数

常用三极管型号及参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFU020 50V 15A 42W **NMO场效应 IRFPG42 1000V 4A 150W ** NMO场效应 IRFPF40 900V 4.7A 150W ** NMO场效应 IRFP9240 200V 12A 150W ** PMOS场效应 IRFP9140 100V 19A 150W **PMOS场效应 IRFP460 500V 20A 250W ** NMO场效应 IRFP450 500V 14A 180W **NMO场效应IRFP440 500V 8A 150W **NMO场效应IRFP353 350V 14A 180W **NMO场效应IRFP350 400V 16A 180W **NMO场效应IRFP340 400V 10A 150W **NMO场效应IRFP250 200V 33A 180W **NMO场效应IRFP240 200V 19A 150W **NMO场效应IRFP150 100V 40A 180W **NMO场效应晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFP140 100V 30A 150W **NMO场效应IRFP054 60V 65A 180W **NMO场效应IRFI744 400V 4A 32W **NMO场效应IRFI730 400V 4A 32W **NMO场效应IRFD9120 100V 1A 1W **NMO场效应IRFD123 80V 1.1A 1W **NMO场效应IRFD120 100V 1.3A 1W **NMO场效应IRFD113 60V 0.8A 1W **NMO场效应IRFBE30 800V 2.8A 75W **NMO场效应

经典三极管与场效应管的比较

第2章晶体三极管和场效应管 教学重点 1 ?掌握晶体三极管的结构、工作电压、基本连接方式和电流分配关系。 2 ?熟练掌握晶体三极管的放大作用;共发射极电路的输入、输出特性曲线;主要参 数及温度对参数的影 响。 3?了解MOS 管的工作原理、特性曲线和主要参数。 教学难点 1 ?晶体三极管的放大作用 2 ?输入、输出特性曲线及主要参数 学时分配 序号 内 容 学时 1 2.1晶体三极管 4 2 2.2场效应管 4 3 本章小结与习题 4 本章总课时 8 2.1晶体三极管 晶体三极管:是一种利用输入电流控制输出电流的电流控制型器件。 特点:管内有两种载流子参与导电。 2.1.1三极管的结构、分类和符号 一、晶体三极管的基本结构 1 ?三极管的外形:如图 2.1.1所示。 2 ?特点:有三个电极,故称三极管。 3?三极管的结构:如图 2.1.2所示。 晶体三极管有三个区一一发射区、 基区、集电区; 两个PN 结一一发射结(BE 结)、集 电结(BC 结); 三个电极一一发射极 e ( E )、基极 图2.1.2 三极管的结构图 图2.1.1三极管外形 雄対箱革极集电姑 坯射纬UK 堆电紬

b(B)和集电极c(C); 两种类型一一PNP 型管和NPN 型管。 工艺要求: 发射区掺杂浓度较大;基区很薄且掺杂最少;集电区比发射区体积大且掺杂少。 二、 晶体三极管的符号 晶体三极管的符号如图 2.1.3所示。 箭头:表示发射结加正向电压时的电流方向。 文字符号:V 三、 晶体三极管的分类 1 .三极管有多种分类方法。 按内部结构分:有 NPN 型和PNP 型 管; 按工作频率分:有低频和高频管; 按功率分:有小功率和大 功率管; 按用途分:有普通管和开关管; 按半导体材料分:有锗管和硅管等等。 2 .国产三极管命名法:见《电子线路》 P 249附录二。 例如:3DG 表示高频小功率 NPN 型硅三极管;3CG 表示高频小功率 PNP 型硅三极 管;3AK 表示PNP 型开关锗三极管等。 2.1.2三极管的工作电压和基本连接方式 一、晶体三极管的工作电压 三极管的基本作用是放大电信号; 工作在放大状态的外部条件是发射结加正向电压, 集电结加反向电压。 如图2.1.4所示:V 为三极管,G C 为集电极电源,G B 为基极电源,又称偏置电源, R b 为基极电阻,R c 为集电极电阻。 二、晶体三极管在电路中的基本连接方式 如图2.1.5所示,晶体三极管有三种基本连接方式: 共发射极、共基极和共集电极接 法。最常用的是共发射极接法。 但八PIS 型 (b) 型 图2.1.3 三极管符号 图2.1.4 三极管电源的接法

全系列常用三极管型号参数资料(精)

全系列常用三极管型号参数资料 编者按:这些虽不能涵盖所有的三极管型号,例如3DD系列等,但是都是极其常用的型号,例如901系列,简直是无所不在。在网上查的电子元件手册都是卖书的广告,找到点参数型号确实不易。 名称封装极性功能耐压电流功率频率配对管 D633 28 NPN 音频功放开关100V 7A 40W 达林顿 9013 21 NPN 低频放大50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大50V 0.1A 0.4W 150HMZ 9015 9015 21 PNP 低噪放大50V 0.1A 0.4W 150MHZ 9014 9018 21 NPN 高频放大30V 0.05A 0.4W 1000MHZ 8050 21 NPN 高频放大40V 1.5A 1W 100MHZ 8550 8550 21 PNP 高频放大40V 1.5A 1W 100MHZ 8050 2N2222 21 NPN 通用60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大100V 15A 115W MJ2955 2N3440 6 NPN 视放开关450V 1A 1W 15MHZ 2N6609 2N3773 12 NPN 音频功放开关160V 16A 50W 2N3904 21E NPN 通用60V 0.2A 2N2906 21C PNP 通用40V 0.2A 2N2222A 21铁NPN 高频放大75V 0.6A 0.625W 300MHZ 2N6718 21铁NPN 音频功放开关100V 2A 2W 2N5401 21 PNP 视频放大160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放开关60V 50A 300W 2N6277 12 NPN 功放开关180V 50A 250W 9012 21 PNP 低频放大50V 0.5A 0.625W 9013 2N6678 12 NPN 音频功放开关650V 15A 175W 15MHZ 9012 贴片PNP 低频放大50V 0.5A 0.625W 9013

A09T,AO9T场效应管三极管PL4009

Symbol Typ Max 659085125R θJL 4360Maximum Junction-to-Lead C Steady-State °C/W Thermal Characteristics Parameter Units Maximum Junction-to-Ambient A t ≤ 10s R θJA °C/W Maximum Junction-to-Ambient A Steady-State °C/W

Symbol Min Typ Max Units BV DSS 30 V 1T J =55°C 5I GSS 100nA V GS(th)0.7 1.1 1.4 V I D(ON) 30 A 22.828T J =125°C 323927.333m ? 43.352 m ?g FS 10 15S V SD 0.71 1V I S 2.5 A C iss 823 1030pF C oss 99pF C rss 77pF R g 1.2 3.6?Q g 9.7 12nC Q gs 1.6nC Q gd 3.1nC t D(on) 3.3 5ns t r 4.87ns t D(off)26.340ns t f 4.16ns t rr 1620ns Q rr 8.9 12nC THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Gate resistance V GS =0V, V DS =0V, f=1MHz Turn-Off Fall Time Maximum Body-Diode Continuous Current Input Capacitance Output Capacitance Turn-On DelayTime DYNAMIC PARAMETERS I F =5A, dI/dt=100A/μs V GS =0V, V DS =15V, f=1MHz SWITCHING PARAMETERS Total Gate Charge V GS =4.5V, V DS =15V, I D =5.8A Gate Source Charge Gate Drain Charge Turn-On Rise Time Turn-Off DelayTime V GS =10V, V DS =15V, R L =2.7?, R GEN =3? m ?V GS =4.5V, I D =5A I S =1A,V GS =0V V DS =5V, I D =5A R DS(ON) Static Drain-Source On-Resistance Forward Transconductance Diode Forward Voltage I DSS μA Gate Threshold Voltage V DS =V GS I D =250μA V DS =24V, V GS =0V V DS =0V, V GS =±12V Zero Gate Voltage Drain Current Gate-Body leakage current Electrical Characteristics (T J =25°C unless otherwise noted)STATIC PARAMETERS Parameter Conditions Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge I F =5A, dI/dt=100A/μs Drain-Source Breakdown Voltage On state drain current I D =250μA, V GS =0V V GS =2.5V, I D =4A V GS =4.5V, V DS =5V V GS =10V, I D =5.8A Reverse Transfer Capacitance A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature. C. The R θJA is the sum of the thermal impedence from junction to lead R θJL and lead to ambient. D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 μs pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The SOA curve provides a single pulse rating. Rev 4 : June 2005

三极管参数说明

三极管参数说明 VCEO,基极开路,集电极-发射极反向击穿电压。 VCBO,发射极开路,集电极-基极反向击穿电压。 VEBO,J集电极开路,发射结反向击穿电压。 VDSO, 漏源击穿电压。 ICM,集电极最大允许电流。 IDSM,最大漏源电流。 PCM,集电极最大耗散功率。 PDM,漏极最大耗散功率。 IC,集电极电流。 ID,漏极电流。 hFE,共发射极静态放大倍数。 gm,低频跨导,场效应管栅极电压对漏极电流的控制能力。 fT,特征频率。 td,延迟时间。 tf,下降时间。 一、半导体二极管参数符号及其意义 CT---势垒电容 Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容 Cjv---偏压结电容 Co---零偏压电容 Cjo---零偏压结电容 Cjo/Cjn---结电容变化 Cs---管壳电容或封装电容 Ct---总电容 CTV---电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比

CTC---电容温度系数 Cvn---标称电容 IF---正向直流电流(正向测试电流)。锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流 IF(AV)---正向平均电流 IFM(IM)---正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电流。发光二极管极限电流。 IH---恒定电流、维持电流。 Ii--- 发光二极管起辉电流 IFRM---正向重复峰值电流 IFSM---正向不重复峰值电流(浪涌电流) Io---整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流 IF(ov)---正向过载电流 IL---光电流或稳流二极管极限电流 ID---暗电流 IB2---单结晶体管中的基极调制电流 IEM---发射极峰值电流 IEB10---双基极单结晶体管中发射极与第一基极间反向电流 IEB20---双基极单结晶体管中发射极向电流 ICM---最大输出平均电流 IFMP---正向脉冲电流 IP---峰点电流 IV---谷点电流 IGT---晶闸管控制极触发电流 IGD---晶闸管控制极不触发电流 IGFM---控制极正向峰值电流 IR(AV)---反向平均电流 IR(In)---反向直流电流(反向漏电流)。在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。

三极管型号参数查询大全

三极管型号及参数 晶体管型号反压Vbe0电流Icm功率Pcm放大系数特征频率管子类型IRFU02050V15A42W**NMOS场效应IRFPG421000V4A150W**NMOS场效应IRFPF40900V 4.7A150W**NMOS场效应IRFP9240200V12A150W**PMOS场效应IRFP9140100V19A150W**PMOS场效应IRFP460500V20A250W**NMOS场效应IRFP450500V14A180W**NMOS场效应IRFP440500V8A150W**NMOS场效应IRFP353350V14A180W**NMOS场效应IRFP350400V16A180W**NMOS场效应IRFP340400V10A150W**NMOS场效应IRFP250200V33A180W**NMOS场效应IRFP240200V19A150W**NMOS场效应IRFP150100V40A180W**NMOS场效应晶体管型号反压Vbe0电流Icm功率Pcm放大系数特征频率管子类型IRFP140100V30A150W**NMOS场效应IRFP05460V65A180W**NMOS场效应IRFI744400V4A32W**NMOS场效应IRFI730400V4A32W**NMOS场效应IRFD9120100V1A1W**NMOS场效应IRFD12380V 1.1A1W**NMOS场效应IRFD120100V 1.3A1W**NMOS场效应IRFD11360V0.8A1W**NMOS场效应IRFBE30800V 2.8A75W**NMOS场效应IRFBC40600V 6.2A125W**NMOS场效应IRFBC30600V 3.6A74W**NMOS场效应IRFBC20600V 2.5A50W**NMOS场效应IRFS9630200V 6.5A75W**PMOS场效应IRF9630200V 6.5A75W**PMOS场效应IRF9610200V1A20W**PMOS场效应晶体管型号反压Vbe0电流Icm功率Pcm放大系数特征频率管子类型IRF954160V19A125W**PMOS场效应IRF953160V12A75W**PMOS场效应IRF9530100V12A75W**PMOS场效应IRF840500V8A125W**NMOS场效应IRF830500V 4.5A75W**NMOS场效应IRF740400V10A125W**NMOS场效应IRF730400V 5.5A75W**NMOS场效应IRF720400V 3.3A50W**NMOS场效应IRF640200V18A125W**NMOS场效应IRF630200V9A75W**NMOS场效应IRF610200V 3.3A43W**NMOS场效应IRF54180V28A150W**NMOS场效应IRF540100V28A150W**NMOS场效应IRF530100V14A79W**NMOS场效应

场效应管和三极管的区别

场效应管是场效应晶体管(Field Effect Transistor,FET)的简称。它属于电压控制型半导体器件,具有输入电阻高、噪声小、功耗低、没有二次击穿现象、安全工作区域宽、受温度和辐射影响小等优点,特别适用于高灵敏度和低噪声的电路,现已成为普通晶体管的强大竞争者。 普通晶体管(三极管)是一种电流控制元件,工作时,多数载流子和少数载流子都参与运行,所以被称为双极型晶体管;而场效应管(FET)是一种电压控制器件(改变其栅源电压就可以改变其漏极电流),工作时,只有一种载流子参与导电,因此它是单极型晶体管。 场效应管和三极管一样都能实现信号的控制和放大,但由于他们构造和工作原理截然不同,所以二者的差异很大。在某些特殊应用方面,场效应管优于三极管,是三极管无法替代的,三极管与场效应管区别见下表。 场效应管是电压控制元件,而三极管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管。而在信号源电压较低,又允许从信号源取较多电流的条件下,应用三极管。 场效应管靠多子导电,管中运动的只是一种极性的载流子;三极管既用多子,又利用少子。由于多子浓度不易受外因的影响,因此在环境变化较强烈的场合,采用场效应管比较合适。 场效应管的输入电阻高,适用于高输入电阻的场合。场效应管的噪声系

数小,适用于低噪声放大器的前置级。 1.场效应管的源极s、栅极g、漏极d分别对应于三极管的发射极e、基极b、集电极c,它们的作用相似。 2.场效应管是电压控制电流器件,由vGS控制iD,其放大系数gm一般较小,因此场效应管的放大能力较差;三极管是电流控制电流器件,由iB(或iE)控制iC。 3.场效应管栅极几乎不取电流(ig?0);而三极管工作时基极总要吸取一定的电流。因此场效应管的输入电阻比三极管的输入电阻高。 4.场效应管只有多子参与导电;三极管有多子和少子两种载流子参与导电,而少子浓度受温度、辐射等因素影响较大,因而场效应管比晶体管的温度稳定性好、抗辐射能力强。在环境条件(温度等)变化很大的情况下应选用场效应管。 5.场效应管在源极水与衬底连在一起时,源极和漏极可以互换使用,且特性变化不大;而三极管的集电极与发射极互换使用时,其特性差异很大,b值将减小很多。 6.场效应管的噪声系数很小,在低噪声放大电路的输入级及要求信噪比较高的电路中要选用场效应管。 7.场效应管和三极管均可组成各种放大电路和开路电路,但由于前者制造工艺简单,且具有耗电少,热稳定性好,工作电源电压范围宽等优点,因而被广泛用于大规模和超大规模集成电路中。 8。三极管导通电阻大,场效应管导通电阻小,只有几百毫欧姆,在现在的用电器件上,一般都用场效应管做开关来用,他的效率是比较高的。 场效应管G极必须有一个对地的放电电阻,不然上电就烧,而三极管基极不需要 在只允许从信号源取较少电流的情况下,应选用场效应管; 而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管. 晶体三极管与场效应管工作原理完全不同,但是各极可以近似对应以便于理解和设计: 晶体管:基极发射极集电极 场效应管:栅极源极漏极 要注意的是,晶体管(NPN型)设计发射极电位比基极电位低(约0.6V),场效应管源极电位比栅极电位高(约0.4V)。 场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电,被称之为双极型器件.

场效应管的选型及应用概览

场效应管的选型及应用概览 场效应管广泛使用在模拟电路与数字电路中,和我们的生活密不可分。场效应管的优势在于:首先驱动电路比较简单。场效应管需要的驱动电流比BJT则小得多,而且通常可以直接由CMOS或者集电极开路TTL驱动电路驱动;其次场效应管的开关速度比较迅速,能够以较高的速度工作,因为没有电荷存储效应;另外场效应管没有二次击穿失效机理,它在温度越高时往往耐力越强,而且发生热击穿的可能性越低,还可以在较宽的温度范围内提供较好的性能。场效应管已经得到了大量应用,在消费电子、工业产品、机电设备、智能手机以及其他便携式数码电子产品中随处可见。 近年来,随着汽车、通信、能源、消费、绿色工业等大量应用场效应管产品的行业在近几年来得到了快速的发展,功率场效应管更是备受关注。据预测,2010-2015年中国功率MOSFET市场的总体复合年度增长率将达到13.7%。虽然市场研究公司 iSuppli 表示由于宏观的投资和经济政策和日本地震带来的晶圆与原材料供应问题,今年的功率场效应管市场会放缓,但消费电子和数据处理的需求依然旺盛,因此长期来看,功率场效应管的增长还是会持续一段相当长的时间。 技术一直在进步,功率场效应管市场逐渐受到了新技术的挑战。例如,业内有不少公司已经开始研发GaN功率器件,并且断言硅功率场效应管的性能可提升的空间已经非常有限。不过,GaN 对功率场效应管市场的挑战还处于非常初期的阶段,场效应管在技术成熟度、供应量等方面仍然占据明显的优势,经过三十多年的发展,场效应管市场也不会轻易被新技术迅速替代。 五年甚至更长的时间内,场效应管仍会占据主导的位置。场效应管也仍将是众多刚入行的工程师都会接触到的器件,本期内容将会从基础开始,探讨场效应管的一些基础知识,包括选型、关键参数的介绍、系统和散热的考虑等为大家做一些介绍。 一.场效应管的基础选型 场效应管有两大类型:N沟道和P沟道。在功率系统中,场效应管可被看成电气开关。当在N沟道场效应管的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚场效应管的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。 作为电气系统中的基本部件,工程师如何根据参数做出正确选择呢?本文将讨论如何通过四步来选择正确的场效应管。 1)沟道的选择。为设计选择正确器件的第一步是决定采用N沟道还是P沟道场效应管。在典型的功率应用中,当一个场效应管接地,而负载连接到干线电压上时,该场效应管就构成了低压侧开关。在低压侧开关中,应采用N沟道场效应管,这是出于对关闭或导通器件所需电压的考虑。当场效应管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道场效应管,这也是出于对电压驱动的考虑。

三极管型号及参数选用大全

NPN与PNP三极管的区别 电子知识2008-08-29 16:06 阅读25 评论0 字号:大中小小 NPN和PNP主要就是电流方向和电压正负不同,说得“专业”一点,就是“极性”问题。 NPN 是用B→E 的电流(IB)控制C→E 的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC > VB > VE PNP 是用E→B 的电流(IB)控制E→C 的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC < VB < VE 总之VB 一般都是在中间,VC 和VE 在两边,这跟通常的BJT 符号中的位置是一致的,你可以利用这个帮助你的形象思维和记忆。而且BJT的各极之间虽然不是纯电阻,但电压方向和电流方向同样是一致的,不会出现电流从低电位流向高电位的情况。 如今流行的电路图画法,通常习惯“男上女下”,哦不对,“阳上阴下”,也就是“正电源在上负电源在下”。那NPN电路中,E 最终都是接到地板(直接或间接),C 最终都是接到天花板(直接或间接)。PNP电路则相反,C 最终都是接到地板(直接或间接),E 最终都是接到天花板(直接或间接)。这也是为了满足上面的VC 和VE的关系。一般的电路中,有了NPN的,你就可以按“上下对称交换”的方法得到PNP 的版本。无论何时,只要满足上面的6个“极性”关系(4个电流方向和2个电压不等式),BJT电路就可能正常工作。当然,要保证正常工作,还必须保证这些电压、电流满足一些进一步的定量条件,即所谓“工作点”条件。 对于NPN电路: 对于共射组态,可以粗略理解为把VE当作“固定”参考点,通过控制VB来控制VBE(VBE=VB-VE),从而控制IB,并进一步控制IC(从电位更高的地方流进C极,你也可以把C极看作朝上的进水的漏斗)。 对于共基组态,可以理解为把VB当作固定参考点,通过控制VE来控制VBE(VBE=VB-VE),从而控制IB,并进一步控制IC。

三极管型号及参数大全

这些虽不能涵盖所有的三极管型号,例如3DD系列等,但是都是极其常用的型号,例如901系列,简直是无所不在。在网上查的电子元件手册都是卖书的广告,找到点参数型号确实不易。 S9013是NPN型三极管,放大倍数分为六级,在三极管上有标识: D级:64-91 E级:78-112 F级:96-135 G级:112-166 H级:144-220 I级:190-300 名称封装极性功能耐压电流功率频率配对管 D63328NPN音频功放开关100V7A40W达林顿 9013 21 NPN 低频放大50V0. 5A0. 625W 9012 9014 21 NPN 低噪放大50V0. 1A0. 4W 150HM Z9015 9015 21 PNP 低噪放大50V0. 1A0. 4W 150MHZ 9014 901821NPN高频放大30V0.05A0.4W1000MHZ 805021NPN高频放大40V1.5A1W100MHZ8550 855021PNP高频放大40V1.5A1W100MHZ8050 2N222221NPN通用60V0.8A0.5W25/200NS 2N23694ANPN开关40V0.5A0.3W800MHZ 2N29074ANPN通用60V0.6A0.4W26/70NS 2N305512NPN功率放大100V15A115WMJ2955 2N34406NPN视放开关450V1A1W15MHZ2N6609 2N377312NPN音频功放开关160V16A50W 2N390421ENPN通用60V0.2A 2N290621CPNP通用40V0.2A 2N2222A21铁NPN高频放大75V0.6A0.625W300MHZ 2N671821铁NPN音频功放开关100V2A2W 2N540121PNP视频放大160V0.8050三极管引脚图6A0.625W100MHZ2N5551 2N555121NPN视频放大160V0.6A0.625W100MHZ2N5401 2N568512NPN音频功放开关60V50A300W 2N627712NPN功放开关180V50A250W 901221PNP低频放大50V0.5A0.625W9013 2N667812NPN音频功放开关650V15A175W15MHZ 9012贴片PNP低频放大50V0.5A0.625W9013 3DA87A6NPN视频放大100V0.1A1W 3DG6B6NPN通用20V0.02A0.1W150MHZ 3DG6C6NPN通用25V0.02A0.1W250MHZ 3DG6D6NPN通用30V0.02A0.1W150MHZ MPSA4221ENPN电话视频放大300V0.5A0.625WMPSA92 MPSA9221EPNP电话视频放大300V0.5A0.625WMPSA42 MPS2222A21NPN高频放大75V0.6A0.625W300MHZ

如何用万用表测量场效应管三极管的好坏.doc

如何用万用表测量场效应管三极管的好坏 导读: 将万用表拨至R×100档,红表笔任意接一个脚管,黑表笔则接另一个脚管,使第三脚悬空。若发现表针有轻微摆动,就证明第三脚为栅极。欲获得更明显的观察效果,还可利用人体靠近或者用手指触摸悬空脚,只要看到表针作大幅度偏转,即说明悬空脚是栅极,其余二脚分别是源极和漏极。 一、定性判断MOS型场效应管的好坏 先用万用表R×10kΩ挡(内置有9V或15V电池),把负表笔(黑)接栅极(G),正表笔(红)接源极(S)。给栅、源极之间充电,此时万用表指针有轻微偏转。再改用万用表R×1Ω挡,将负表笔接漏极(D),正笔接源极(S),万用表指示值若为几欧姆,则说明场效应管是好的。 二、定性判断结型场效应管的电极 将万用表拨至R×100档,红表笔任意接一个脚管,黑表笔则接另一个脚管,使第三脚悬空。若发现表针有轻微摆动,就证明第三脚为栅极。欲获得更明显的观察效果,还可利用人体靠近或者用手指触摸悬空脚,只要看到表针作大幅度偏转,即说明悬空脚是栅极,其余二脚分别是源极和漏极。 判断理由:JFET的输入电阻大于100MΩ,并且跨导很高,当栅极开路时空间电磁场很容易在栅极上感应出电压信号,使管子趋于截止,或趋于导通。若将人体感应电压直接加在栅极上,由于输入干扰信号较强,上述现象会更加明显。如表针向左侧大幅度偏转,就意味着管子趋于截止,漏-源极间电阻RDS增大,漏-源极间电流减小IDS。反之,表针向右侧大幅度偏转,说明管子趋向导通,RDS↓,IDS↑。但表针究竟向哪个方向偏转,应视感应电压的极性(正向电压或反向电压)及管子的工作点而定。 注意事项: (1)试验表明,当两手与D、S极绝缘,只摸栅极时,表针一般向左偏转。但是,如果两手分别接触D、S极,并且用手指摸住栅极时,有可能观察到表针向右偏转的情形。其原因是人体几个部位和电阻对场效应管起到偏置作用,使之进入饱和区。 (2)也可以用舌尖舔住栅极,现象同上。 三、晶体三极管管脚判别 三极管是由管芯(两个PN结)、三个电极和管壳组成,三个电极分别叫集电极c、发射极e和基极b,目前常见的三极管是硅平面管,又分PNP和NPN型两类。现在锗合金管已经少见了。这里向大家介绍如何用万用表测量三极管的三个管脚的简单方法。 1.找出基极,并判定管型(NPN或PNP)

常用场效应管参数大全

常用场效应管参数大全 型号材料管脚用途参数 3DJ6NJ 低频放大20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS 开关600V11A150W0.36 2SJ117 PMOS GDS 音频功放开关400V2A40W 2SJ118 PMOS GDS 高速功放开关140V8A100W50/70nS0.5 2SJ122 PMOS GDS 高速功放开关60V10A50W60/100nS0.15 2SJ136 PMOS GDS 高速功放开关60V12A40W 70/165nS0.3 2SJ143 PMOS GDS 功放开关60V16A35W90/180nS0.035 2SJ172 PMOS GDS 激励60V10A40W73/275nS0.18 2SJ175 PMOS GDS 激励60V10A25W73/275nS0.18 2SJ177 PMOS GDS 激励60V20A35W140/580nS0.085 2SJ201 PMOS n 2SJ306 PMOS GDS 激励60V14A40W30/120nS0.12 2SJ312 PMOS GDS 激励60V14A40W30/120nS0.12 2SK30 NJ SDG 低放音频50V0.5mA0.1W0.5dB 2SK30A NJ SDG 低放低噪音频50V0.3-6.5mA0.1W0.5dB 2SK108 NJ SGD 音频激励开关50V1-12mA0.3W70 1DB 2SK118 NJ SGD 音频话筒放大50V0.01A0.1W0.5dB 2SK168 NJ GSD 高频放大30V0.01A0.2W100MHz1.7dB 2SK192 NJ DSG 高频低噪放大18V12-24mA0.2W100MHz1.8dB 2SK193 NJ GSD 高频低噪放大20V0.5-8mA0.25W100MHz3dB 2SK214 NMOS GSD 高频高速开关160V0.5A30W 2SK241 NMOS DSG 高频放大20V0.03A0.2W100MHz1.7dB 2SK304 NJ GSD 音频功放30V0.6-12mA0.15W 2SK385 NMOS GDS 高速开关400V10A120W100/140nS0.6 2SK386 NMOS GDS 高速开关450V10A120W100/140nS0.7 2SK413 NMOS GDS 高速功放开关140V8A100W0.5 (2SJ118) 2SK423 NMOS SDG 高速开关100V0.5A0.9W4.5 2SK428 NMOS GDS 高速开关60V10A50W45/65NS0.15 2SK447 NMOS SDG 高速低噪开关250V15A150W0.24可驱电机2SK511 NMOS SDG 高速功放开关250V0.3A8W5.0 2SK534 NMOS GDS 高速开关800V5A100W4.0 2SK539 NMOS GDS 开关900V5A150W2.5 2SK560 NMOS GDS 高速开关500V15A100W0.4 2SK623 NMOS GDS 高速开关250V20A120W0.15 2SK727 NMOS GDS 电源开关900V5A125W110/420nS2.5 2SK734 NMOS GDS 电源开关450V15A150W160/250nS0.52 2SK785 NMOS GDS 电源开关500V20A150W105/240nS0.4 2SK787 NMOS GDS 高速开关900V8A150W95/240nS1.6 2SK790 NMOS GDS 高速功放开关500V15A150W0.4 可驱电机

三极管和MOS管的区别

工作性质:三极管用电流控制,MOS管属于电压控制. 2、成本问题:三极管便宜,mos管贵。 3、功耗问题:三极管损耗大。 4、驱动能力:mos管常用来电源开关,以及大电流地方开关电路。 实际上就是三极管比较便宜,用起来方便,常用在数字电路开关控制。 MOS管用于高频高速电路,大电流场合,以及对基极或漏极控制电流比较敏感的地方。 一般来说低成本场合,普通应用的先考虑用三极管,不行的话考虑MOS管 实际上说电流控制慢,电压控制快这种理解是不对的。要真正理解得了解双极晶体管和mos 晶体管的工作方式才能明白。三极管是靠载流子的运动来工作的,以npn管射极跟随器为例,当基极加不加电压时,基区和发射区组成的pn结为阻止多子(基区为空穴,发射区为电子)的扩散运动,在此pn结处会感应出由发射区指向基区的静电场(即内建电场),当基极外加正电压的指向为基区指向发射区,当基极外加电压产生的电场大于内建电场时,基区的载流子(电子)才有可能从基区流向发射区,此电压的最小值即pn结的正向导通电压(工程上一般认为0.7v)。但此时每个pn结的两侧都会有电荷存在,此时如果集电极-发射极加正电压,在电场作用下,发射区的电子往基区运动(实际上都是电子的反方向运动),由于基区宽度很小,电子很容易越过基区到达集电区,并与此处的PN的空穴复合(靠近集电极),为维持平衡,在正电场的作用下集电区的电子加速外集电极运动,而空穴则为pn结处运动,此过程类似一个雪崩过程。集电极的电子通过电源回到发射极,这就是晶体管的工作原理。三极管工作时,两个pn结都会感应出电荷,当做开关管处于导通状态时,三极管处于饱和状态,如果这时三极管截至,pn结感应的电荷要恢复到平衡状态,这个过程需要时间。而mos三极管工作方式不同,没有这个恢复时间,因此可以用作高速开关管。 (1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。 (3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。 (4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用。 (5)场效应晶体管具有较高输入阻抗和低噪声等优点,因而也被广泛应用于各种电子设备中。尤其用场效管做整个电子设备的输入级,可以获得一般晶体管很难达到的性能。

IRF系列场效应管参数

IRF系列场效应管参数明细 型号厂家用途构造沟道方式v111(V) 区分ixing(A) pdpch(W) waixing IRF48 IR N 60 50 190 TO-220AB IRF024 IR N 60 17 60 TO-204AA IRF034 IR N 60 30 90 TO-204AE IRF035 IR N 60 25 90 TO-204AE IRF044 IR N 60 30 150 TO-204AE IRF045 IR N 60 30 150 TO-204AE IRF054 IR N 60 30 180 TO-204AA IRF120 IR N 100 8.0 40 TO-3 IRF121 IR N 60 8.0 40 TO-3 IRF122 IR N 100 7.0 40 TO-3 IRF123 IR N 60 7.0 40 TO-3 IRF130 IR N 100 14 75 TO-3 IRF131 IR N 60 14 75 TO-3 IRF132 IR N 100 12 75 TO-3 IRF133 IR N 60 12 75 TO-3 IRF140 IR N 100 27 125 TO-204AE IRF141 IR N 60 27 125 TO-204AE IRF142 IR N 100 24 125 TO-204AE IRF143 IR N 60 24 125 TO-204AE IRF150 IR N 100 40 150 TO-204AE IRF151 IR N 60 40 150 TO-204AE IRF152 IR N 100 33 150 TO-204AE IRF153 IR N 60 33 150 TO-204AE IRF220 IR N 200 5.0 40 TO-3 IRF221 IR N 150 5.0 40 TO-3

相关文档
最新文档