热力学原理翻译

热力学原理翻译
热力学原理翻译

The factors that cause a process to be irreversible are called irreversibilities. They include friction, unrestrained expansion, mixing of two fluids, heat transfer across a finite temperature difference, electric resistance, inelastic deformation of solids, and chemical reactions. The presence of any of these effects renders a process irreversible.

A reversible process involves none of these. Some of the frequently encountered irreversibilities are discussed briefly below.

Friction is a familiar form of irreversibility associated with bodies in motion. When two bodies in contact are forced to move relative to each other (a piston in a cylinder, for example, as shown in Fig. 6–32), a friction force that opposes the motion develops at the interface of these two bodies, and some work is needed to overcome this friction force. The energy supplied as work is eventually converted to heat during the process and is transferred to the bodies in contact, as evidenced by a temperature rise at the interface. When the direction of the motion is reversed, the bodies are restored to their original position, but the interface does not cool, and heat is not converted back to work. Instead, more of the work is converted to heat while overcoming the friction forces that also oppose the reverse motion. Since the system (the moving bodies) and the surroundings cannot be returned to their original states, this process is irreversible. Therefore, any process that involves friction is irreversible. The larger the friction forces involved, the more irreversible the process is.

Friction does not always involve two solid bodies in contact. It is also encountered between a fluid and solid and even between the layers of a fluid moving at different velocities. A considerable fraction of the power produced by a car engine is used to overcome the friction (the drag force) between the air and the external surfaces of the car, and it eventually becomes part of the internal energy of the air. It is not possible to reversethis process and recover that lost power, even though doing so would not violate the conservation of energy principle.

Another example of irreversibility is the unrestrained expansion of a gas separated from a vacuum by a membrane, as shown in Fig. 6–33. When the membrane is ruptured, the gas fills the entire tank. The only way to restore the system to its original state is to compress it to its initial volume, while transferring heat from the gas until it reaches its initial temperature. From the conservation of energy considerations, it can easily be shown that the amount of heat transferred from the gas equals the amount of work done on the gas by the surroundings. The restoration of the surroundings involves conversion of this heat completely to work, which would violate the second law. Therefore, unrestrained expansion of a gas is an irreversible process.

A third form of irreversibility familiar to us all is heat transfer through a finite temperature difference. Consider a can of cold soda left in a warm room (Fig. 6–34). Heat is transferred from the warmer room air to the cooler soda. The only way this process can be reversed and the soda restored to its original temperature is to provide refrigeration, which requires some work input. At the end of the reverse process, the soda will be restored to its initial state, but the surroundings will not be. The internal energy of the surroundings will increase by an amount equal in magnitude to the work supplied to the refrigerator. The restoration of the surroundings to the initial state can be done only by converting this excess internal energy completely to work, which is impossible to do without violating the second law. Since only the system, not both the system and the surroundings, can be restored to its initial condition, heat transfer through a finite temperature difference is an irreversible process. Heat transfer can occur only when there is a temperature difference between a system and its surroundings. Therefore, it is physically impossible to have a reversible heat transfer process. But a heat transfer process becomes less and less irreversible as the temperature difference between the two bodies approaches zero. Then heat transfer through a differential temperature difference dT can be considered to be reversible. As dT approaches zero, the process can be reversed in direction (at least theoretically) without requiring any refrigeration. Notice that reversible heat transfer is a conceptual process and cannot be duplicated in the real world.

The smaller the temperature difference between two bodies, the smaller the heat transfer rate will be. Any significant heat transfer through a small temperature difference requires a very large surface area and a very long time. Therefore, even though approaching reversible heat transfer is desirable from a thermodynamic point of view, it is impractical and not economically feasible.

不可逆性

导致一个过程不可逆转的因素被称为不可逆转。它们包括摩擦、不受约束的膨胀、两种液体的混合、在有限的温度差异的传热、电阻、固体的非弹性变形和化学反应。任何这些效应的存在都使过程不可逆转。可逆过程不涉及这些。下面简要讨论一些经常遇到的不可逆的问题。

摩擦力是一种常见的不可逆性形式,与物体运动有关。当两个接触的物体被迫移动相对的时候(例如,一个汽缸中的活塞,如图6 - 32所示),一个反对运动的摩擦力在这两个物体的界面上发展,需要一些工作来克服摩擦力。当工作过程中提供的能量最终转化为热量,并转移到接触的物体上,这可以从界面的温度上升中得到证明。当运动方向相反时,身体会恢复到原来的位置,但界面不会冷却,热量不会转换回工作。相反,更多的工作转化为热量,同时克服了同样反对反向运动的摩擦力。由于系统(移动的物体)和环境不能返回到原来的状态,这个过程是不可逆转的。因此,任何涉及摩擦的过程都是不可逆转的。摩擦力越大,过程越不可逆。摩擦并不总是与两个固体接触。它也会在流体和固体之间,甚至在流体在不同速度运动的层之间遇到。汽车发动机产生的相当一部分功率是用来克服空气和汽车外部表面之间的摩擦力(阻力),最终成为空气内部能量的一部分。不可能逆转这个过程,恢复失去的能量,即使这样做不会违反能量守恒定律。另一个不可逆转的例子是气体从真空中分离出来的无限制膨胀,如图6 - 33所示。当隔膜破裂时,整个油箱都充满了气体。将系统还原到原始状态的唯一方法是将其压缩到初始体积,同时将热量从气体中传递到初始温度。从能量守恒的角度,可以很容易地看出,气体从气体中传递的热量等于周围环境对气体的处理量。环境的恢复需要将这种热量完全转化为工作,这将违反第二定律。因此,气体的无限制膨胀是一个不可逆过程。

我们所熟悉的第三种不可逆性形式是通过有限的温差传递热量。考虑一下在温暖的房间里留下的一罐冷饮(图6 - 34)。热量从温暖的室内空气转移到较冷的汽水上。这一过程可以逆转,而苏打水恢复到原来的温度就是提供制冷,这需要一些工作投入。在反过程的最后,苏打水会恢复到初始状态,但环境不会。环境的内部能量将会增加,与提供给冰箱的工作相等。只有把这种过剩的内部能量完全转化为工作,才能使环境恢复到初始状态,这在不违反第二定律的情况下是不可能做到的。因为只有系统,系统和周围环境,才能恢复到初始状态,通过有限温差的热传递是一个不可逆的过程。只有当系统和环境之间存在温差时,才可以进行传热。因此,在物理上不可能有一个可逆的传热过程。但随着两体之间的温差接近于零,传热过程变得越来越不可逆。然后通过微分温差dT进行传热,可以认为是可逆的。随着dT接近于零,这个过程可以在不需要任何制冷的情况下朝方向(至少理论上)反转。注意,可逆热传导是一个概念过程,不能在现实世界中复制。两个物体的温差越小,传热率就越小。任何一个微小温差的重要的热量传递都需要一个非常大的表面积和很长的时间。因此,尽管从热力学的角度来看,可逆热交换是可取的,但它是不切实际的,在经济上是行不通的。

Internally and Externally Reversible Processes

A typical process involves interactions between a system and its surroundings,and a reversible process involves no irreversibilities associated witheither of them.

A process is called internally reversible if no irreversibilities occurwithin the boundaries of the system during the process. During an internal lyreversible process, a system proceeds through a series of equilibrium states, and when the process is reversed, the system passes through exactly the same equilibrium states while returning to its initial state. That is, the paths of the forward and reverse processes coincide for an internally reversible process. The quasi-equilibrium process is an example of an internally

reversible process.

A process is called externally reversible if no irreversibilities occur outside the system boundaries during the process. Heat transfer between a reservoir and a system is an externally reversible process if the outer surface of the system is at the temperature of the reservoir.

A process is called totally reversible, or simply reversible, if it involves no irreversibilities within the system or its surroundings (Fig. 6–35). A totally reversible process involves no heat transfer through a finite temperature difference, no nonquasi-equilibrium changes, and no friction or other dissipative effects.

As an example, consider the transfer of heat to two identical systems that are undergoing a constant-pressure (thus constant-temperature) phasechange process, as shown in Fig. 6–36. Both processes are internally reversible, since both take place isothermally and both pass through exactly the same equilibrium states. The first process shown is externally reversible also, since heat transfer for this process takes place through an infinitesimal temperature difference dT. The second process, however, is externally irreversible, since it involves heat transfer through a finite temperature difference _T.

内部和外部可逆过程

一个典型的过程包括一个系统和它周围的环境之间的交互,一个可逆过程不包括与它们相关的不可逆过程。一个过程被称为内部可逆过程,如果在此过程中系统的边界内不发生任何不可逆过程。在一个内部的可逆过程中,系统通过一系列平衡态进行,当过程被逆转时,系统通过完全相同的平衡状态,同时回归到初始状态。也就是说,正向和反向过程的路径是在内部可逆过程中发生的。准平衡过程是内部的一个例子

可逆过程。一个过程被称为外部可逆,如果在过程中不存在系统边界之外的不可逆过程。如果系统的外表面处于热源的温度,则热源与系统之间的传热是一个外部可逆过程。一个过程被称为完全可逆,或者简单的可逆,如果它不涉及系统内部或其周围的不可逆过程(图6 - 35)。一个完全可逆过程不涉及到通过有限温差的热传导,没有非准平衡的变化,没有摩擦或其他耗散的影响。

举个例子,考虑将热传递给两个相同的系统,它们正处于恒压(因此恒定温度)的相变过程,如图6 - 36所示。这两个过程都是内部可逆的,因为它们都是等温的,而且都经过了完全相同的平衡态。第一个过程是外部可逆的,因为这个过程的热量传递是通过一个无穷小的温差dT进行的。然而,第二个过程是不可逆转的,因为它涉及到通过有限温差来传递热量。

建筑类外文文献及中文翻译

forced concrete structure reinforced with an overviewRein Since the reform and opening up, with the national economy's rapid and sustained development of a reinforced concrete structure built, reinforced with the development of technology has been great. Therefore, to promote the use of advanced technology reinforced connecting to improve project quality and speed up the pace of construction, improve labor productivity, reduce costs, and is of great significance. Reinforced steel bars connecting technologies can be divided into two broad categories linking welding machinery and steel. There are six types of welding steel welding methods, and some apply to the prefabricated plant, and some apply to the construction site, some of both apply. There are three types of machinery commonly used reinforcement linking method primarily applicable to the construction site. Ways has its own characteristics and different application, and in the continuous development and improvement. In actual production, should be based on specific conditions of work, working environment and technical requirements, the choice of suitable methods to achieve the best overall efficiency. 1、steel mechanical link 1.1 radial squeeze link Will be a steel sleeve in two sets to the highly-reinforced Department with superhigh pressure hydraulic equipment (squeeze tongs) along steel sleeve radial squeeze steel casing, in squeezing out tongs squeeze pressure role of a steel sleeve plasticity deformation closely integrated with reinforced through reinforced steel sleeve and Wang Liang's Position will be two solid steel bars linked Characteristic: Connect intensity to be high, performance reliable, can bear high stress draw and pigeonhole the load and tired load repeatedly.

机器人外文翻译

英文原文出自《Advanced Technology Libraries》2008年第5期 Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration,

关于对比语言学在英汉翻译中的运用的论文

关于对比语言学在英汉翻译中的运用的论文摘要:随着我国国际地位的逐渐提升,英语也成为我们日常交际中的主要语言之一。但是在交际过程中,由于语言不通阻碍交流,因此翻译的作用逐渐凸显出来。但是翻译作为一种交流的环节,由于它是一门跨语言的艺术,所以需要涉及到汉语和英语这两种语言的重组。同时翻译过程作为一种语言传播的过程,需要对源语言和目的语言各自的语言学要素进行深刻的认识与了解,这样才能够在沟通的过程中实现信息的交流。在实际的硬汉翻译过程中,语言学知识贯穿着翻译过程的各个部分。因此接下来本文将对语言学在英汉翻译中运用展开详细的分析。 关键词:语言学;英汉翻译;运用分析;探讨研究 中英翻译作为一种语言、一种文化之间的转换,包含着众多的语言学知识。在翻译的过程中,讲求信、达、雅,不仅仅要将源语言转换成目的语言,同时翻译过来的语言要能够和目的语言表达方式相一致。我们可以将翻译的过程看成是编码解码的过程,在这个过程中,翻译人员担任着中介者的作用,翻译信息的是否得当,直接影响着交流的整个工程。因此在翻译中需要对源语言和目的语言的语言学要能够精通了解。 一、外延意义与内涵意义在英汉翻译中的运用分析 (1)外延意义在英汉翻译中的运用语言的外延意义就是指语言的概念知识,是一个词语最为基本的含义,也是语言交际过程中的核心概念。我们在平时的语言学习过程中对于一个词语最先掌握的就是其外延意义,也是其最为基本的含义。我们在平时学习英语查字典的过程中,相对应的英语词汇的相关汉语解释就是其

外延意义。外延意义通常来讲具有稳定性,只和这个词语有关。外延意义并不会因为说话者本身所处的国家、说话者身份或者是所处的环境而有所改变。例如,翻译人员在对dragon、dog、book这些词语进行翻译的过程中,他们的基本含义就是龙、狗以及书本,不会出现在澳大利亚是这个意思,而在中国就变成了另外一种概念。外延意义具有明确性,不会随着国家、地域的不同就变成意外一种含义。 (2)内涵意义在英汉翻译中的运用语言的内涵意义就是指语言深层次的含义,是在一定的国家,一定的文化背景的覆盖下,给予词语的外延意义以一定的感情色彩。也就是说一个词语的外延意义只是一种表面化的意义,需要根据不同的文化环境赋予其社交色彩。用一种更加简单的方式来理解就是说外延意义是一个词语基本的、表面的含义,而内涵意义就是指一个词语的深刻的、潜藏的意义。前文讲过,外延意义具有稳定性以及明确的指向性,而内涵意义则具有不稳定性。一个词语的内涵意义需要读者自己根据其对于不同文化的理解加以体会。一个词语的内涵意义会因为不同的人、不同的身份、不同的国家、不同的文化背景而有所不同。它也会随着社会不断向前发展,一个词语的内涵意义也会有所变革,同时在不同的语言环境中,一个词语的内涵意义也不一样。同样,我们可以举例进行说明:Youarealuckydog.在这句话中,dog的外延含义是不会改变的,也就是狗的意思,无论是在英语语境或者是在汉语语境中。但是由于所处的社会背景不一致,其内涵意义呈现出差别,在英语中,dog通常代表着忠诚,具有褒义,而在中国,dog则代表着不好的东西,例如狗仗人势。因此在翻译过程中需要从源语言的内涵意义出发,将其翻译为“你真是个幸运儿”,而不是“你真是条幸运的狗”。

建筑学毕业专业外文翻译文献doc资料

本科毕业设计(外文翻译) 题目居住区交往空间规划与设计 院(系部)xxx学院 专业名称xx 年级班级xx 学生姓名xx 指导教师xx xx 年xx 月x 日 Planning and Design of Association Space of residential District

Xia dong liang 【Abstract】:The association space refers to the indoor and outdoor space for communication between residents.The article presents an overall discussion of the necessity,hierarchy and functionality of association space,with a wish to create positive and healthy association atmosphere and stimulate good communication among residents so that the residential area can become a homeland full of love and harmony. 【Keyword】:residential area;association space;necessity;hierarchy;Functionality 【Foreword】:As the housing system reform and the rapid development of real estate, urban residential areas large urban settlements have emerged on the layout of residential buildings, public buildings, public green space, life and living facilities such as roads, to provide urban residents live in the community and The establishment, is an integral part of the city. Exchanges between the living room area residents is to communicate and exchange of indoor and outdoor space. At this stage, people's living standards greatly improved the living environment of continuous improvement district. Developers should not only focus on residential construction and the reasonable comfort, paying greater attention to the construction of residential environment. However, the current environment in the construction of residential areas, they are often the natural ecology of greening the environment is much more to consider, and the promotion of exchanges between the residents of the space environment to consider less, environmental construction can not meet the occupants of the psychological characteristics and needs. From the basic physiological needs gradually to meet the psychological and cultural fields of promoting a higher level, the residential area is not only the function of living, but also people's thinking and feelings of the local exchange. Therefore, the strengthening of exchanges between the residential areas of space construction, increase residential neighbourhood affinity, should be developed in the planning and construction of residential areas should also consider the issue. How to conduct exchanges between the residential areas of space planning and design, improve people's quality of life, the author of his own real estate development

外文翻译(土木专业)

模拟在火灾情况下加载对构造柱行为的影响 作者: 阿尼尔阿加瓦尔,普渡大学西拉法叶,在47906,anilag@https://www.360docs.net/doc/2713497155.html, 阿米特阁下瓦玛,普渡大学西拉法叶,在47906,ahvarma@https://www.360docs.net/doc/2713497155.html, 本文介绍了在光纤梁柱的有限元建模发展的基础上,模拟梁柱和其他构件在火灾高温情况下受荷的结构行为。几个这样的单元可以结合起来:(一)模型结构构件和框架(二)在火灾情况下分析它们,有限元程序是在一个土著有限元分析程序,使用改进的牛顿拉夫逊(星期日)迭代求解算法进行非线性分析。该文件还为简单的基准的方案问题以及钢柱在最近进行的火灾测试提供了有限元的有限验证。审定、采用有限元参数进行分析,以探讨在火灾情况下钢柱负荷强度的结构参数和约束作用 1.0简介 目前的建筑法规(例如,国际生物伦理委员会2005年)强调规范建筑钢结构防火抗震设计。用标准的ASTM E119进行测试以确定各组成部分的防火等级。由于工具简单,火灾的标准测试结果的适用性是有限的,通过这些测试推断出结果,提供一个在现实的火灾情况下洞察整个结构和各个组成部分的基本行为的途径。目前,急需一个简单的分析模型和方法,以用来从一定精度上模拟在标准火灾作用下,个别结构构件的行为以及它们之间相互作用。这些模型必须基于基本原则,适用于参数研究,同时能容易地探索设计方案。本文论述了一个结论的发展和验证,即一个简单的2个节点的有限梁柱元素,可以用来模拟和分析在火灾荷载下整个结构。对一些参数进行研究,探讨边界条件和其它的约束作用,以及钢柱受到的轴向和热负荷作用下的破坏。 2.0纤维配方基于2 -节点有限元 一个2节点有限元已制订的c0曲率在节点的连续性和一个三次埃尔米特多项式形函数。荷载被假定为只作用在一个元素的节点上,这个元素有两个结合点,在每个端部各一个,拟议的梁柱元素设计是考虑到结构的几何非线性和材料非线性。完整的工具,包括元素和计算程序,有能力对只承受弯曲变形或轴向变形的任何截面做出分析。以下分节讨论了该模型的突出问题。 2.1热负荷 该元素能将热膨胀的影响和由于温度变化所引起的材料性能的改变结合起来。全截面纤维可以被分配在不同的温度和在温度非均匀情况下分布,压力和弯曲的情况也是全截面分布的,使截面图保持水平,外部作用平衡外部作用。香港开发的分析程序(2007)可以用来计算给定播映时间的温度曲线整个路段的温度。计算工具得到了进一步的修改,以允许用户通过宽翼缘部分(图1)给定的7个点,输入时间温度曲线。该方案在特定值中插值以计算每个截面纤维的温度。 2.2材料性能 该方案有能力建模钢、钢筋混凝土,以及诸如钢管混凝土管(桂林工学院)的复合元素。变温单轴应力应变曲线必须是一节中使用的特定的材料。目前的工作,重点是在钢柱。博爱医院所提出的温度依赖性钢的应力应变曲线(2001)已用

语言学术语翻译及术语解释

术语翻译及术语解释汇总 术语翻译 1. Design features of Ianguage (语言的甄别特征) Arbitrariness (任意性),Duality (二层性 /二重性),Creativity (创造性 /原创性), Displacement (移位性),Cultural transmission (文化传播), Interchangeability (可 互换性) 2. Functions of language referential 指称功能 poetic 诗学功 能 conative 劝慰功能 phatic 寒暄功 能 ideational function 概念功能 textual function 语篇 /文本功能 Performative Function (施为功 能), Phatic communion (寒暄交 谈), 3. Phonetics 语音学), Morphology (形态学) , Semantics (语义学), Articulatory phonetics 发音语音学 Auditory phonetics 听觉语音学 Socioli nguistics 社会语言学 Computational linguistics 计算语言 学 Neurolinguistics 神经语言学 emotive 情感功能 metalingual function 元语言功能 in terpers onal function 人际功能 Informative (信息 /告知功能), Emotive Function (情感功能) , Recreational Function (娱乐功能), Pho no logy (音系/音位学); Syntax (句法学); Pragmatics (语用学) Acoustic pho netics 声学语音学 Psycholi nguistics 心理语言学 Anthropological linguistics 人类语言学 Applied linguistics 应用语言学4. Descriptive vs. prescriptive 描写式和规定式 Synchronic vs. diachr onic 共时和历时 Lan gue vs. parole 语言和言语 Compete nee vs. performa nce§言能力和语言行为 5. Vocal tract 声道 (res on at ing cavities 共鸣腔),phary nx 咽腔,oral cavity 口腔 and n asal cavity 鼻腔. 其它的一些发音器官:lungs 肺,windpipe (trachea )气管,vocal folds 声带, larynx 喉,epiglottis 会厌,次声门,pharynx 咽,uvula 小舌,hard palate 硬腭, soft palate 软腭,alveolar ridge 齿龈 6. Consonants and vowels (辅音和元音) A. Manners of articulation 发音方式 B. Places of articulation 发音位置 7. Stop (or plosive )爆破音 Fricative 摩擦音 Approximant 近似音 Lateral (approximant )边音 Affricates 塞擦音,trill 颤音 and tap 闪音 Bilabial 双唇音 Labiodental 唇齿音 Dental 齿音 Postal veolar 后齿龈音 Retroflex 卷舌音 Velar 软腭音 Uvular 小舌音, pharyngeal 咽音 monophthong vowel: 单元音 diphthongs 双元音 Lax vowels 短元音 Tensed vowels 长元音 8. Coarticulation and phonetic transcription 协同发音和标音 anticipatory coarticulation 先期协同发音 perseverative coarticulation 后滞协同发音. broad tran scriptio n 宽式标音 narrow tran scripti on 严式标音 9. minimal pairs 最小对立体 Phoneme 音位 phon emic tran scripti ons 音位转写 phon etic tran scripti ons 语音转写 phones 音子 alloph ones 音位变体 compleme ntary distributi on 互补分布 Alveolar 齿龈音 Palatal 硬腭音 glottal 声门音 triphthongs 三元 音

建筑学专业毕业设计方案外文翻译二44

毕业设计英文资料翻译 Tran slati on ofthe En glish Docume nts for Graduati on Desig n 课题名称_____________________________________ 院< 系)_____________________________________ 专业 _____________________________________ 姓名 _____________________________________ 学号 _____________________________________ 起讫日期 _____________________________________ 指导教师 _____________________________________ 2018 年2月25日 原文: Abstract:Gree n buildi ng refers to do its best to maximize con servati on of resources (en ergy, land, water, and wood> , protecti ng the environment and reduce polluti on in its life cycle. Provide people with healthy, appropriate and efficient use of space, and nature in harmony symbiosis buildings. Idescribed more details of green building design ' notion, green building ' design, as well as the sig ni fica nee of the con

外文翻译译文

对整体叶盘加工柔性磨削头的自适应性 Pengbing Zhao & Yaoyao Shi 收稿日期:20135月21日 接受:2013年10月15日 在线发表时间:2013年11月8日 #施普林格出版社伦敦2013 摘要:为提高机械加工时的质量、稳定性、一致性,以及其他加工表面的机械性能,现设计出一款新式的气动的柔性磨头,现分析这款柔性磨头的工作原理,可加工的区域以及实时定位技术。考虑到非直线区域加工死区、未知系统功能以及气动伺服系统性能的不确定干扰的影响,提出一种基于扩张状态观测器(ESO)的自适应滑模控制(ASMC),ESO是被用来估计系统状态变量以及采用一种自适应率来补偿输入加工死区。最后,闭环系统的稳定性由李亚普诺夫理论(Lyapunov theory)确定。实验结果表明了ESO的完美估计,以及ASMC与传统的PID控制相比有着更强的抗干扰能力,ASMC可以实现亚微粒级别之内控制的精确程度。磨削实验说明这种方法可以缩减近乎50%的叶片表面波状起伏和粗糙度,以及降低大约22.93%的形状误差。 关键词:叶片磨削工艺气动系统滑模控制 1 介绍 叶片是为航空发动机设计的一种新式零件,是一种薄壁整体结构的复杂零件,复杂曲面以及难切割材料。考虑到不同的几何尺寸,材料以及叶片的批量大小,以下有几种加工方法,例如磨削,电化学加工(ECM),以及可以分为水槽电火花加工(SEDM)和电缆电火花加工(WEDM)的电火花加工(EDM)。有几种铣削加工过程依靠特殊的叶片几何形状。次摆线铣削是其中一种最新发展的方法,这种方法可以实现很高的材料切除速率和低的工具磨损。SEDM是一种经

济的叶片粗加工方式,特别是Ni基合金材料的叶片。随着电机的发展,WEDM 可以实现高的材料切除率和切割率,同时也可以应用于叶片的粗加工上。为了大批量生产,ECM或许是叶片生产最高效的方法,ECM没有工具磨损而且可以实现更好的表面加工质量同时不会产生白层或者热影响区。 以上提到的几种加工方法主要是用于叶片的粗加工,且对叶片的表面质量有很高的需求。本文的重点是叶片表面的加工完成过程,例如最后的加工,通过磨削来保证尺寸精度和表面质量,这个过程可以提升表面平滑度和完整性,改善残余应力分布,也可以增强疲劳强度和抗腐蚀性。超声振动磨削的作用已经清楚,其可以显著降低工件表面的粗糙度而且在加工硬脆性材料时特别有效。实验证明超声振动磨削可以减少磨削时的正应力和相当的热损害。现提出电缆电火花磨削和一种由此而生的表面粗糙度在线估计方法。金刚石电火花磨削将金刚石磨削和电火花加工结合起来,是一种加工电传导性硬质材料的新式加工工艺。在实现超精密表面硬化和电解磨削修整的脆性材料的加工过程中,其有效地增加了材料切除效率以及砂轮的磨损。对于提出的电化学磨削(ECG),和电解液浓度、工作电压、切割深度的影响,以及加工过程中的电解液流动速率已经做了研究,以及依靠响应曲面法的ECG多响应优化已经被设计出来了。流动磨料加工是用来完成加工高的内表面质量,难以进入的零件,以及外轮廓的一种方法。由阿尔门试片被介质影响完成可塑性变形振动模型的过程调查,和数值模型的边缘舍入的脆性材料振动建立完成。拖动研磨表面改性的研究,以及减少径向前角和拖后整理工序前沿的准备导致硬质合金立铣刀刀具寿命增加。机械化学磨削是一个优异的加工过程,是将化学和机械磨削的优点相结合的固定磨料加工。一种机器人的从几何复杂的工件去除材料的砂带磨削的有效过程,以及仿真平台设计的最优区磨削参数。为了在整个磨削过程中保持一个恒定的接触力,提出了一种机器人砂带磨削的新方法。 本文提出了一个新式的多轴数控磨削方法,可以提高加工质量,稳定性,一致性以及叶片其他表面的机械性能,降低生产成本,提高加工效率。作为一个必要的装配,在这个数控磨削试机时,柔性磨头是一个复杂的气动伺服系统,表面的加工精度取决于磨头的定位精度。然而,可压缩气体,活塞与气缸壁之间的摩擦,阀的死区,和其他非线性区域严重影响系统的控制精度,许多文献都集中在

建筑外文文献及翻译

外文原文 Study on Human Resource Allocation in Multi-Project Based on the Priority and the Cost of Projects Lin Jingjing , Zhou Guohua SchoolofEconomics and management, Southwest Jiao tong University ,610031 ,China Abstract----This paper put forward the a ffecting factors of project’s priority. which is introduced into a multi-objective optimization model for human resource allocation in multi-project environment . The objectives of the model were the minimum cost loss due to the delay of the time limit of the projects and the minimum delay of the project with the highest priority .Then a Genetic Algorithm to solve the model was introduced. Finally, a numerical example was used to testify the feasibility of the model and the algorithm. Index Terms—Genetic Algorithm, Human Resource Allocation, Multi-project’s project’s priority . 1.INTRODUCTION More and more enterprises are facing the challenge of multi-project management, which has been the focus among researches on project management. In multi-project environment ,the share are competition of resources such as capital , time and human resources often occur .Therefore , it’s critical to schedule projects in order to satisfy the different resource demands and to shorten the projects’ duration time with resources constrained ,as in [1].For many enterprises ,the human resources are the most precious asset .So enterprises should reasonably and effectively allocate each resource , especially the human resource ,in order to shorten the time and cost of projects and to increase the benefits .Some literatures have

外文翻译(陈鹏)

机床的发热问题 1、引言 从1990年开始,布莱恩等人做了关于热状态错误的最新研究,weck更多的做了对机床误差的减少和补偿工具的研究,自从他们做了前面这两个主题演讲之后,在这个领域已经做了很多的研究。本文是在前两个主题演讲基础上做的最新研究。 机床定位的不确定性会直接影响所加工零件的尺寸精度。典型的误差来源是运动误差,机械热误差,载荷,动力,以及运动控制软件。本文主要研究机械热误差,这种误差是由外部环境或内部热源引起的。 制造业正在经历关于引起机床热误差管理的重大改变。直到最近,机床制造商给了机床用户在指定的环境温度要求和需要必要的非生产机器预热程序下产生这样的错误的管理责任。 如今,机床制造商越来越频繁的承担对于控制热致位移的责任。这一变化之所以会发生,是因为机床用户意识到,有些类似的机床可以显示显著不同的热错误,并且在一些机床上大部分所提供的能量被用于平衡机床的温度。 此外,高达75%加工工件的整体几何误差是通过温度的影响而引起的。因此,这个话题是最近的活动的显著研究重点。 制造业对这个主题的兴趣可以在最新的国际标准上看到。在过去的二十年已经发展了计量规则和性能参数来评估空载和精加工条件下机床的发热特性的多项国际标准。如今,用户经常会问机床制造商,包括这样的测量进行验收测试。新的测量设备经常用于延长热误差和检测机床热误差源。特别是在测温测量设备,如红外摄像机价格的下降导致在分析机床的发热特性的新选项。在第2节,将呈现在热误差和温度测量方面的进展。数值方法目前用于在开发的

早期阶段比较不同的机床设计或模拟温度对机床的影响来检测热诱发工具中心点(TCP)位移的来源。由于计算时间的瞬态仿真的费用,工程师们往往对他们的模拟只使用稳态结果。 然而,它显示的是TCP位移在运行期间改变其方向的瞬态行为的观察,如果两个不同的时间常数都参与或者如果温度场的热源向外扩散,通过监管陡峭的坡度后会变得均匀。另外,稳定状态的结果不会导致在稳定状态的情况下产生时间依赖行为,这期间可以表示若干小时。 机电一体化的发展进一步提高了机床的精度。然而,为了实现更高的精度,机床的热稳定性的可预测性变得越来越重要,尤其是为了避免后期基于实验研究的机床发展的巨大花费。计算技术的进步带来了在TCP温度分布和热致位移上更好的估计。当今最先进的个人计算机的处理能力已经足以满足处理这样的计算的要求。即使使用有限元方法对一个完整的机床瞬态效应进行密集型模拟(FEM)计算,也可以在合理的时间内进行。关于建模和发热计算错误的概述将在第3节给出。 关于减少在机床TCP热错误方面所有安排的技术性定义,将在第四章给出。早期的散热可以在哈里森于1726年开发的摆动烤架上发现。在这个时钟钟摆上的时钟的最小热影响是通过组合黄铜和钢,两种材料具有不同的膨胀系数(图1-1)实现的。 在机床的设计中,热稳定性被用于如线性秤架。其它的安排,例如用以稳定温度分布的加热和冷却装置,可用于降低热误差。另一方面,机电一体化经常用于误差补偿。热误差计算各种数值算法和一个移动,以补偿热引起的误差是由一个控制致动器产生的。 控制温度仍然是高精度制造的关键要求。不同的介质用于稳定机床上的温度分布,以及车间的环境温度。所选择的流体的材料性质,主要影响冷却系统的设计和能源效率。在机床的能源效率的讨论中已经确定,要求进一步减少机

解读卡特福德的翻译的语言学理论

摘要:卡特福德(J. C. Catford)是英国著名的语言学家和翻译理论家,也是翻译的语言学派的杰出代表。他著名的《翻译的语言学理论》一书于 1965 年由牛津大学出版社出版,1967 年再版,并被列为牛津大学语言与语言学习丛书。本文试图从翻译的定义、翻译的分类、翻译的等值、转移、可译性限度等五个方面来解读这一著作,并试图窥探其对翻译理论发展的积极作用和局限性。 关键词:卡特福德;翻译的语言学理论;翻译;语言学 1. 引言 20 世纪50 年代以来,随着科学技术及现代语言学的发展,西方的学者逐步认识到,翻译不仅是一种艺术、技巧,而且是一门科学,并以不同学科理论为依据,形成翻译理论研究的不同学派。美国著名翻译理论家尤金·奈达(Eugene A. Nida)将当代翻译理论分为四个基本流派:语言学派、语文学派、交际学派及社会符号学派。而张南峰和陈德鸿在《西方翻译理论精选》(2000)一书中,将西方翻译流派分为语文学派、诠释学派、语言学派、目的学派、文化学派和解构学派六大学派。可见,多数学者都认为存在翻译的语言学派。翻译的语言学理论是语言学派的理论基础,并逐步形成了一个系统的翻译理论。1953 年苏联人费道罗夫发表了《翻译理论概要》一书;1965 年,卡特福德发表了《翻译的语言学理论》一书;1975 年,巴尔胡达罗夫发表了《语言与翻译》一书;1980 年,科末萨罗夫发表了《翻译语言学》一书,标志着一门新的学科—翻译语言学的形成。翻译的语言学理论有以下共同的观点(1)语言学是翻译理论研究的基础,其研究的对象是语言之间的关系;(2)翻译理论研究是语言学的一个分支,或者说是属于比较语言学范畴;(3)翻译的过程是使用语言的过程,翻译是把一种语言的文字材料替换成另一种语言的对等的文字材料,是把一种语言的言语产物替换成另一语言的言语产物的过程。卡特福德的《翻译的语言学理论》是一本颇为重要的学术著作。作者将现代英国描写语言学的框架用于翻译的分析之中,指出了一条翻译理论研究的新途径。

建筑学 外文翻译 外文文献 英文文献 绿色建筑

原文: DOCTORAL FORUM NA TIONAL JOURNAL FOR PUBLISHING AND MENTORING DOCTORAL STUDENT RESEARCH VOLUME 7, NUMBER 1, 2010 Green buildings Priscilla D. Johnson PhD Student in Educational Leadership Whitlowe R. Green College of Education Prairie View A&M University Prairie View, Texas William Allan Kritsonis, PhD Professor and Faculty Mentor PhD Program in Educational Leadership Whitlowe R. Green College of Education Prairie View A&M University Member of the Texas A&M University System Prairie View, Texas Hall of Honor (2008) William H. Parker Leadership Academy, Graduate School Prairie View A&M University Member of the Texas A&M University System Prairie View, Texas Visiting Lecturer (2005) Oxford Round Table University of Oxford Oxford, England Distinguished Alumnus (2004) College of Education and Professional Studies Central Washington University Ellensberg, Washington Abstract: Green building refers to do its best to maximize conservation of resources (energy, land, water, and wood),protecting the environment and reduce pollution in its life cycle. Provide people with healthy, appropriate and efficient use of space, and nature in harmony symbiosis buildings. I described more details of green building design’notion, green building’design, as well as the significance of the concept of green building and improve the effectiveness analysis of

相关文档
最新文档