飞秒激光器的应用研究剖析

飞秒激光器的应用研究剖析
飞秒激光器的应用研究剖析

飞秒激光器的应用研究

院系:信息科学与技术系

专业班:光信0801班

姓名:周紫雁

学号:20081182002

2012年5月

飞秒激光器的应用研究The Study of the Applications of Femtosecond Laser

摘要

飞秒激光是人类目前在实验室条件下所能获得最短脉冲的技术手段,它的独特优势使飞秒激光器在各领域的应用倍受关注,飞秒激光器在高速光通讯、强场科学、纳米科学、生物医学等领域具有广泛的应用。通过研究其应用现状以及供需量,不但可以了解飞秒激光的基本特性与工业优势,并且可以给各企业的激光器开发提供参考。

首先,本文对飞秒激光的物理特性及主要用途进行了概述,阐述了飞秒激光的优势与特性。通过翻阅资料与数据,对飞秒激光器国际方面应用现状进行分析。虽然目前飞秒激光器在激光加工行业所占份额很小,但是它的应用前景不可估量。在数据分析之后,以实际考察以及案例分析的方法,对飞秒激光器在中国的应用现状进行了分析,由于飞秒激光微加工在国内运用少之又少,但是在屈光矫正方面应用广泛,并对此进行详细的考察。结论得出,飞秒激光目前处于供小于求的状态,若广泛引进可以达到很高的效益。

关键词:飞秒激光工业应用眼科应用

Abstract

Currently, femtosecond laser is the shortest pulse technology which we can obtain in the laboratory conditions. Due to these advantages, the applications of the femtosecond laser in different fields raise folks’ attentions. Femtosecond lasers have a great applying prospect in high-speed optical communication, strong field science, Nano science, biology medicine. To study the market situation and the demands and supply, not only can we grasp the information of the major nature and industrial advantages of femtosecond laser, but also can give the departments of retailer and the manager a great reference to make the long-term strategic plan.

Firstly,the physical characteristics and the use of femtosecond has been illustrated basically. It is illumined the unique advantages and nature of femtosecond laser. Then, I analyzed the international market of the femtosecond laser via the date and paging the information. Although the industry of femtosecond laser accounts for a small market share, it has a mega international market prospect. Through the investigation and case analysis, the Chinese market of femtosecond lasers is analyzed. Due to the little application of femtosecond laser in the domestic micro processing field and the wide use in LASIK, I laid more emphasis in the biology and medicine market and made the conclusion, that recently the supply of the femtosecond laser is less than the demands, if abundant equipment can be imported, it can bring large quantities of economic effects.

Key words:Femtosecond laser industrial application ophthalmology application

目录

摘要 ....................................................................................................................................... I Abstract ............................................................................................................................... I I 绪论 .. (1)

1飞秒激光的物理特性及主要用途概述 (2)

1.1飞秒激光的物理特性 (2)

1.1.1飞秒激光物理性质 (2)

1.1.2飞秒激光脉冲的产生 (2)

1.1.3飞秒激光优势 (3)

1.2飞秒激光器的主要应用 (4)

1.2.1 生物医疗 (4)

1.2.2工业机械微加工 (4)

1.2.3微电子光学加工 (5)

2飞秒激光器国际应用情况分析 (7)

2.1飞秒激光器的全球商业化概述 (7)

2.2全球激光器主要生产厂商情况 (9)

3 飞秒激光器中国应用分析 (11)

3.1 飞秒激光器的生产情况 (11)

3.2案例分析及数据调查 (12)

3.2.1 飞秒激光治疗近视的优势 (12)

3.2.2 飞秒激光近视矫正应用需求分析 (13)

结论 (15)

致谢 (16)

参考文献 (17)

光纤激光器工作原理及发展

光纤激光器的工作原理及其发展前景 1 引言 光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。光纤激光器被人们视为一种超高速光通信用放大器。光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。近年来光纤激光器的输出功率得到迅速提高。已达到10—100 kW。作为工业用激光器,现已成为输出功率最高的激光器。光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。本文简要介绍了光纤激光器的结构、工作原理、分类、特点及其研究进展,最后对光纤激光器的发展前景进行了展望。 2 光纤激光器的结构及工作原理 2.1光纤激光器的结构 和传统的固体、气体激光器一样。光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。图1为典型的光纤激光器的基本构型。 增益介质为掺稀土离子的光纤芯,掺杂光纤夹在2个仔细选择的反射镜之间.从而构成F—P谐振器。泵浦光束从第1个反射镜入射到稀土掺杂光纤中.激射输出光从第2个反射镜输出来。 2.2 光纤激光器的工作原理 掺稀土元素的光纤放大器促进了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时.就会被稀土离子所吸收。这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转,反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有2种:自发辐射和受激辐射。其中,受激辐射是一种同频率、同相位的辐射,可

飞秒,皮秒以及纳秒激光器切割固体

飞秒,皮秒以及纳秒激光器溶解固体 摘要:0.2—5000ps激光溶解固体 题目:蓝宝石激光脉冲的开发、模型以及其性质的展示。飞秒激光对精密材料进行加工的优势也进行了讨论和展示。 正文:高效的利用激光对精密材料进行加工离不开对于调解激光辐射与物质之间相互影响的重要规律的知识。为了实现这一目标,激光与物质之间相互影响的系统研究是必要的。由于现在激光系统的进步,尤其是那些基于啁啾脉冲扩展技术,这样系统的研究已经在非常广泛的激光领域成为可能。CPA系统能够使激光脉冲持续时间从大约100飞秒变至几十纳秒,而其他特性不改变。这就允许我们对多种不稳定的激光与物质之间相互影响的过程进行细致的分析。举些例子,最近的学术研究对于损伤阈值、分割阈值以及高强度激光溶解都有提及。这个系统的研究只是刚刚开始,更多的研究将会帮助我们了解和证实飞秒激光系统对于精密材料加工的潜质。 最近进行的一些关于飞秒和纳秒脉冲溶解固体的实验。飞秒激光的染色和受激分子激光系统对精密材料加工的优势已经体现无疑。在这一研究报告中,我们展示了激光溶解和打孔技术的商业用途,蓝宝石激光提供了一个780nm,能量为100mJ,持续时间可在0.2—5000ps进行变化的激光系统。实验处于一个低影响的体系中,在其中,只是很少量的超出蒸发阈值。这个体系对于溶解精密固体实验意义非凡,这样一来,固体内的能量沉积和热影响区域都会被降到最低。我们讨论和举例飞秒激光脉冲的优点,希望能刺激在这个领域新的研

究。第一部分中,我们将展示三种不同持续时间的脉冲在低影响条件下溶解金属的特点:飞秒,皮秒以及纳秒激光器这三种实验对象。关于实验的配置和结果,我们将在第二部分中给出。 1、理论知识背景 在低强度的短波激光脉冲作用于金属物时,由于反方向的韧制辐射,激光的能量会被自由电子吸收。然后,被吸收的激光能量需要在电子系统中热能化,将能量传输到晶格中,由于电子的热量传输给了溶解目标,导致能量流失。如果我们假定,在电子系统中的热能化是非常快而且其电子和晶格系统都以热量为表征( T&i T),那么能量 e 进入金属中的过程就可描述为一维下,以两个温度为变化量的扩散模型: 在上式中,z为与固体目标表面垂直的一个分量,Q(z)是热流量,S为激光加热源项,I(t)是激光光强,A=1-R和α分别是材料表面透射率和材料的吸收常数, C和i C分别是电子和晶格系统的单位 e 体积比热容,γ是电子-晶格耦合的特征参量, k是电子的热导率。 e 在上式中,忽略了晶格系统中的热导率。电子比热容远远低于晶格比热,因此电子会被加热到一个非常高的瞬时温度。当电子的温度(单位能量)残留小于费米能量时,电子比热容和非平衡态的电子比热容

飞秒激光的发展和应用

飞秒激光的发展和应用 (.) 摘要:随着激光技术的研究、开发和应用十分活跃。本文简要介绍了飞秒激光发展、特点及技术研究进展和发展趋势。 关键词:飞秒,激光技术,激光手术,激光武器,飞秒脉冲,飞秒激光 作者简介: 0 引言 20世纪以光科学与工程技术研究为基础所积累的丰硕成果,已在世界范围内对人类现代物质和精神文明做出了巨大的贡献。21世纪将是光子技术进一步大发展的时代,激光技术将成为世界各国竞争的焦点之一,以激光技术为核心的相关产业将成为知识经济时代和信息时代的重要驱动力量。 飞秒激光是过去20年间由激光科学发展起来的最强有力的新工具之一。飞秒脉冲是如此的短,目前已经达到了4 fs以内(可见光-近红外波段),1飞秒(fs,即10-15 s),仅仅是1千万亿分之一秒,如果将10 fs作为几何平均来衡量宇宙,其寿命仅不过1 min而已。飞秒脉冲又是如此之强,采用多级啁啾脉冲放大(CPA)技术获得的最大脉冲峰值功率可达到100太瓦(TW,即1012 W)甚至皮瓦(PW,即1015 W)量级,其可聚焦强度比将太阳辐射到地球上的全部光聚焦成针尖般大小后的能量密度还要高[1]。飞秒激光完全是人类创造的奇迹。 1 飞秒激光的原理 众所周知,组成物质的分子和原子,每时每刻都在快速地运动,这是微观物质重要的基本属性。飞秒激光产生后,人类能够在原子和电子的层面上观察到它们超快运动的过程并加以利用。在高强度飞秒激光的作用下,气态、液态、固态物质会在瞬息间变成等离子体。高功率飞秒激光与电子束碰撞,能够产生X 射线飞秒激光、射线激光以及正负电子对。此外,利用飞秒激光能够有效地加速电子,使加速器的规模得到上千倍的压缩。高功率飞秒激光与物质相互作用,能够产生足够数量的中子,实现激光受控核聚变的快速点火[2]。 通过对飞秒的研究,除了揭示自然科学的奥妙之外,还促进了新型“飞秒激光”技术的应用和发展。飞秒激光是一种周期可以用飞秒计算的超强超短脉冲激光。它的出现为人类提供了前所未有的全新实验手段与物理条件,有着十分广阔的应用前景。 2 飞秒激光的特点 根据飞秒激光超短和超强的特点,大体上可以将应用研究领域分成超快瞬态现象的研究和超强现象的研究。它们都是随着激光脉冲宽度的缩短和脉冲能量的增加而不断的得以深入和发展。 飞秒激光的特点:(1)持续时间极短,只有几个飞秒,是人类目前在实验条件下所能获得的最短的脉冲,所以飞秒激光是无穿透性的,对眼内组织无损伤。(2)具有极高瞬时功率,可达到百万亿瓦。近红外激光脉冲,在经过角膜组织表面时不被吸收,通过调节聚焦透镜和角膜表面相对位置。将脉冲聚焦在预定深度的一个小点上,当每次脉冲达到聚焦点时,触发一次称为激光诱导光衰变作用,多脉冲定位在同一个焦点深度,通过形成一层小直径的气泡来实现切割手术。(3)能聚焦到比头发丝直径还要小的空间区域。每个脉冲的连接的紧密性,决定了切割平面的光滑性。

飞秒激光器在加工铁和钨零件的应用

摘要: 飞秒激光增材制造第一次被证明。具有非常不同的熔融温度和机械性能的纯铁和钨粉末用于演示。制造各种形状的零件,例如环形和立方体,对制造的样品进行微硬度和极限拉伸强度的研究。研究的结果也与由连续激光器制成的类似部件进行比较。发现飞秒激光增材制造可以获得更好的机械性能,而且可以加工以前不能加工的材料。 1、简介 在过去二十年中,增材制造(AM),特别是激光辅助增材制造AM,引起了广泛的关注[1,2]。近年来金属部件的激光增材制造被研究的最多[3,4]。目前,大功率连续激光器(CW)以及一些长脉冲激光器(脉冲持续时间纳秒到毫秒)被广泛应用[4,5]。虽然已经取得了许多突破,但仍然存在许多难题,例如由于热影响区大而缺乏准确性,以及材料种类的限制[6],特别是对于具有高导热性(> 100 W(mK))的高温(> 3000℃)材料,如钨[7]和一些陶瓷[8],需要极高的功率才能使样品完全熔化,这不实际。 超快激光器引起了更多的关注,在诸如材料加工[9],光谱学[10]和生物医学成像等领域有很多重要的应用[11]。区别于其他激光源,超快激光器有极短的脉冲持续时间和极高的峰值功率等特点。像局部温度高,热影响区域小[9]以及能产生极高温度的特点(>7000℃)[12,13],给了飞秒激光器特殊加工的机会,在增材制造中发挥前所未有的作用,最近,我们首次发布由飞秒光纤激光器用于熔化具有极高熔点的材料的研究[14],在此研究中,使用单层粉末来证明高温材料钨(熔化温度3422℃)铼(3182℃)完全熔化的可行性和一些超高温陶瓷(> 3000℃),这项研究展示了在激光增材制造AM中采用飞秒光纤激光器的巨大前景。 在这项工作中,我们将研究扩展到多层熔化或成型零件。第一次由飞秒光纤激光器制造各种形状的零件(环和立方体)。铁和钨粉末用于测试,详细研究了制造零件的机械性能和显微组织,也分析对比了由连续器激光制成的类似零件。 2、实验设置 在我们的实验中,使用了两种类型的激光 - 飞秒激光器和连续激光器。它们是1MHz重复平率飞秒掺镱 Yb光纤激光器(Uranus-mJ,PolarOnyx laser,Inc.,California毫焦高能飞秒光纤激光器)80MHz重复频率飞秒掺镱 Yb光纤激光器(天王星,PolarOnyx激光公司,加利福尼亚州)和连续掺镱Yb光纤激光器。所有激光器的中心波长为1030nm。1MHz和80 MHz激光器分别具有400和350飞秒的脉冲半高宽度(FWHM)。自制选择性激光熔化设置用于测试(图1)。激光束被引导通过声光调制器(AOM),其用于控制激光器的开/关和变化激光功率。配备有F-theta透镜(100mm长焦距)的激光振镜与AOM同步,并用于在粉末表面上扫描激光束。将扫描器安装在电动平台上以控制激光束使粉末表面的位于焦点位置。粉末均匀地分布在具有刀片的基底上。将样品容器安装在z台上并充满氩气以防止金属粉末氧化。扫描一层粉末后,将样品容器降低一定距离,并使用刮刀将新的粉末重新涂覆在其上,新粉末表面保持与上一次相同的高度。 在这里测试了两种材料,铁粉(1-5微米,大西洋设备工程公司,新泽西州)

高功率光纤激光器发展概况

2009年第12 期 中文核心期刊 高功率光纤激光器发展概况 Survey of high-power fiber lasers ZHANG Jing-song (Electronic communications technology department, Shenzhen Institute of Information Technology,Shenzhen Guangdong 518029,China) Abstract :High-power fiber lasers have wide applications in the filed of optical communication,printing,marking,material processing,medicine etc.High-power fiber lasers may substitute conventional lasers large-ly,have new application of laser,broaden the scope of laser industry.The history and recent development of high-power fiber lasers home and aboard are surveyed.The prospect of high-power fiber lasers is discussed.Key words :high-power fiber laser,double-clad fiber,cladding pump 张劲松 (深圳信息职业技术学院电子通信技术系,广东深圳518029) 摘要:高功率光纤激光器以其优越的性能和超值的价格,在光通信、印刷、打标、材料加工、医疗等领域 有着广阔的应用,将会很大程度上替代传统激光器,并开辟一些新的激光应用领域,扩大激光产业的规模。概述国内外高功率光纤激光器的发展历史与现状。展望了高功率光纤激光器的发展前景。 关键词:大功率光纤激光器;双包层光纤;包层泵浦中图分类号:TN248 文献标识码:A 文章编号:1002-5561(2009)12-0008-03 0引言 从1960年第一台激光器(美国Maiman 等首先用红宝石晶体获得了激光输出)问世到现在近50年过去了,激光技术确如人们所期,渗入了各行各业:通信、生物技术、医学、印刷、制造、军事、娱乐业等。在某些领域,它已经成为不可替代的核心技术。但是激光产业规模还不够大,究其原因,不是人类不需要激光,而是传统激光器不好用:成本高、效率低、故障多。 光纤激光器的出现带来了扩大激光产业规模的希望。光纤激光器激光光束质量好,电-光转换效率高,输出功率大;所有的半导体器件及光纤组件都可以融接成一体,避免了元件的分立,可靠性得到极大提高。 1国外高功率光纤激光器发展概况 光纤激光器的最早有关研究可以追溯到20世纪 60年代初期,当时激光器刚刚出现不久,人们对激光 器的研究投入了极大热情,积极研制开发各种新型激光器。1961年,美国光学公司的E.Snitzer 等在光纤激 光器领域进行了开创性的工作,他们利用棒状掺钕(Nd 3+)玻璃波导获得了波长1.06μm 的激光。 20世纪70年代,光纤通信的研究开始起步,新兴 的光纤通信系统对新型光源的需求极大地刺激了激光器的研究工作。但由于人们的注意力集中到迅猛发展的半导体激光器技术上,以及光纤激光器自身的一些当时无法克服的困难,光纤激光器的研究逐渐沉寂下来。尽管如此,仍然取得了一些值得一提的成就。例如,1973年,J.Stone 等成功地研制出能够在室温下连续工作的掺钕光纤激光器,他们采用的半导体注入型激光器终端泵浦方式对以后实用型光纤激光器的研究具有重要的意义。 20世纪80年代,英国Southampton 大学的S.B.Poole 等用MCVD 法成功地制备了低损耗的掺钕和掺 铒光纤,因为掺铒光纤光纤激光器的激射波长恰好位于通信光纤的1.55μm 低损耗窗口,人们开始认识到光纤放大器和光纤激光器在提高传输速率和延长传输距离等方面无疑将给光纤通信带来一场革命。掺铒光纤放大器(EDFA )得到了迅速的发展并成为一项成熟的应用技术。但是,光纤通信用的光纤激光器输出功率一般都是毫瓦级,一直以来只局限于光通讯等领域;同时由于巨大的行业差距,几乎无人把它与激光 收稿日期:2009-08-31。 作者简介:张劲松(1969-),男,博士,高工,现主要从事光纤激光器、放大器等方面的研究。 ⑧

激光的发展历史与前景

激光的发展历史与前景 ——15物01 15075003 邹萌●激光原理 激光是光与物质的相互作用,实质上,也就是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。 微观粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的状态(或者简单地表述为处在某一个能级)上。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h(h为普朗克常量)。 ●发展历程 激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”。 激光的最初的中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,LASER (Light Amplification by Stimulated Emission of Radiation)的意思是“通过受激发射光扩大”,这已经完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议改称“激光”。 激光的原理早在 1917年已被著名的美国物理学家爱因斯坦发现,但直到 1960 年激光才被首次成功制造。 1958年,美国科学家肖洛(Schawlow)和汤斯(Townes)发表重要论文,并获得1964年的诺贝尔物理学奖。 1960年5月15日,美国加利福尼亚州休斯实验室的科学家梅曼宣布获得了波长为0.6943微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。 1960年7月7日,梅曼宣布世界上第一台激光器诞生。 前苏联科学家尼古拉·巴索夫于1960年发明了半导体激光器。 ●应用前景 激光技术是现代科学技术发展的结果,是20世纪与原子能、计算机、半导体齐名的四项重大发明之一。激光一问世,就获得了飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且推动了许多新兴产业的产生。激光能够使人们有效地利用目前所拥有的先进方法和手段,促进生产力的提高。因此,激光技术是当今工业发展的一个重要趋势。 其中,生命和健康科学是一个非常强劲的市场,因为那里会不断出现的新应用,很多都是基于激光的原理。激光不再只局限为一种外科手术工具,它将会更加广

飞秒激光器的应用研究

飞秒激光器的应用研究 院系:信息科学与技术系 专业班:光信0801班 姓名:周紫雁 学号:20081182002 2012年5月

飞秒激光器的应用研究The Study of the Applications of Femtosecond Laser

摘要 飞秒激光是人类目前在实验室条件下所能获得最短脉冲的技术手段,它的独特优势使飞秒激光器在各领域的应用倍受关注,飞秒激光器在高速光通讯、强场科学、纳米科学、生物医学等领域具有广泛的应用。通过研究其应用现状以及供需量,不但可以了解飞秒激光的基本特性与工业优势,并且可以给各企业的激光器开发提供参考。 首先,本文对飞秒激光的物理特性及主要用途进行了概述,阐述了飞秒激光的优势与特性。通过翻阅资料与数据,对飞秒激光器国际方面应用现状进行分析。虽然目前飞秒激光器在激光加工行业所占份额很小,但是它的应用前景不可估量。在数据分析之后,以实际考察以及案例分析的方法,对飞秒激光器在中国的应用现状进行了分析,由于飞秒激光微加工在国内运用少之又少,但是在屈光矫正方面应用广泛,并对此进行详细的考察。结论得出,飞秒激光目前处于供小于求的状态,若广泛引进可以达到很高的效益。 关键词:飞秒激光工业应用眼科应用

Abstract Currently, femtosecond laser is the shortest pulse technology which we can obtain in the laboratory conditions. Due to these advantages, the applications of the femtosecond laser in different fields raise folks’ attentions. Femtosecond lasers have a great applying prospect in high-speed optical communication, strong field science, Nano science, biology medicine. To study the market situation and the demands and supply, not only can we grasp the information of the major nature and industrial advantages of femtosecond laser, but also can give the departments of retailer and the manager a great reference to make the long-term strategic plan. Firstly,the physical characteristics and the use of femtosecond has been illustrated basically. It is illumined the unique advantages and nature of femtosecond laser. Then, I analyzed the international market of the femtosecond laser via the date and paging the information. Although the industry of femtosecond laser accounts for a small market share, it has a mega international market prospect. Through the investigation and case analysis, the Chinese market of femtosecond lasers is analyzed. Due to the little application of femtosecond laser in the domestic micro processing field and the wide use in LASIK, I laid more emphasis in the biology and medicine market and made the conclusion, that recently the supply of the femtosecond laser is less than the demands, if abundant equipment can be imported, it can bring large quantities of economic effects. Key words:Femtosecond laser industrial application ophthalmology application

半导体激光器 薄片激光器 飞秒光纤激光器在材料加工领域和太阳能电池领域的应用

半导体激光器薄片激光器飞秒光纤激光器在材料加工领 域和太阳能电池领域的应用 关键词:金属穿孔卷绕激光器、发射极穿孔卷绕激光器、激光烧制接触激光器、SiN / SiO 层掺杂、MWT激光、EWT激光、LFC激光、硅太阳能电池激光设备、薄膜太阳能电池激光设备、太阳能电池薄片激光器、激光焊接、激光打孔、飞秒激光加工、薄片激光器材料加工、高功率飞秒光纤激光器、固体激光器材料加工、激光熔融、激光熔覆、薄片激光器、飞秒光纤激光器、频率脉宽可独立调制 太阳能电池加工(硅太阳能电池) 在硅太阳能电池领域,激光加工在金属穿孔卷绕(MWT)、发射极穿孔卷绕(EWT)、激光烧制接触、SiN / SiO层掺杂方面发挥了重要作用; 金属穿孔卷绕、发射极穿孔卷绕:最高20000个孔/秒,孔直径20~60μm,3~4个脉冲/孔。 激光烧制接触:最高15000接点/秒,接点尺度50~80μm,1个脉冲/接点。 SiN / SiO dielectric layer opening:最高100000接点/秒,熔接直径20~70μm,1个脉冲/接点。(更多半导体激光模块知识可参见深圳顶尖(科仪)的博客)

在薄膜太阳能电池领域,复合物薄膜和基底有多种选择,对于每一种不同的组合所用到的激光加工工艺都是不同的,下面以几个典型的结构为例进行介绍。 a-Si / CdTe type solar cells:结构为玻璃/TCO/发射层/金属,接触点p1和p3层。激光器选用JenLas? fiber ns 10-4。 CIGS type solar cells:结构和a-Si / CdTe type相反。发射极加工:JenLas? fiber ns 10-40或JenLas? D2.fs。 JenLas? disk IR50是45W的红外声光调Q薄片激光器,具有非常好的光束质量,特别适合于各种工业上的微加工。 JenLas? disk IR50 / JenLas? disk IR70 1、波长1030nm, 2、声光调Q 3、平均功率 > 45W/65W 4、宽脉冲宽度,200~2000ns/650~1600ns可调 5、快速,重复频率8~30kHz(高级模式最大100kHz), 6、单脉冲能量高达5/7mJ @8kHz 7、光束质量好M2<1.2 JenLas? mopa N35 1、基本同上 2、固态二极管泵浦调Q激光器,功率35W 3、波长1064nm 4、重复频率30~150kHz 0.2mJ @150kHz 5、OEM设计,运行费用低 6、稳定性 8h ±3%

光纤激光器研究进展

收稿日期:2008-10-13. 动态综述 光纤激光器研究进展 申人升,张玉书,杜国同 (大连理工大学物理与光电工程学院,辽宁大连116023) 摘 要: 光纤激光器具有寿命长,模式好,体积小,免冷却等一系列其他激光器无法比拟的优点,近年来受到了来自电子信息、工业加工和国防科技等研究开发领域的高度关注。文章概述了光纤激光器典型的工作原理,阐述了其当前主要研究方向以及国内外研究现状,最后提出了光纤激光器产业化的趋势。 关键词: 光纤;光纤激光器;光子晶体光纤;超短脉冲 中图分类号:TN248 文献标识码:A 文章编号:1001-5868(2009)01-0001-05 Latest Development of Fiber Lasers SH EN Ren -sheng ,ZH ANG Yu -shu,DU Guo -tong (School of Physics and Optoelectronic Technology,Dalian University of Technology,Dalian 116024,C HN) Abstract: Fiber lasers ow n lots of advantages co mpared w ith other lasers,including lo ng life,goo d mode,compactness,etc.Recently,fiber lasers have received increasing ly intensive attention in the applications o f electro nic inform ation,industr y processing and national defense technolog y.T he ty pical principle o f fiber laser is explained and resear ch progr esses about fiber lasers are review ed.Furthermore,the future developm ental trends fo r laser fiber are discussed. Key words: fiber;fiber lasers;photonic crystal fiber;ultrashort pulse 0 引言 光纤激光器诞生于20世纪60年代初,它是伴随着光纤通信技术、光纤制造工艺以及与激光器生产技术的日趋成熟而迅猛发展起来的新型器件。由于其在高速率、密集波分复用(DWDM )通信系统、高精度传感技术和大功率激光加工等方面呈现出潜在的技术优势和广阔的应用前景,所以备受世界各国科研工作者的青睐,现已成为国际学术界的热门研究对象。 光纤激光器与其他类型激光器相比较,其优点为:(1)泵浦功率低、增益高、输出光束质量好;(2)与其他光纤器件兼容,可实现全光纤传输系统;(3)使用光纤作为基体,其结构具有较高的比表面积,因而散热好;(4)体积小,携带方便;(5)光纤激光器可以作为光孤子源,实现光孤子通信。 1 原理与分类 1.1 基本工作原理 图1 所示为典型光纤激光器的基本结构。 图1 光纤激光器基本结构 典型光纤激光器主要由三部分组成:产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和激发增益介质的泵浦源。其中,增益介质为掺杂稀土离子的纤芯。 当泵浦光从反射镜1(或光栅1)入射到掺杂光纤芯中时,会被所掺杂的稀土离子吸收。吸收了光子能量的稀土离子会发生能级跃迁,实现/粒子数反 # 1#

光纤激光器的特点与应用

光纤激光器的特点与应用 光纤激光器是在EDFA技术基础上发展起来的技术。近年来,随着光纤通信系统的极大的应用和发展,超快速光电子学、非线性光学、光传感等各种领域应用的研究已得到日益重视。光纤激光器在降低阂值、振荡波长范围、波长可调谐性能等方面,已明显取得进步。它是目前光通信领域的新兴技术,它可以用于现有的通信系统,使之支持更高的传输速度,是未来高码率密集波分复用系统和未来相干光通信的基础。 1.光纤激光器工作原理 光纤激光器主要由三部分组成:由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和可使激光介质处于受激状态的泵浦源装置。光纤激光器的基本结构如图1所示。 掺稀土元素的光纤放大器推动了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时,就会被稀土离子所吸收,这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转。反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有两种,即自发辐射和受激辐射,其中受激辐射是一种同频率、同相位的辐射,可以形成相干性很好的激光。激光发射是受激辐射远远超过自发辐射的物理过程,为了使这种过程持续发生,必须形成离子数反转,因此要求参与过程的能级应超过两个,同时还要有泵浦源提供能量。光纤激光器实际上也可以称为是一个波长转化器,通过它可以将泵浦波长光转化为所需的激射波长光。例如掺饵光纤激光器将980nm的泵浦光进行泵浦,输出1550nm的激光。激光的输出可以是连续的,也可以是脉冲形式的。 光纤激光器有两种激射状态,三能级和四能级激射。三能级和四能级的激光原理如图2所示,泵浦(短波长高能光子)使电子从基态跃迁到高能态E4或者E3,然后通过非辐射方式跃迁过程跃迁到激光上能级E43或者E3 2,当电子进一步从激光上能级跃迁到下能级E扩或者E3,时,就会出现激光的过程。

光纤激光器的前世今生

光纤激光器的前世今生 ?光纤激光器定义 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。 光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设,作为其他激光器的泵浦源等等。 光纤激光器发展史 早期对激光器的研制主要集中在研究短脉冲的输出和可调谐波长范围的扩展方面。今天,密集波分复用(DWDM)和光时分复用技术的飞速发展及日益进步加速和刺激着多波长光纤激光器技术、超连续光纤激光器等的进步。同时,多波长光纤激光器和超连续光纤激光器的出现,则为低成本地实现Tb/s的DWDM或OTDM传输提供理想的解决方案。就其实现的技术途径来看,采用EDFA放大的自发辐射、飞秒脉冲技术、超发光二极管等技术均见报道。 目前国内外对于光纤激光器的研究方向和热点主要集中在高功率光纤激光器、高功率光子晶体光纤激光器、窄线宽可调谐光纤激光器、多波长光纤激光器、非线性效应光纤激光器和超短脉冲光纤激光器等几个方面。 1962年世界上第一个GaAs半导体激光器问世以来,已有四十余年的历史,现在半导体激光器已广泛地应用于激光通信、光盘存储、激光检测等领域。 随着半导体激光器连续输出功率的日益提高,其应用范围也不断扩大,其中大功率半导体激光器泵浦的固体激光器(DPSSL)是它最大的应用领域之一。这一技术综合了半导体激光器与固体激光器的优点,不仅将半导体激光器的波长转换为固体激光器的波长,而且伴随光束质量的改善和光谱线宽的压缩,以及实现脉冲输出等。https://www.360docs.net/doc/2714770983.html,/半导体激光器体积小、重量轻,直接电子注入具有很高的量子效率,可以通过调整组份和控制温度得到不同的波长与固体激光材料的吸收波长相匹配,但它本身的光束质量较差,且两个方向不对称,横模特性也不尽理想。而固体激光器的输出光束质量较高,有很高的时间和空间相干性,光谱线宽与光束发散角比半导体激光小几个量级。对于DPSSL,是吸收波长短的高能量光子,转化为波长较长的低能量光子,这样总有一部分能量以无辐射跃迁的方式转换为热。这部分热能量将如何从块状激光介质中散发、排除成为半导体泵浦固体激光器的关键技术。 为此,人们开始探索增大散热面积的方法。深圳市星鸿艺激光科技有限公司专业生产激光打标机,激光焊接机,深圳激光打标机,东莞激光打标机 ?方法之一就是将激光介质做成细长的光纤形状。 所谓光纤激光器就是用光纤作激光介质的激光器,1964年世界上第一代玻璃激光器就是光纤激光器。由于光纤的纤芯很细,一般的泵浦源(例如气体放电灯)很难聚焦到芯部。所以在以后的二十余年中光纤激光器没有得到很好的发展。随着半导体激光器泵浦技术的发展,以及光纤通信蓬勃发展的需要,1987年英国南安普顿大学及美国贝尔实验室实验证明了掺铒光纤放大器(EDFA)的可行性。它采用半导体激光光泵掺铒单模光纤对光信号实现放大,现在这种EDFA已经成为光纤通信中不可缺少的重要器件。由于要将半导体激光泵浦入单模光纤的纤芯(一般直径小于10um),要求半导体激光也必须为单模的,这使得单模EDFA难以实现高功率,报道的最高功率也就几百毫瓦。

飞秒激光器

飞秒激光是过去20年间由激光科学发展起来的最强有力的新工具之一。飞秒脉冲时域宽度是如此的短,目前已经达到了4fs以内。1飞秒(fs),即10-15s ,仅仅是1千万亿分之一秒,如果将10fs作为几何平均来衡量宇宙,其寿命仅不过1min而已;飞秒脉冲又是如此之强,采用多级啁啾脉冲放大(CPA)技术获得的最大脉冲峰值功率可达到百太瓦(TW,即1012W)甚至拍瓦(PW,即1015W)量级,其聚焦强度比将太阳辐射到地球上的全部光聚焦成针尖般大小后的能量密度还要高。飞秒激光完全是人类创造的奇迹。 近二十年来,从染料激光器到克尔透镜锁模的钛宝石飞秒激光器,以及后来的二极管泵浦的全固态飞秒激光器和飞秒光纤激光器,虽然说脉冲宽度和能量的记录在不断刷新,但最大进展莫过于获得超飞秒脉冲变得轻而易举了。桑迪亚国家实验室的R.Trebino说:“过去1 0年中,(超快)技术已有显著改善, 钛蓝宝石激光器和现在的光纤激光器正在使这种(飞秒) 激光器的运转变得简洁和稳定。这种激光器现在人们已可买到, 而10年前, 你却必须自己建立。”比如,著名的飞秒激光系统生产商美国Clark-MXR公司将产生高功率飞秒脉冲的所有部件全部集成到一个箱子里,采用掺铒光纤飞秒激光器作为种子源,加上无需调整(NO Tweak)的特殊设计,形成了世界上独一无二,超稳定、超紧凑的CPA2000系列钛宝石啁啾脉冲放大系统。这种商品化的系统不需要飞秒专家来操作,完全可以广泛应用于科研和工业上的许多领域里。 根据飞秒激光超短和超强的特点,大体上可以将应用研究领域分成超快瞬态现象的研究和超强现象的研究。它们都是随着激光脉冲宽度的缩短和脉冲能量的增加而不断的得以深入和发展。飞秒脉冲激光的最直接应用是人们利用它作为光源, 形成多种时间分辨光谱技术和泵浦/探测技术。它的发展直接带动物理、化学、生物、材料与信息科学的研究进入微观超快过程领域, 并开创了一些全新的研究领域, 如飞秒化学、量子控制化学、半导体相干光谱等。飞秒脉冲激光与纳米显微术的结合, 使人们可以研究半导体的纳米结构(量子线、量子

大功率光纤激光器技术及其应用

的构想 , 但直到 20 世纪 80 年代, 随着激光二极管泵浦技术的发展和双包层结构光纤的提出 , 光纤激光 现于世 第 21 卷 第 6 期 山 东 科 学 Vol. 21 No. 6 2008 年 12 月 SHANDONG SCIENCE Dec. 2008 文章编号: 1002 4026( 2008) 06 0072 06 大功率光纤激光器技术及其应用 宋志强 ( 山东省 科学院激光研究所, 山东 济南 250014) 摘要: 光纤激光器是当今光电子技术研究领域中最炙手可热的研究课题, 尤其是大功率光纤激光器, 已在很多 领域表现 出取代传统 固体激光 器和 CO 2 激光器 的趋势。本文 从光纤激 光器的结构 出发, 详细论述 了大功率 光纤激光器的工作原理和关键技术, 重点介绍了应用更为广泛 的脉冲型 光纤激光器 技术, 最后简单 列举了大 功率光纤激光器的优势及其在工业加工、国防、医疗等领 域里的应用情况。 关键词: 光纤激光器; 包层泵浦技术; 双包层掺杂光纤; 光纤光栅; 应用 中图分类号: TN249 文献标识码: A The Development of High Power Fiber Laser and Its Applications SONG Zhi qiang ( Institute of Laser , Shandong Academy of Sciences , Jinan 250014, China ) Abstract: The technology of fiber lasers is one of research focuses topics in current optoelectronic area, especially for a high power fiber opt ic laser that has exhibited a tendency substituting traditional solid state laser and CO 2 laser in many areas. We fully expound its principles and some key technologies from its structure, emphasize the technology of a pulse fiber optic laser that is more widely applied, and enumerate its superiorit ies and applications in such areas industrial processing, national defense, medical service, etc. Key words: fiber optic laser; cladding pump; double clad rare earth doped fiber; fiber Bragg grating; application 所谓光纤激光器就是利用稀土掺杂光纤作为增益介质的激光器, 它的发展历史几乎和激光器技术一样 长。早在 20 世纪 60 年代初, 美国光学公司的 E. Snitzer 等人就已经提出了掺稀土元素光纤激光器和放大器 [ 1] [ 2] 器才进入了一个蓬勃发展的阶段。最近十年, 适合各种不同应用目的和领域的光纤激光器已雨后春笋般涌 [ 3- 5] 。 1 工作原理及关键技术 同其他类型激光器一样, 光纤激光器主要由泵浦源、谐振腔和增益介质三要素构成, 具体包括泵浦 LD 、 DCDF 、大模场 FBG 和光纤合束器等, 如图 1 所示。光纤激光器的所有器件均可由光纤介质制作, 因此光纤技 术是决定光纤激光器性能的关键因素。 收稿日期: 2008 08 23 基金项目: 山东省仪器设备改造项目资助( 2007GG1TC04039) 。 作者简介: 宋志强( 1982- ) , 男, 硕士, 主要研究方向为大功率光纤激光器技术。E mail: zhiqiangs@ gmail. com

光纤激光器的原理及应用

光纤激光器的原理及应用 张洪英 哈尔滨工程大学理学院 摘要:由于在光通信、光数据存储、传感技术、医学等领域的广泛应用,近几年来光纤激光器发展十分迅速,且拥有体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等明显优势。本文简要介绍了光纤激光器的基本结构、工作原理及特性,并对目前几种光纤激光器发展现状及特点做了分析,总结了光纤激光器的发展趋势。 关键词:光纤激光器原理种类特点发展趋势 1引言 对掺杂光纤作增益介质的光纤激光器的研究20世纪60年代,斯尼泽(Snitzer)于1963年报道了在玻璃基质中掺激活钕离子(Nd3+)所制成的光纤激光器。20世纪70年代以来,人们在光纤制备技术以及光纤激光器的泵浦与谐振腔结构的探索方面取得了较大进展。而在20世纪80年代中期英国南安普顿大学掺饵(EI3+)光纤的突破,使光纤激光器更具实用性,显示出十分诱人的应用前景[1]。 与传统的固体、气体激光器相比,光纤激光器具有许多独特的优越性,例如光束质量好,体积小,重量轻,免维护,风冷却,易于操作,运行成本低,可在工业化环境下长期使用;而且加工精度高,速度快,寿命长,省能源,尤其可以智能化,自动化,柔性好[2-3]。因此,它已经在许多领域取代了传统的Y AG、CO2激光器等。 光纤激光器的输出波长范围在400~3400nm之间,可应用于:光学数据存储、光学通信、传感技术、光谱和医学应用等多种领域。目前发展较为迅速的掺光纤激光器、光纤光栅激光器、窄线宽可调谐光纤激光器以及高功率的双包层光纤激光器。 2光纤激光器的基本结构与工作原理 2.1光纤激光器的基本结构 光纤激光器主要由三部分组成:由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和可使激光介质处于受激状态的泵浦源装置。光纤激光器的基本结构如图2.1所示。

飞秒光纤激光器的应用

飞秒光纤激光器的应用 飞秒光纤激光器是一种主要由光纤激光器构成,具有飞秒(10负15次秒)区持续时间的脉冲激光器。 飞秒激光器的脉宽极窄,瞬问功率极高,既使平均输出功率为lW,峰值功率也能达到千瓦级至兆瓦级以上。飞秒激光器现已应用于以往纳秒脉冲激光器或连续波激光器无法应用的各种领域。 1990年,日本爱信精机公司以IMRA AmericaInc.的名字在美国成立了一家子公司,门从事飞秒光纤激光器的研发、生产、销售与应用开发工作。因此“IMRA”既是美国研究法人的名字,又是爱信精机公司生产的激光器的商标名称,这是在美国研究开发、日本制造的激光器。 1、飞秒光纤激光器的优点 1.1、小型轻便 光纤激光器在确保必要光学长度的同时,可将光纤卷成半径约3cm的环形。与固体激光器相比,光纤激光器的体积大幅缩小。光纤形态每单位体积的表面积大于棒状或片状晶体激光器,散热效果好,不需要冷却器等外围装置,因此在这方面又大幅缩小了激光器的体积。 1.2、高可靠性高稳定性 光纤激光器是由光纤部件组装而成。这些光纤部件采用电弧熔接的方法,因此光学轴长期无偏移,这种连接方法确保了光纤激光器的稳定性和可靠性。另外,IMRA激光器系统外部采购的元器件都严格选用高可靠性的光通信部件,这也对激光器系统的高可靠性提供了保障。 1.3、高光束质量 单模光纤输出的光是近乎理想的点光源,输出光束的圆度和强度分布较容易获得接近理想的高质量输出光束。飞秒光纤激光器在用于微细加工时,聚焦光束很容易达到透镜的聚焦极限,因此适于微细加工。 1.4、低功耗 现已广泛使用的钛宝石飞秒激光振荡器的晶体吸收波长在530nm附近,将大功率Nd:YAG激光器的波长转换成530nm来泵浦激光器,既需要大型Nd:Y AG激光器,又需要冷却器,其电能消耗很大。而光纤激光器则不需要冷却器,可以用二极管激光器直接泵浦。结果表明,飞秒光纤激光器的电光转换效率优于钛宝石飞秒激光器1个数量级。 2、飞秒光纤激光振荡器 虽然20世纪90年代初问世的飞秒光纤激光器的光学轴具有长期无偏移的特点,但因温度的变化等会使偏振面光纤旋转,从而导致输出功率的改变,因此需要偏振面的调整机构,并需要维护。 1994年,Fermann等人利用新结构的被动锁模飞秒脉冲激光振荡器实现了无调整运转。科研人员在谐振腔的两端对置法拉第转子,以往返运转来补偿因环境变化所引起的偏振旋

相关文档
最新文档