2020届高考物理人教版一轮复习专题3.2 牛顿第二定律 作业

2020届高考物理人教版一轮复习专题3.2 牛顿第二定律 作业
2020届高考物理人教版一轮复习专题3.2 牛顿第二定律 作业

2020年高考物理100考点最新模拟题千题精练

第三部分牛顿运动定律

二.牛顿第二定律

一.选择题

1.(6分)(2019河南开封三模)如图所示,质量都为m的A、B两物体叠放在竖直弹簧上并保持静止,用大小等于mg的恒力F向上拉B,运动距离h时B与A分离。则下列说法中正确的是()

A.B和A刚分离时,弹簧为原长

B.B和A刚分离时,它们的加速度为g

C.弹簧的劲度系数等于

D.在B与A分离之前,它们做匀加速运动

【参考答案】C

【名师解析】B和A刚分离时,B受到重力mg和恒力F,B的加速度为零,A的加速度也为零,说明弹力对A有向上的弹力,与重力平衡,弹簧处于压缩状态。故AB错误。B和A 刚分离时,弹簧的弹力大小为mg,原来静止时弹力大小为2mg,则弹力减小量△F=mg.两

物体向上运动的距离为h,则弹簧压缩量减小△x=h,由胡克定律得:k==.故C

正确。对于在B与A分离之前,对AB整体为研究对象,重力2mg不变,弹力在减小,合力减小,整体做变加速运动。故D错误。

2.(6分)(2019山东枣庄二模)如图所示,用轻质细绳将条形磁铁悬挂于天花板上,处于悬空状态,现将一铁块置于条形磁铁下方,系统处于静止状态。关于磁铁和铁块受力情况,下列说法正确的是()

A.条形磁铁一定受3个力

B.铁块一定受2个力

C.若烧断细绳,则铁块一定受2个力

D.若烧断细绳,则条形磁铁一定受3个力

【参考答案】D

【名师解析】如果磁铁对铁块的吸引力大于铁块的重力,则二者之间有弹力,如果磁铁对铁块的吸引力等于铁块的重力,则二者之间没有弹力,由此分析受力情况。

条形磁铁受到重力、绳子拉力、铁块的吸引力,也可能受到铁块的弹力,也可能不受铁块的弹力,故A错误;铁块受到重力、磁铁的吸引力,可能受到磁铁的弹力,也可能不受弹力,故B错误;若烧断细线,二者一起做自由落体运动,由牛顿第二定律可知,铁块一定受到受到重力、磁铁的吸引力,磁铁的弹力3个力作用,故C错误;若烧断细绳,条形磁铁受到重力、铁块的弹力、铁块的吸引力3个力,故D正确。

3. 如图所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球,下列关于杆对球的作用力F的判断中,正确的是()

A.小车静止时,F mgsinθ

=,方向沿杆向上

B.小车静止时,F mg cosθ

=,方向垂直于杆向上

C.小车向右以加速度a运动时,一定有

ma F

sinθ=

D.小车向左匀速运动时,F mg

=,方向竖直向上

【参考答案】D

【思路点拨】

【名师解析】小车静止时,球受到重力和杆的弹力作用,由平衡条件可得杆对球的作用力F =mg,方向竖直向上,选项A.B错误;小车向右以加速度a运动时,只有当a=g tan θ时,

才有F=ma

sin θ,如图所示,选项C错误;小车向左匀速运动时,根据平衡条件知,杆对球的弹力大小为mg,方向竖直向上,选项D正确。

4.(2016福建省五校联考)有下列几种情景,其中对情景的分析和判断正确的是( )

①点火后即将升空的火箭;

②高速公路上沿直线高速行驶的轿车为避免事故紧急刹车;

③运动的磁悬浮列车在轨道上高速行驶;

④太空中的空间站绕地球做匀速圆周运动。

A.因火箭还没运动,所以加速度一定为零

B.轿车紧急刹车,速度变化很快,所以加速度很大

C.高速行驶的磁悬浮列车,因速度很大,所以加速度也一定很大

D.因空间站处于完全失重状态,所以空间站内的物体加速度为零

【参照答案】B

【名师解析】

点火后即将升空的火箭,加速度一定不为零,选项A错误;轿车紧急刹车,速度变化很快,所以加速度很大,选项B正确;高速行驶的磁悬浮列车,速度很大,加速度可能为零,选项C错误;因空间站处于完全失重状态,所以空间站内的物体加速度不为零,选项D错误。

5. 图甲中的塔吊是现代工地必不可少的建筑设备,图乙为150kg的建筑材料被吊车竖直向上提升过程的简化运动图象,g取10m/s2,下列判断正确的是()

A. 前10s的悬线的拉力恒为1500N

B. 46s末塔吊的材料离地面的距离为22m

C. 0~10s材料处于失重状态

D. 在30s~36s钢索最容易发生断裂

【参考答案】B

【名师解析】由图可知前10s内物体的加速度a=0.1m/s2..。由F–mg=ma可解得悬线的拉力为F=mg+ma=1515N,选项A错误。由图象面积可得整个过程上升高度是28m,下降的高度为6m,46s末塔吊的材料离地面的距离为28m-6m=22m,选项B正确。0~10s加速度向上,材料处于超重状态,F>mg,钢索最容易发生断裂,选项C错误。因30s~36s物体加速度向下,材料处于失重状态,F<mg,在30s~36s钢索最不容易发生断裂,选项D错误;

6. 如图,木箱内有一竖直放置的弹簧,弹簧上方有一物块,木箱静止时弹簧处于压缩状态且物块压在箱顶上.若在某一段时间内,物块对箱顶刚好无压力,则在此段时间内,木箱的运动状态可能为()

A.加速下降B.加速上升

C.减速上升D.减速下降

【参考答案】BD

【名师解析】木箱静止时物块对箱顶有压力,则物块受到箱顶向下的压力。当物块对箱顶刚好无压力时,表明系统处于超重状态,有向上的加速度,属于超重,木箱的运动状态可能为加速上升或减速下降,选项BD正确。

【点评】此题考查受力分析、牛顿第二定律及超重和失重现象。

注解:要注意题述中的“可能”运动状态,不要漏选。

7. 为了研究超重和失重现象,某同学把一体重计放在电梯的地板上,她站在体重计上随电

梯上下运动,并观察体重计示数的变化情况.下表记录了几个特定时刻体重计的示数,若已t

.1和2时刻该同学的质量相等,但所受的重力不等

B.t1和t2时刻电梯的加速度大小相等,方向一定相反

C.t1和t2时刻电梯的加速度大小相等,运动方向一定相反

D.t3时刻电梯一定静止

【参考答案】B

【名师解析】t1和t2时刻物体的质量并没有发生变化,所受重力也没有发生了变化.故A错误.根据表格读数分析,t1时刻物体处于超重状态,根据牛顿第二定律分析得知,电梯的加速度方向向上.t2时刻物体处于失重状态,电梯的加速度方向向下,两个时刻加速度方向相反.但运动方向都可能向上或向下,不一定相反.故B正确C错误.t3时刻物体处于平衡状态,可能静止,也可能向上匀速运动.故D错误.

8. 如图5-4-4所示,A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M,B为铁块,质量为m,整个装置用轻绳悬挂在O点,在电磁铁通电后,铁块被吸引上升的过程中,轻绳上拉力F的大小为 ( )

A.F=mg B.Mg

C.F=(M+m)g D.F>(M+m)g

【参考答案】D

【名师解析】电磁铁通电后,铁块被吸引而加速上升,可以认为A、B、C组成的系统重心加速上移,即整个系统处于超重状态,则轻绳拉力F应大于(M+ m)g.

9.如图所示,台秤上放有盛水的杯,杯底用细绳系一木质的小球,若细线突然断裂,则在小木球上浮到水面的过程中,台秤的示数将( ).

A.变小 B.变大 C.不变 D.无法确定

【参考答案】A

【名师解析】本题若用隔离法进行受力分析,再通过对运动过程的分析、定量推理、再比较判断,就太费时、费力.如果从整体思维出发,对系统看是失重的成分大还是超超重的成分大,

就比较简捷,起到了化繁为简的效果.将容器和木球看做整体,整体受竖直向下的重力和台秤竖直向上的支持力N,当细线被剪断后,其实际效果是:在本球向上加速运动的同时,木球上方与该木球等体积的水球,将以同样大小的加速度向下加速流动,从而填补了木球占据的空间,由于ρ水>ρ木,水球的质量大于木球的质量,因此木球和水所组成的系统其质心有向下的加速度,整个系统将处于失重状态,故台秤的示数将变小.

10.(2016·安徽合肥一模)如图所示,在教室里某同学站在体重计上研究超重与失重。她由稳定的站姿变化到稳定的蹲姿称为“下蹲”过程;由稳定的蹲姿变化到稳定的站姿称为“起立”过程。关于她的实验现象,下列说法中正确的是()

A.只有“起立”过程,才能出现失重的现象

B.只有“下蹲”过程,才能出现超重的现象

C.“下蹲”的过程,先出现超重现象后出现失重现象

D.“起立”、“下蹲”的过程,都能出现超重和失重的现象

【参考答案】D

【名师解析】“起立”的过程,先加速向上后减速向上运动,加速向上运动加速度方向向上,出现超重现象,后减速向上运动加速度方向向下,出现失重现象,即“起立”过程先出现超重现象后出现失重现象,整个“起立”过程能出现超重和失重的现象;“下蹲”的过程,先加速向下后减速向下运动,加速向下运动加速度方向向下,出现失重现象,后减速向下运动加速度方向向上,出现超重现象,即“下蹲”过程先出现失重现象后出现超重现象,整个“下蹲”过程能出现超重和失重的现象,选项D正确ABC错误。

【点评】只要物体具有向下的加速度,则处于失重状态;物体具有向上的加速度,则处于超重状态。

二.计算题

1.(2006·北京崇文一模)为了实现“神舟”六号飞船安全着陆,在飞船距地面约1 m时(即将着陆的瞬间),安装在返回舱底部的四台发动机同时点火工作,使返回舱的速度由8 m/s降至2 m /s.设返回舱质量为3.5×102kg,减速时间为0.2 s.设上述减速过程为匀变速直线运动,试回答和计算下列问题:(g取10m/s2)

(1)在返回舱减速下降过程中,航天员处于超重还是失重状态?计算减速时间内,航天员承受的载荷值(即航天员所受的支持力与自身重力的比值).

(2)计算在减速过程中,返回舱受到四台发动机推力的大小.

【名师解析】(1)航天员处于超重状态a=v1-v2/t=-30 m/s2.

根据牛顿第二定律:mg-N=ma,

载荷比

(2)设返回舱受到的推力为F,根据牛顿第二定律:Mg-F=Ma,

a=(v1-v2)/t=-30 m/s2.

解得发动机推力F的大小为1.40×105N.

2.(9分)(2019浙江稽阳联谊学校联考模拟)2019年1月4日上午10时许,科技人员在北京航天飞行控制中心发出指令,嫦娥四号探测器在月面上空开启发动机,实施降落任务。

在距月面高为H=102m处开始悬停,识别障碍物和坡度,选定相对平坦的区域后,先以a1

匀加速下降,加速至v1=4ms/时,立即改变推力,以a2=2m/s2匀减速下降,至月表高度30m处速度减为零,立即开启自主避障程序,缓慢下降。最后距离月面2.5m时关闭发动机,探测器以自由落体的方式降落,自主着陆在月球背面南极艾特肯盆地内的冯?卡门撞击坑中,整个过程始终垂直月球表面作直线运动,取竖直向下为正方向。已知嫦娥四号探测器的质量m=40kg,月球表面重力加速度为1.6m/s2.求:

(1)嫦娥四号探测器自主着陆月面时的瞬时速度大小v2;

(2)匀加速直线下降过程的加速度大小a1;

(3)匀加速直线下降过程推力F的大小和方向。

【命题意图】本题以嫦娥四号着陆月球为情景,考查匀变速直线运动规律、牛顿运动定律及其相关的知识点。

【解题思路】(1)距离月面2.5m时关闭发动机,探测器以自由落体的方式降落,

由v22=2g′h2得:v2=m/s

(2)由题意知加速和减速发生的位移为:h=102m﹣30m=72m

由位移关系得:+=h

解得:a1=1m/s2

(3)匀加速直线下降过程由牛顿第二定律得:mg′﹣F=ma1

解得:F=24N,方向竖直向上。

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式 一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程: F 合 = (m 1 +m 2 +……)a 分量表达式:F x = (m 1 +m 2 +……)a x F y = (m 1 +m 2 +……)a y 2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。 例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。现对A施以水平推力F, 恰使B与A不发生相对滑动,忽略一切摩擦,则B对 A的压力大小为( BD ) A 、 mgcosα B、mg/cosα C、FM/(M+m)cosα D、Fm/(M+m)sinα ★题型特点:隔离法与整体法的灵活应用。 ★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。省去了对木楔受力分析(受力较烦),达到了简化问题的目的。 例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。求物体系的加速度a和连接m2、m3轻绳的张力F。(F1>F2) 例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( ) A.F F F F 3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解. 将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确. 例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( D ) A.有摩擦力作用,摩擦力的方向水平向右。B.有摩擦力作用,摩擦力的方向水平向左。C.有摩擦力作用,组摩擦力的方向不能确定。D.没有摩擦力的作用。 二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:b c a

牛顿第二定律专题(高清图)

牛顿运动定律 专题一(第12讲) 一、斜面问题 1.(2013重庆理综) 图1为伽利略研究自由落体运动实验的示意图,让小球 由倾角为θ的光滑斜面滑下,然后在不同的θ角条件下进行多次实验,最后推理出自由落体运动是一种匀加速直线运动。分析该实验可知,小球对斜面的压力、小球运动的加速度和重力加速度与各自最大值的比值y随θ变化的图像分别对应图2中的() A.①、②和③ B.③、②和① C.②、③和① D.③、①和② 二、等时圆问题 2.如图所示,ad、bd、cd是竖直面内三根固定的光滑细杆,a、b、c、d 位于同一圆周上,a点为圆周的最高点,d点为最低点。每根杆上都套着一个小滑环(图中未画出),三个滑环分别从a、b、c处释放(初速为 0),用t1、t2、t3依次表示滑环到达d所用的时间,则() A.t1 < t2 < t3 B.t1 > t2 > t3 C.t3 > t1 > t2 D.t1 = t2 = t3

变式1:如图所示,oa、ob、oc是竖直面内三根固定的光滑细杆,O、a、b、c、d位于同一圆周上,d点为圆周的最高点,c点为最低点。每根杆上都套着一个小滑环(图中未画出),三个滑环都从o点无初速释放,用t1、t2、t3依次表示滑环到达a、b、c所用的时间,则( ) t1 = t2 = t3 B.t1 > t2 > t3 C.t1 < t2 < t3 D.t3 > t1 > t2 变式2:有三个光滑斜轨道1、2、3,它们的倾角依次是60°、45°和30°。 这些轨道交于O点.现有位于同一竖直线上的3个小物体甲、乙、丙,分别沿这3个轨道同时从静止自由下滑,如图所示。物体滑到O点的先后顺序是() A.甲最先,乙稍后,丙最后 B.乙最先,然后甲和丙同时到达 C.甲、乙、丙同时到达 D.乙最先,甲稍后,丙最后 三、连接体问题 3.如图所示,质量形状均相同的木块紧靠在一起,放在光滑的水平面上,现用水平恒力推1号木块,使10个木块一起向右匀加速运动,则2号木块对3号木块的推力为___________,4号木块对3号木块的推力为___________.

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题 ——陈法伟 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与 运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。

牛顿第二定律以及专题训练

牛顿第二定律 1.牛顿第二定律的表述(内容) 物体的加速度跟物体所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,公式为:F=ma(其中的F和m、a必须相对应)。 对牛顿第二定律理解: (1)F=ma中的F为物体所受到的合外力. (2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变. (4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。 (5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度. 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。 (6)F=ma中,F的单位是牛顿,m的单位是千克,a的单位是米/秒2. (7)F=ma的适用范围:宏观、低速 2.应用牛顿第二定律解题的步骤 ①明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为m i,对应的加速度为a i,则有:F合=m1a1+m2a2+m3a3+……+m n a n 对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律: ∑F1=m1a1,∑F2=m2a2,……∑F n=m n a n,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现的,其矢量和必为零,所以最后实际得到的是该质点组所受的所有外力之和,即合外力F。 ②对研究对象进行受力分析。(同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。 ③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 ④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。 解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,那么问题都能迎刃而解。 3.应用举例 【例1】质量为m的物体放在水平地面上,受水平恒力F作用,由静止开始做匀加速直线运动,经过ts后,撤去水平拉力F,物体又经过ts停下,求物体受到的滑动摩擦力f.

牛顿第二定律的应用

牛顿第二定律的应用 Prepared on 22 November 2020

寒假作业4 (考查:牛顿第二定律的应用) 一、选择题(1-12单选,13-22多选) 1.如图,水平面上一个物体向右运动,将弹簧压缩,随后又被弹回直到离开弹簧,则该物体从接触弹簧到离开弹簧的这个过程中,下列说法中正确的是( ) A. 若接触面光滑,则物体加速度的大小是先减小后增大 B. 若接触面光滑,则物体加速度的大小是先增大后减小再增大 C. 若接触面粗糙,则物体加速度的大小是先减小后增大 D. 若接触面粗糙,则物体加速度的大小是先增大后减小再增大 2.静止在光滑的水平面上的物体,在水平推力F的作用下开始运动,推力F 随时间t变化的规律如图所示,则物体在 1 0~t时间内( ) A. 速度一直增大 B. 加速度一直增大 C. 速度先增大后减小 D. 位移先增大后减小 3.质量为M的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块时,其加速度为a,当拉力方向不变,大小变为2F时,木块的加速度大小为a′,则 () A. 2a>a′ B. 2a

牛顿第二定律的应用专题分类训练训练(精品)

图3 牛顿第二定律的应用检测题 (以下各题取2 /10s m g ) 第一类:由物体的受力情况确定物体的运动情况 1,如图1所示,用F = N 的水平拉力,使质量m = kg 的物体由静止开始沿光滑水平面做匀加速直线运动.求: (1)物体加速度a 的大小; (2)物体开始运动后t = s 内通过的位移x . { 2,如图2所示,用F = N 的水平拉力,使质量m = kg 的物体由静止开始沿 光滑水平面做匀加速直线运动。 (1)求物体的加速度a 的大小; (2)求物体开始运动后t = s 末速度的大小; 【 3.如图3所示,用F 1 = 16 N 的水平拉力,使质量m = kg 的物体由静止开始沿水平地面做匀加速直线运动。已知物体所受的滑动摩擦力F 2 = N 。求: (1)物体加速度a 的大小; (2)物体开始运动后t= s 内通过的位移x 。 @ 4.如图4所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m = kg ,物体与地面间的动摩擦因数μ=. 求: (1)物体加速度a 的大小; (2)物体在t =时速度v 的大小. [ 图1 图2 图4

5,一辆总质量是×103kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是×103N ,受到的阻力为车重的倍。求汽车运动的加速度和20秒末的速度各是多大 ( 6.如图6所示,一位滑雪者在一段水平雪地上滑雪。已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=。从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。 求: (1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。 7,如图7所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为, (1)画出物块的受力示意图 (2)求物块运动的加速度的大小 (3)求物块速度达到s m v /0.6 时移动的距离 ; 第二类:由物体的运动情况确定物体的受力情况 1、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由s 增加到s. (1)求列车的加速度大小. (2)若列车的质量是×106kg ,机车对列车的牵引力是×105N ,求列车在运动中所受的阻力大小. 图6 ! F

牛顿第二定律练习题和答案

牛顿第二定律练习题和 答案 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是 [ ] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是 [ ] A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动B.匀加速运动 C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: [ ] A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的

D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是 [ ] A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加 速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块 [ ] A.有摩擦力作用,方向向右B.有摩擦力作用,方向向左 C.没有摩擦力作用D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是 [ ] A.先加速后减速,最后静止B.先加速后匀速 C.先加速后减速直至匀速D.加速度逐渐减小到零 8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F 改为2F(仍然水平方向),物体运动的加速度大小变为a′.则 [ ] A.a′=a B.a<a′<2a C.a′=2a D.a′>2a

牛顿第二定律专题 .doc

牛顿第二定律专题 一、矢量性 1、如图所示,小车上固定着三角硬杆,杆的端点固定着一个质量为m 的小球.当小车水平向右的加速度逐渐增大时,杆对小球的作用力的变化(用F 1至F 4变化表示)可能是下图中的(OO '沿杆方向)( ) 二、瞬时问题 2、如图3-3-1所示,A 、B 两个质量均为m 的小球之间用一根轻弹簧(即不计其质量)连接,并用细绳悬挂在天花板上,两小球均保持静止.若用火将细绳烧断,则在绳刚断的这一瞬间,A 、B 两球的加速度大小分别是( ) A .a A =g ; a B =g B .a A =2g ;a B =g C a A =2g ;a B =0 D .a A =0 ; a B =g 3、如图3-3-2a 所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ,l 2水平拉直,物体处于平衡状态.现将l 2线剪断,(1)求剪断瞬时物体的加速度.(2)若将图a 中的细线l 1改为长度相 同、质量不计的轻弹簧 4、如图3-3-17所示,竖直光滑杆上套有一个小球和两根弹簧, 两弹簧的一端各与小球相连,另一端分别用销钉M .N 固定与杆 上,小球处于静止状态,设拔去销钉M 瞬时,小球加速度的大小 为12m /s 2.若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可 能是( ) A .22m /s 2,竖直向上 B .22m /s 2,竖直向下 C .2m /s 2,竖直向上 D .2m /s 2 ,竖直向下 O F 2 F 1 O F 3 F 4 A O F 2 F 1 O F 3 F 4 B O F 2 F 1 O F 3 F 4 C O O F 2 F 1 F 3 F 4 D ' ' ' ' θ l 1 l 2 θ l 1 l 2 图3-3-2 M N 图3-3-17 图3-3-1 B A

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气

D. 探测器匀速运动时,不需要喷气 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向 与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2 2. 力和加速度的瞬时对应关系 (1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。若合外力变为零,加速度也立即变为零(加速度可以突变)。这就是牛顿第二定律的瞬时性。 (2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性: ①轻,即绳(或线)的质量和重力均可视为零。由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。 ②软,即绳(或线)只能受拉力,不能承受压力(因绳能弯曲)。由此特点可知,绳与其他物体相互作用力的方向是沿着绳子且背离受力物体的方向。 ③不可伸长:即无论绳子所受拉力多大,绳子的长度不变。由此特点知,绳子中的张力可以突变。 (3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性: ①轻:即弹簧(或橡皮绳)的质量和重力均可视为零。由此特点可知,同一弹簧的两端及其中间各点的弹力大小相等。 ②弹簧既能受拉力,也能受压力(沿弹簧的轴线);橡皮绳只能受拉力,不能承受压力(因橡皮绳能弯曲)。

牛顿第二定律经典例题

牛顿第二定律应用的问题 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气

解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向 与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2

下载高一物理牛顿第二定律应用

课题:牛顿第二定律应用(一) 目的:1、掌握应用牛顿定律分析力和运动关系问题的基本方法。 2、培养学生分析解决问题的能力。 重点:受力分析、运动和力关系的分析。 难点:受力分析、运动和力关系的分析。 方法:启发思考总结归纳、讲练结合。 过程:一、知识点析: 1.牛顿第二定律是在实验基础上总结出的定量揭示了物体的加速度与力和质量的关系。数学表达式:ΣF=ma或ΣFx=Ma x ΣF y =ma y 理解该定律在注意: (1)。瞬时对应关系;(2)矢量关系;(3)。 2.力、加速度、速度的关系: (1)加速度与力的关系遵循牛顿第二定律。 (2)加速度一与速度的关系:速度是描述物体运动的一个状态量,它与物体运动的加速度没有直接联系,但速度变化量的大小加速度有关,速度变化量与加速度(力)方向一致。 (3)力与加速度是瞬时对应关系,而力与物体的速度,及速度的变化均无直接关系。Δv=at,v=v +at,速度的变化需要时间的积累,速度的大小还需考虑初始情况。 二、例题分析: 例1。一位工人沿水平方向推一质量为45mg的运料车,所用的推力为90N,此时运料车的加速度是1.8m/s2,当这位工人不再推车时,车的加速度。 【例2】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速率都是先增大,后减小 D、物体在B点时,所受合力为零 【解析】本题主要研究a与F 合 的对应关系,弹簧这种特殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。对物体运动过程及状态分析清楚,同时对物体 正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 =0,由A→C 的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置

2020高考物理一轮复习专题3-2 牛顿第二定律及其应用(精讲)含答案

专题3.2 牛顿第二定律及其应用(精讲) 1.理解牛顿第二定律的内容、表达式及性质。 2.应用牛顿第二定律解决瞬时问题和两类动力学问题。 知识点一牛顿第二定律、单位制 1.牛顿第二定律 (1)内容 物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比。加速度的方向与作用力的方向相同。 (2)表达式a=F m或F=ma。 (3)适用范围 ①只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系)。 ②只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。 2.单位制 (1)单位制由基本单位和导出单位组成。 (2)基本单位 基本量的单位。力学中的基本量有三个,它们分别是质量、时间、长度,它们的国际单位分别是千克、秒、米。 (3)导出单位 由基本量根据物理关系推导出的其他物理量的单位。 知识点二动力学中的两类问题 1.两类动力学问题 (1)已知受力情况求物体的运动情况。 (2)已知运动情况求物体的受力情况。 2.解决两类基本问题的方法 以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如下:

【方法技巧】两类动力学问题的解题步骤 知识点三超重和失重 1.实重和视重 (1)实重:物体实际所受的重力,与物体的运动状态无关,在地球上的同一位置是不变的。 (2)视重 ①当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重。 ②视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力。 2.超重、失重和完全失重的比较 超重现象失重现象完全失重 概念 物体对支持物的压力 (或对悬挂物的拉力)大于 物体所受重力的现象 物体对支持物的压力 (或对悬挂物的拉力)小于物 体所受重力的现象 物体对支持物的压力 (或对悬挂物的拉力)等于零 的现象 产生条件物体的加速度方向向上物体的加速度方向向下 物体的加速度方向向 下,大小a=g 原理方程 F-mg=ma F=m(g+a) mg-F=ma F=m(g-a) mg-F=mg F=0 运动状态加速上升或减速下降加速下降或减速上升 无阻力的抛体运动;绕 地球匀速圆周运动

16牛顿第二定律及其应用 知识讲解 基础

物理总复习:牛顿第二定律及其应用 【考纲要求】 1、理解牛顿第二定律,掌握解决动力学两大基本问题的基本方法; 2、了解力学单位制; 3、掌握验证牛顿第二定律的基本方法,掌握实验中图像法的处理方法。 【知识网络】 牛顿第二定律内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。 解决动力学两大基本问题 (1)已知受力情况求运动情况。 (2)已知物体的运动情况,求物体的受力情况。 运动=F ma ???→←??? 合力 加速度是运动和力之间联系的纽带和桥梁 【考点梳理】 要点一、牛顿第二定律 1、牛顿第二定律 牛顿第二定律内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。 要点诠释:牛顿第二定律的比例式为F ma ∝;表达式为F ma =。1 N 力的物理意义是使质量为m=1kg 的物体产生21/a m s =的加速度的力。 几点特性:(1)瞬时性:牛顿第二定律是力的瞬时作用规律,力是加速度产生的根本原因,加速度与力同时存在、同时变化、同时消失。 (2)矢量性: F ma =是一个矢量方程,加速度a 与力F 方向相同。 (3)独立性:物体受到几个力的作用,一个力产生的加速度只与此力有关,与其他力无关。 (4)同体性:指作用于物体上的力使该物体产生加速度。 要点二、力学单位制 1、基本物理量与基本单位 力学中的基本物理量共有三个,分别是质量、时间、长度;其单位分别是千克、秒、米;其表示的符号分别是kg 、s 、m 。 在物理学中,以质量、长度、时间、电流、热力学温度、发光强度、物质的量共七个物理量 作为基本物理量。以它们的单位千克(kg )、米(m )、秒(s )、安培(A )、开尔文(K )、坎 德拉(cd )、摩尔(mol )为基本单位。 2、 基本单位的选定原则 (1)基本单位必须具有较高的精确度,并且具有长期的稳定性与重复性。 (2)必须满足由最少的基本单位构成最多的导出单位。 (3)必须具备相互的独立性。 在力学单位制中选取米、千克、秒作为基本单位,其原因在于“米”是一个空间概念;“千克”是一个表述质量的单位;而“秒”是一个时间概念。三者各自独立,不可替代。 例、关于力学单位制,下列说法正确的是( ) A .kg 、m/s 、N 是导出单位 B .kg 、m 、s 是基本单位 C .在国际单位制中,质量的单位可以是kg ,也可以是g D .只有在国际单位制中,牛顿第二定律的表达式才是 F ma =

新06.牛顿第二定律的综合应用专题训练(题型全面)

F 37 图 1 F 牛顿第二定律的应用 第一类:由物体的受力情况确定物体的运动情况 1. 如图1所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为0.10.( g=10m/s 2) (1)画出物块的受力示意图 (2)求物块运动的加速度的大小 (3)物体在t = 2.0s 时速度v 的大小. (4)求物块速度达到s m v /0.6=时移动的距离 2.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜向上的拉力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2,求 (1)画出物体的受力示意图 (2)物体运动的加速度 (3)物体在拉力作用下5s 内通过的位移大小。 〖自主练习:〗 1.一辆总质量是4.0×103kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是6.0×103N ,受到的阻力为车重的0.1倍。求汽车运动的加速度和20秒末的速度各是多大? ( g=10m/s 2 ) 2.如图所示,一位滑雪者在一段水平雪地上滑雪。已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=0.05。从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。 求:( g=10m/s 2 )

(1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。 第二类:由物体的运动情况确定物体的受力情况 1、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s. (1)求列车的加速度大小. (2)若列车的质量是1.0×106kg ,机车对列车的牵引力是1.5×105N ,求列车在运动中所受的阻力大小.( g=10m/s 2) 2.一个滑雪的人,质量m =75kg ,以v 0=2m/s 的初速度沿山坡匀加速滑下,山坡的倾角θ=30°,在t =5s 的时间内滑下的路程x =60m ,( g=10m/s 2)求: (1)人沿斜面下滑的加速度 (2)滑雪人受到的阻力(包括摩擦和空气阻力)。 〖自主练习:〗 1.静止在水平地面上的物体,质量为20kg ,现在用一个大小为60N 的水平力使物体做匀加速直线运动,当物体移动9.0m 时,速度达到6.0m/s ,( g=10m/s 2)求: (1)物体加速度的大小 (2)物体和地面之间的动摩擦因数 2.一位滑雪者如果以v 0=30m/s 的初速度沿直线冲上一倾角为300的山坡,从冲坡开始计时,至4s 末,雪橇速度变为零。如果雪橇与人的质量为m =80kg ,( g=10m/s 2) 求滑雪人受到的阻力是多少。 3.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜下上的推力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2, 求(1)物体运动的加速度 (2)物体在拉力作用下5s 内通过的位移大小。

牛顿第二定律应用——图像专题

牛顿第二定律应用——图像专题 学习目标: 1.进一步理解牛顿第二定律; 2.理解图像的物理意义; 3.会结合图像求解动力学问题。 重点:理解牛顿第二定律,并结合图像求解动力学问题 难点:学生能力培养 一、牛顿运动定律中的图象 图象能形象的表达物理规律,能直观地描述物理过程,能鲜明地表示物理量之间的关系。应用图象,不仅能进行定性分析、比较、判断,也适宜于定量计算、论证,而且通过图象的启发常能找到巧妙的解题途径。因此,理解图象的物理意义,自觉地运用图象分析表达物理规律,是十分必要的。 当然,牛顿第二定律与图象的综合问题也是近年来高考的重点和热点。 一)、理解图象的轴、点、线、截、斜、面六大功能 1、轴:弄清直角坐标系中,横轴、纵轴代表的含义,即图像是描述哪两个物理量间的关系,是位移—时间关系?还是速度—时间关系?等等……同时注意单位及标度。 2、点:物理图像上的“点”代表某一物理状态,要弄清图像上任一点的物理意义,实质是两个轴所代表的物理量的瞬时对应关系,如代表t时刻的位移s,或t时刻对应的速度等等.在图象中我们着重要了解截距点、交点、极值点、拐点等这些特殊点的物理意义。 3、线:图像上的一段直线或曲线一般对应一段物理过程,给出了纵轴代表的物理量随横轴代表的物理量的变化过程. 4、截:即纵轴截距,一般代表物理过程的初状态情况,即时间为零时的位移或速度的值.当然,对物理图像的全面了解,还需同学们今后慢慢体会和提高,如对矢量及标量的正确处理分析等等…… 5、斜:即斜率,也往往代表另一个物理量的规律,看两轴所代表物理量的变化之比的含义.同样可以从物理公式或单位的角度分析,如s—t图像中,斜率代表速度等等…… 6、面:图像和坐标轴所夹的“面积”常与某一表示过程的物理量相对应,如能充分利用“面积”的这一特点来解题,不仅思路清晰,而且在很多情况下可以使解体过程得到简化,起到比解析法更巧妙、更灵活的独特效果。如速度--时间图像与横轴所围面积为物体在这段时间内的位移,看两轴代表的物理量的“积”有无实际的物理意义,可以从物理公式分析,也可从单位的角度分析,如s—t图像“面积”无实际意义,不予讨论。 二)、求解图象问题的思路 1.常见图象 动力学中常见的有a-F、a-1/m、F-t、v-t、x-t图象等,我们可抓住图象的斜率、截距、面积、交点、拐点等信息,结合牛顿第二定律和运动学公式来分析解决问题。 2.求解图象问题的思路: (1)确定研究对象并分析其受力情况和运动情况; (2)建立直角坐标系求合力(一般让x 轴沿着a的方向); (3)分析图象获取所需信息: 通常在a-F图象中找出a与F的对应值;在a-1/m图象中找出a与m的对应值; 在F-t图象中找出F在相应时刻的值;在v-t和x-t图象中求出a的值。 (4)根据牛顿第二定律列方程求解。

关于系统牛顿第二定律的应用

关于系统牛顿第二定律的应用 眉山中学邓学军 牛顿第二定律是动力学的核心内容,它深刻揭示了物体产生的加速度与其质量、所受到的力之间的定量关系,在科研、 生产、实际生活中有着极其广泛的应用。本文就牛顿第二定律在物理解题中的应用作些分析总结, 以加深学生对该定律的认 识与理解,从而达到熟练应用的效果目的。对于连接体问题,牛顿第二定律应用于系统,主要表现在以下两方面: 其一,系统内各物体的加速度相同。 则表达式为:F =( m i +m 2+…)a ,这种情况往往以整个系统为研究对象,分析 系统的合外力,求岀共同的加速度。 例1 ?质量为m i 、m 2的两个物体用一轻质细绳连接,现对 m i 施加一个外力F ,在如下几种情况下运动,试求绳上的拉 力大小。 m 1 m 2 m i m 2 ⑶m i 、m 2放在光滑斜面上向上作加速直线运动 解析:对整体:F —( m i + m 2) g sin a=( m i + m 2) a 对 m 2: T — m 2g sin a = m 2 a 解得:T = m i m 2 ⑷m i 、m 2放在粗糙斜面上向上作加速直线运动 解析:对整体: F —( m i + m 2) g sin a — g( m i + m 2) g cos a=( m i + m 2) a 对 m 2: T — m 2g sin a — g( m i + m 2) g cos a = m 2 a 其二,系统内各物体的加速度不同。 这种题目较难,牛顿第二定律的基本表达式为: F m i a i mba 2 L ,这是一个矢量表达式,可以分为以下几种情形: 1. 系统中只有一个物体有加速度,其余物体均静止或作匀速运动。 例2?如图示,斜面体 M 始终处于静止状态,当物体 m 沿斜面下滑时,下列说法正确的是: A ?匀速下滑时,M 对地面的压力等于(M +m ) g B. 加速下滑时,M 对地面的压力小于(M + m ) g ⑵m i 、m 2放在粗糙水平面上作加速直线运动: T = m 2 —F 解得:T = m 2 m i m 2 ⑸m i 、m 2放在光滑水平面上在 F 作用下绕0i 02作匀速圆周运动 解析:对整体:F =( m i + m 2) a 对 m 2: T = m 2 a (连接绳子极短) 解得:T = m 2 > F 01 [m2 -| ml m i m 2 ⑴m i 、m 2放在光滑水平面上作加速直线运动: T = m 2

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题 ——陈法伟 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。

例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2 2. 力和加速度的瞬时对应关系 (1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。若合外力变为零,加速度也立即变为零(加速度可以突变)。这就是牛顿第二定律的瞬时性。 (2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性: ①轻,即绳(或线)的质量和重力均可视为零。由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。

(完整版)牛顿第二定律的应用-临界问题(附答案)

例1.如图所示,一质量为M=5 kg的斜面体放在水平地面上,斜面体与地面的动摩擦因数为μ1=0.5,斜面高度为h=0.45 m,斜面体右侧竖直面与小物块的动摩擦因数为μ2=0.8,小物块的质量为m=1 kg,起初小物块在斜面的竖直面上的最高点。现在从静止开始在M上作用一水平恒力F,并且同时释放m,取g=10 m/s2,设小物块与斜面体右侧竖直面间最大静摩擦力等于它们之间的滑动摩擦力,小物块可视为质点。问: (1)要使M、m保持相对静止一起向右做匀加速运动,加速度至少多大? (2)此过程中水平恒力至少为多少? 例1解析:(1)以m为研究对象,竖直方向有: mg-F f=0 水平方向有:F N=ma 又F f=μ2F N 得:a=12.5 m/s2。 (2)以小物块和斜面体为整体作为研究对象,由牛顿第二定律得:F-μ1(M+m)g=(M+m)a 水平恒力至少为:F=105 N。 答案:(1)12.5 m/s2(2)105 N 例2.如图所示,质量为m的光滑小球,用轻绳连接后,挂在三角劈的顶端,绳与斜面平行,劈置于光滑水平面上,求: (1)劈的加速度至少多大时小球对劈无压力?加速度方向如何? (2)劈以加速度a1= g/3水平向左加速运动时,绳的拉力多大? (3)当劈以加速度a3= 2g向左运动时,绳的拉力多大? 例2解:(1)恰无压力时,对球受力分析,得 (2),对球受力分析,得

(3),对球受力分析,得(无支持力) 练习: 1.如图所示,质量为M的木板上放着质量为m的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间的动摩擦因数为μ2,求加在木板上的力F为多大时,才能将木板从木块下抽出?(取最大静摩擦力与滑动摩擦力相等) 1解:只有当二者发生相对滑动时,才有可能将M从m下抽出,此时对应的临界状态是:M与m间的摩擦力必定是最大静摩擦力,且m运动的加速度必定是二者共同运动时的最大加速度 隔离受力较简单的物体m,则有:,a m就是系统在此临界状态的加速度 设此时作用于M的力为F min,再取M、m整体为研究对象,则有: F min-μ2(M+m)g=(M+m)a m,故F min=(μ1+μ2)(M+m)g 当F> F min时,才能将M抽出,故F>(μ1+μ2)(M+m)g 2.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上,有一质量m=10kg的猴从绳子另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面条件下,猴子向上爬的最大加速度为(g=10m/s2)() A.25m/s2 B.5m/s2 C.10m/s2 D.15m/s2 2.分析:当小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,对 小猴受力分析,运用牛顿第二定律求解加速度. 解答:解:小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,即F=Mg; 小猴对细绳的拉力等于细绳对小猴的拉力F′=F; 对小猴受力分析,受重力和拉力,根据牛顿第二定律,有

相关文档
最新文档