点焊焊接原理及设备

点焊焊接原理及设备
点焊焊接原理及设备

点焊初级理论

1.电焊焊接原理

点焊过程,就是在热与电极压力作用下形成焊点的过程。

2.热过程

3.等效电阻

4.接触电阻

5.点焊过程

a)预压阶断:为了消除零件配合间隙,建立稳定的电流通道;(时间若短,电阻大,可能烧穿)

b)通电加热阶段:形成焊核;(焊接时间和电流)

c)维持阶段:维持压力,让焊核冷却;(使金属晶粒变细,熔核凝固并有足够强度)

d)休止阶段:撤去压力,电极上升。

6.焊点强度的评价

a)焊核直径:半破坏,全拆解;

b)剪切拉力值:拉力试验。

7.常见焊接不良

a)虚焊——焊点颜色发白

b)针孔

c)过烧/烧穿——凹陷,有飞出的熔质

d)焊核小

e)气孔

f)偏位

g)压痕深

h)焊核裂纹

i)飞溅

j)毛刺

k)边缘焊

l)漏焊

m)扭曲

8.引起缺陷的过程因素

a)板间装配不好

b)焊点间分流

c)不同的图层

d)胶水

e)电极磨损

f)多层板焊接

g)不同板厚焊接

h)不同压力变化

9.参数管理

a)电流

b)通电时间

c)压力

d)电阻

e)板材表面状态

f)电极

10.焊点强度管理

a)参数管理:调整后需要跟踪确认到位

b)目视检查

c)半破坏检查:是确认焊点强度的主要方式,用螺丝刀放在焊接部位,用一磅锤敲打, 有一声响感觉

螺丝刀受阻挡时就可判定有焊核。

d)整车全拆解

电极基础知识

1.电极的作用

传递焊接部位所需要的热和压力(包括电流、时间和压力),同时倒散焊接区域的热量。

2.电极的修磨要求

a)良好的表面状态

i.电极打点过程中端面变大,表面变差,影响焊接质量;

ii.电极端面会越来越大,氧化层越来越厚,使得电流密度降低没有足够的热量形成焊核,导致发生虚焊、焊核小

b)初始锥度或标准锥度

i.电极的锥度直接影响打点过程中电极端面的变化;

ii.为保证焊接质量,请保持你的锥度不变,按要求对电极进行修磨

c)端面直径6~8mm

i.太小将导致过烧,压痕深,飞溅等;

ii.太大则导致电流密度小,散热量大,有效热量小,易产生爆焊。

d)电极端面据第一条刻度线4mm以上

i.电极冷却过快会导致爆焊、焊核小等不良现象;

ii.电极端面接近或达到冷却水通道,焊接时会使得电极穿孔。

e)上下电极对中

i.加压时焊点处会发生扭曲,打出焊点边缘有很大毛刺,时常伴有气孔发生。

ii.电极不对中时,电极只有对中的部分起作用,会造成焊点过烧,严重会导致穿孔。

焊机机构与原理

1.电阻焊的工作原理

利用电极对板件施加一定压力,将其夹紧,利用电极间电阻产生的焦耳热融化金属而达到的焊接目的。

2.悬挂式点焊机

控制柜:中频三核自适应控制器

a)一体式/分体式:变压器和焊臂一起;

b)常见缺陷:

i.飞溅毛刺

ii.压痕过深

iii.过烧或焊穿

iv.焊点扭曲

3.焊接系统三大路

a)水路:对焊钳本体和焊钳上的中频焊接变压器进行冷却

b)气路:控制焊钳的动静臂的打开和闭合,包括从大张口切换到小张口,及从小张口到闭合接触的

过程。

c)电路:控制焊钳动作的逻辑和提供板材焊点焊接时的足够热量。

4.焊钳的结构

a)便携式:普通型,一体化型;

b)EQ(自平衡焊钳)

c)机器人焊接:气动、马达驱动

夹具的结构与原理

1.夹具的分类

a)手动

b)气控

c)电控:压缩气源+气源处理+阀+气缸+传感器+控制器

d)快速

e)抓手

2.夹具站的组成

a)气源

b)气净化部分

c)电控阀

d)气控单元

e)气缸夹具

f)工作定位面

g)气缸夹抓

h)定位销

3.夹具的定义

a)保证产品质量

b)加速工艺过程的装备

c)用于定位

d)用于夹紧

e)焊接的辅助装置

4.夹具的作用

是定位和加紧,通过定位面、定位销、夹爪及其他一些辅助元件对被加工对象进行定位和夹紧,从而确保工件的尺寸精度。

5.抓具系统

a)特点:调节方便,容易改变;每个接头上都有定位销孔;维修方便快速,备件少;零件标准化,

方便选型。

b)结构:双横形,单列形,H型

6.Tuenkers 气缸

a)内部限位,夹紧点更精确

b)关节由滚针轴承支撑,寿命长

c)扁平气缸设计,防止自转

d)全封闭结构,紧凑的设计

e)自带锁定机构

f)以弱小的驱动力形成强大的夹紧力

旋转底部螺栓可无极调角度。

车身质量控制点及控制方法

1.车身质量控制的五个方面

a)焊点质量

b)表面质量

c)尺寸精度

d)紧固扭矩

e)防水防锈

2.点焊强度

a)全破坏(三个月一次)

是在新设定焊接条件时、钢板材质改变导致焊接条件重新调整时,或者在焊接机器损坏而进行更换时,零件被剥离(破坏),对形成的熔核直径进行测定,判断是否良好的检查方法.

b)半破坏(三十台一次)

把錾子插入焊接了的零件的压痕附近,判断熔核是否形成的方法。

c)超声波检测

发射高频声波——〉声波传播——〉声波反射——〉信号以振幅相对时间方式加以显示,用于评估

3.表面质量

a)无凹坑和凸点

b)无变形,划痕

c)无飞溅,污物

预防控制:拒绝来件不良和运输缺陷;

过程控制:遵守规范,检测工具/夹具;

4.尺寸精度

a)定位销

b)定位面

c)夹具

d)三坐标

5.紧固扭矩

a)螺母螺柱:扭力扳手

b)扭力扳手:送检工具部

6.防水防锈——涂胶

a)位置:全检,无偏移,无滴落或溢出

b)直径:宽度、高度

c)胶规格,保质期:点检

车间设备介绍

1.悬挂式点焊机

2.固定式点焊机

3.固定式凸焊机

a)螺母焊机

b)螺柱焊机

4.夹具台

a)提高产品质量

b)提高劳动效率

c)扩大工具操作范围

d)改善劳动条件,降低成本

5.转台

6.Opengate

7.撬检台

8.Fronius手工电弧焊系统

CO2气体保护焊:以CO2作保护气体,依靠焊丝与焊件间的电弧来融化金属的气体保护焊的方法。9.焊装机器人

点焊,弧焊,搬运,装配,检测等

10.机器人辅助设备

修磨器、水气单元、冲孔机、铆钉枪、SCA涂胶控制器、SCA喷胶器、感应固话装置、APC积放链、滚床、横移机、旋转滚床、升降机、叉载机、滚边机、主线高速滚床。

连接工艺

1.电阻焊工艺基础

a)电阻焊(RW)定义

利用焊接电流流过工件接触面及紧邻区域产生的电阻热、电极间施加压力,实现工件之间的冶金连接方法。

b)优点:

i.熔核的形成在塑形环包围,与空气隔离,冶金不受氧化

ii.加热时间短,热量集中,焊接变形小

iii.成本低。操作容易,生产率高,噪音小,不产生有害气体和强光。

c)缺点:搭接接头增加构件质量,熔核周围形成尖角,使接头的抗拉和疲劳强度降低。

2.质量检测

a)点焊:破坏性检查:撕裂

非破坏性:目视、凿检、超声波检查

3.电弧螺柱焊

利用螺柱与母材之间的拉起的电弧(先导电弧与主电弧)融化母材与螺柱,螺柱融化下落,植入母材实现冶金连接的电弧焊方法。

接触——〉垂直——〉提升引弧——〉拉弧融化——〉下落融合——〉凝结拔枪

4.融化极气体保护焊MAG焊

5.铆接

电池点焊机原理

电池点焊机原理 焊件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方法称为电阻焊。电阻焊具有生产效率高、低成本、节省材料、易于自动化等特点,因此广泛应用于航空、航天、能源、电子、汽车、轻工等各工业部门,是重要的焊接工艺之一。 一、焊接热的产出及影响因素 点焊时产生的热量由下式决定:Q=IIRt(J)————(1) 式中:Q——产生的热量(J)、I——焊接电流(A)、R——电极间电阻(欧姆)、t——焊接时间(s) 1.电阻R及影响R的因素 电极间电阻包括工件本身电阻Rw,两工件间接触电阻Rc,电极与工件间接触电阻Rew.即R=2Rw+Rc+2Rew——(2)如图. 当工件和电极一定时,工件的电阻取决与它的电阻率.因此,电阻率是被焊材料的重要性能.电阻率高的金属其导电性差(如不锈钢)电阻率低的金属其导电性好(如铝合金)。因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易.点焊时,前者可用较小电流(几千安培),而后者就必须用很大电流(几万安培)。电阻率不仅取决与金属种类,还与金属的热处理状态、加工方式及温度有关。 接触电阻存在的时间是短暂,一般存在于焊接初期,由两方面原因形成: 1)工件和电极表面有高电阻系数的氧化物或脏物质层,会使电流遭到较大阻碍。过厚的氧化物和脏物质层甚至会使电流不能导通。 2)在表面十分洁净的条件下,由于表面的微观不平度,使工件只能在粗糙表面的局部形成接触点。在接触点处形成电流线的收拢。由于电流通路的缩小而增加了接触处的电阻。

电极与工件间的电阻Rew与Rc和Rw相比,由于铜合金的电阻率和硬度一般比工件低,因此很小,对熔核形成的影响更小,我们较少考虑它的影响。 2.焊接电流的影响 从公式(1)可见,电流对产热的影响比电阻和时间两者都大。因此,在焊接过程中,它是一个必须严格控制的参数。引起电流变化的主要原因是电网电压波动和交流焊机次级回路阻抗变化。阻抗变化是因为回路的几何形状变化或因在次级回路中引入不同量的磁性金属。对于直流焊机,次级回路阻抗变化,对电流无明显影响。 3.焊接时间的影响 为了保证熔核尺寸和焊点强度,焊接时间与焊接电流在一定范围内可以相互补充。为了获得一定强度的焊点,可以采用大电流和短时间(强条件,又称硬规范),也可采用小电流和长时间(弱条件,也称软规范)。选用硬规范还是软规范,取决于金属的性能、厚度和所用焊机的功率。对于不同性能和厚度的金属所需的电流和时间,都有一个上下限,使用时以此为准。 4.电极压力的影响 电极压力对两电极间总电阻R有明显的影响,随着电极压力的增大,R显著减小,而焊接电流增大的幅度却不大,不能影响因R减小引起的产热减少。因此,焊点强度总随着焊接压力增大而减小。解决的办法是在增大焊接压力的同时,增大焊接电流。 5.电极形状及材料性能的影响 由于电极的接触面积决定着电流密度,电极材料的电阻率和导热性关系着热量的产生和散失,因此,电极的形状和材料对熔核的形成有显著影响。随着电极端头的变形和磨损,接触面积增大,焊点强度将降低。

车身电阻点焊焊接工艺

车身电阻点焊焊接工艺 案例 一台捷达小轿车由于中部车身发生严重碰撞,需要更换中柱。在维修过程中使用电阻焊连接,但维修人员在完成电阻焊工作后,发现有许多焊点未能完成互熔,产生内外钣件脱焊现象。 分析原因:1.焊前没有清理干净,焊位有杂物沾污。 2.焊时电流、电压值不对。 3.夹具没有实施夹紧而留有空隙,造成焊点在加压时不能互熔。 改进措施:1.焊前清洁。 2.夹具在夹紧焊接钣件之间要贴合牢固。 3.先试焊才实施工作以保证质量。 一、制订检修计划 任务5制订汽车中部车身碰撞更换中柱故障的检修计划,如表9-1所示。 表9-1 汽车车身碰撞更换中柱的检修计划 1.车辆信息描述 车辆描述 车身钣金件材 料类型 门槛与中柱金属材 料 门槛结构形状 巾柱结构娄型 2.车身钣金件故障现象描 述 3.车身饭金件故障原因分 析,画出鱼刺图 4.中部车身钣金件故障检 修工作准备

5.中部车身钣金件故障检 修流程 步骤检查项目操作要领技术要求或标准检修记录 提示 车辆的维修接待,必须仔细询问顾客车辆故障的原因,细心观察车辆除事故范围外的损伤情况,并注明以防纠纷产生:对车内贵重物品妥善保存或要求顾客自行处理,为维修作业做好必要的准备,如实准确地填写接车问诊。车身钣金件故障检修流程表要做仔细毫不遗漏地记录下来,为在维修过程实施监控。 受损伤的整体式车身部件需要整体更换时,一般都按生产时的接合部切割分离,然后再按步骤安装新部件。当部件损伤程度并不太严重,只作局部切除即可修复时,做整体切割更换显然没有必要。 整体式车身的结构钣件,其横截面大都是封闭的,或者制件本身截面封闭,或者将其焊接在车身上时形成封闭截面形式,如车门槛板、立柱和车身梁;也有的钣件截面是开口或单层搭,如表9-2所示。 表9-2 中部车身的主要更换结构钣件 特点示意图特点说明 中立柱高抗拉强度钢板其强度比低碳钢高,它是经过定热处理后形成的,此类材常规加热和焊接方法部不致降低它的强度 车门槛板耐腐蚀钢板(即镀锌钢板)耐腐蚀高,具有极强的刚性切割更换时通过采用插入件式

熔焊方法及设备考试复习资料..

熔焊方法及设备 绪论 1、焊接定义及焊接方法分类 焊接:焊接是通过加热或加压,或两者并用,并且用或不用填充材料,使工件达到结合的一种加工方法。 焊接方法分为熔焊、钎焊、和压焊三大类 熔焊:熔焊是在不施加压力的情况下,将待焊处的母材加热溶化以形成焊缝的焊接方法。焊接时母材熔化而不施加压力是其基本特征。 压焊:压焊是焊接过程中必须对焊件施加压力(加热或不加热)才能完成焊接的方法。焊接施加压力是其基本特征。 钎焊:钎焊是焊接事采用比母材熔点低的钎料,将焊件和钎料加热到高于钎料熔点但是低于母材熔点的温度,利用液态钎料润湿母材,填充接头间隙,并与母材相互扩散而实现连接的方法。其特征是焊接时母材不发生溶化,仅钎料发生溶化。 熔焊方法的物理本质:在不施加外力的情况下,利用外加热源使木材被连接处发生熔化,使液相与液相之间、液相与固相之间的原子或分子紧密地接触和充分扩散,使原子间距达 到r A,并通过冷却凝固将这种冶金结合保持下来的焊接方法。 熔焊方法的特点:焊接时木材局部在不承受外加压力的情况下被加热熔化;焊接时须采取更为有效的隔离空气的措施;两种被焊材料之间必须具有必要的冶金相容性;焊接时焊接接头经历了更为复杂的冶金过程。 第一章焊接电弧 1、焊接电弧 焊接电弧是由焊接电源供给能量,在具体一定电压的两极之间或电极与母材之间气体介质中产生的一种强烈而持久的放电现象,从其物理本质来看,它是一种在具有一定电压的两电极之间的气体介质中所产生的电流最大、电压最低、温度最高、发光最强的自持放电现象。 激励:激励是当中性气体分子或原子收到外加能量的作用不足以使电子完全脱离气体分子或原子时,而使电子从较低的能量级转移到较高的能级的现象。 2、焊接电弧中气体电离的种类 热电离——气体粒子受热的作用而产生的电离称为热电离。其实质是气体粒子由于受热而产生高速运动和相互之间激烈碰撞而产生的一种电离。 场致电离——当气体中有电场作用时,气体中的带电粒子被加速,电能被转换为带电粒子的动能,当其动能增加到一定程度时,能与中性粒子产生非弹性碰撞,使之电离,这种电离称为场致电离。 光电离——中性粒子接受光辐射的作用而产生的电离现象称为光电离。不是所有的光辐射都可以引发电离,气体都存在一个能产生光电离的临界波长,气体的电离电压不同,其临界波长也不同,只有当接受的光辐射波长小于临界波长时,中性气体粒子才可能被直接电离。 3、焊接电弧中气体的发射有几种 热发射——金属表面承受热作用而产生电子发射的现象称为热发射。 场致发射——当阴极表面空间有强电场存在时,金属电极内的电子在电场静电库仑力的作用下,从电极表面飞出的现象称为场致发射。

点焊机原理图

点焊机原理 焊件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方法称为电阻焊。电阻焊具有生产效率高、低成本、节省材料、易于自动化等特点,因此广泛应用于航空、航天、能源、电子、汽车、轻工等各工业部门,是重要的焊接工艺之一。 一、焊接热的产出及影响因素 点焊时产生的热量由下式决定: Q=IIRt(J)———— (1) 式中: Q——产生的热量(J)、I——焊接电流(A)、R——电极间电阻(欧姆)、t——焊接时间(s) 1.电阻R及影响R的因素 电极间电阻包括工件本身电阻Rw,两工件间接触电阻Rc,电极与工件间接触电阻Rew.即R=2Rw+Rc+2Rew—— (2)如图. 当工件和电极一定时,工件的电阻取决与它的电阻率.因此,电阻率是被焊材料的重要性能.电阻率高的金属其导电性差(如不锈钢)电阻率低的金属其导电性好(如铝合金)。因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易.点焊时,前者可用较小电流(几千安培),而后者就必须用很大电流(几万安培)。电阻率不仅取决与金属种类,还与金属的热处理状态、加工方式及温度有关。 接触电阻存在的时间是短暂,一般存在于焊接初期,由两方面原因形成:

1)工件和电极表面有高电阻系数的氧化物或脏物质层,会使电流遭到较大阻碍。过厚的氧化物和脏物质层甚至会使电流不能导通。 2)在表面十分洁净的条件下,由于表面的微观不平度,使工件只能在粗糙表面的局部形成接触点。 在接触点处形成电流线的收拢。由于电流通路的缩小而增加了接触处的电阻。 电极与工件间的电阻Rew与Rc和Rw相比,由于铜合金的电阻率和硬度一般比工件低,因此很小,对熔核形成的影响更小,我们较少考虑它的影响。 2.焊接电流的影响 从公式 (1)可见,电流对产热的影响比电阻和时间两者都大。因此,在焊接过程中,它是一个必须严格控制的参数。引起电流变化的主要原因是电网电压波动和交流焊机次级回路阻抗变化。阻抗变化是因为回路的几何形状变化或因在次级回路中引入不同量的磁性金属。对于直流焊机,次级回路阻抗变化,对电流无明显影响。 3.焊接时间的影响 为了保证熔核尺寸和焊点强度,焊接时间与焊接电流在一定范围内可以相互补充。为了获得一定强度的焊点,可以采用大电流和短时间(强条件,又称硬规范),也可采用小电流和长时间(弱条件,也称软规范)。选用硬规范还是软规范,取决于金属的性能、厚度和所用焊机的功率。对于不同性能和厚度的金属所需的电流和时间,都有一个上下限,使用时以此为准。 4.电极压力的影响 电极压力对两电极间总电阻R有明显的影响,随着电极压力的增大,R显著减小,而焊接电流增大的幅度却不大,不能影响因R减小引起的产热减少。因此,焊点强度总随着焊接压力增大而减小。解决的办法是在增大焊接压力的同时,增大焊接电流。

电阻点焊方法和工艺资料

点焊方法和工艺 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工的型式(图11-7a),也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式(图11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。 其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。 以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差并适当加以调整。 三、不等厚度和不同材料的点焊 当进行不等厚度或不同材料点焊时,熔核将不对称于其交界面,而是向厚板或导电、导热性差的一偏移,偏移的结果将使薄件或导电、导热性好的工件焊透率减小,焊点强度降低。熔核偏移是由两工件产热和散热条件不相同引起的。厚度不等时,厚件一边电阻大、交界面离电极远,故产热多而散热少,致使熔核偏向厚件;材料不同时,导电、导热性差的材料产热易而散热难,故熔核也偏向这种材料(见图11-8) 调整熔核偏移的原则是:增加薄板或导电、导热性好的工件的产热而减少其散热。常用的方法有: (1)采用强条件使工件间接触电阻产热的影响增大,电极散热的影响降低。电容储能焊机采用大电流和短的通电时间就能焊接厚度比很大的工件就是明显的例证。 (2)采用不同接触表面直径的电极在薄件或导电、导热性好的工件一侧采用较小直径,以增加这一侧的电流密度、并减少电极散热的影响。 (3)采用不同的电极材料薄板或导电、导热性好的工件一侧采用导热性较差的铜合金,以减少这

电阻焊基本知识及操作要求

电阻焊基本知识及操作要求 一.电阻焊 1.1 电阻焊概念: 将被焊工件置于两电极之间加压,并在焊接处通以电流,利用电流流经工件接触面及其临近区域产生锝电阻热将其加热到熔化或塑性状态,使之达到金属结合而形成牢固接头的工艺过程。 1.2 电阻焊设备 是指采用电阻加热的原理进行焊接操作的一种设备,它主要由以下部分组成: ①焊接回路:以阻焊变压器为中心,包括二次回路和工件。 ②机械装置:由机架、夹持、加压及传动机构组成。 ③气路系统:以气缸为中心,包括气体、控制等部分 ④冷却系统:冷却二次回路和工件,保证焊机正常工作。 ⑤控制部分:按要求接通电源,并能控制焊接循环的各段时间及调整焊接电流等。 常见的手工点焊焊钳有X型、C型及特制型等,X型、C型结构示意图如下:

注:X型焊钳主要用来焊接水平或基本处于水平位置的工件; C型焊钳主要用来焊接垂直或近似垂直位置的工件;而特制焊钳主要用来焊接有特殊位置或尺寸要求的工件。 1.3 电阻点焊操作注意事项: ①焊接过程中,在电极与工件接触时,尽量使电极与工件接触点所在的平面保持垂直。(不 垂直会使电极端面与工件的接触面积减小,通过接触面的电流密度就会增大,导致烧穿、熔核直径减小、飞溅增大等焊接缺陷。) ②焊接过程中,应避免焊钳与工件接触,以免两极电极短路。 ③电极头表面应保证无其它粘接杂物,发现电极头磨损严重或端部出现凹坑,必须立即更 换。(因为随着点焊的进行,电极端面逐渐墩粗,通过电极端面输入焊点区域的电流密度逐渐减小,熔核直径减小。当熔核直径小于标准规定的最小值,则产生弱焊或虚焊。 一般每打400∽450个焊点需用平锉修磨电极帽一次,每个电极帽在修磨9∽10次后需更换。) ④定期检查气路、水路系统,不允许有堵塞和泄露现象。 ⑤定期检查通水电缆,若发现部分导线折断,应及时更换。 ⑥停止使用时应将冷却水排放干净。 1.4 电阻焊的优缺点 电阻焊的优缺点(表1)

点焊基本原理

点焊基本原理 1.1 点焊接头的形成 电阻点焊原理和接头形成如图1所示。可简述为:将焊件3压紧在两电极2之间,施加电极压力后,阻焊变压器1向焊接区通过强大的焊接电流,在焊件接触面上形成真实的物理接触点,并随着通电加热的进行而不断扩大。塑变能与热能使接触点的原子不断激活,消失了接触面,继续加热形成熔化核心4,简称熔核。熔核中的液态金属在电动力作用下发生强烈搅拌,熔核内的金属成分均匀化,结合界面迅速消失。加热停止后,核心液态金属以自由能最低的熔核边界半熔化晶粒表面为晶核开始结晶,然后沿与散热相反方向不断以枝晶形式向中间延伸。通常熔核以柱状晶形式生长,将合金浓度较高的成分排至晶叉及枝晶前端,直至生长的枝晶相互抵住,获得牢固的金属键合,接合面消失了,得到了柱状晶生长较充分的焊点,如图2所示。或因合金过冷条件不同,核心中心区同时形成等轴晶粒,得到柱状晶与等轴晶两种凝固组织并存的焊点,如图3所示。同时,液态熔核周围的高温固态金属,在电极压力作用下产生塑性变形和强烈再结晶而形成塑性环①〔注:塑性环(corona bond)熔核周围具有一定厚度的塑性金属区域称为塑性环,它也有助于点焊接头承受载荷〕,该环先于熔核形成且始终伴随着熔核一起长大,如图4所示。它的存在可防止周围气体侵入和保证熔核液态

金属不至于沿板缝向外喷溅。 熔核凝固组织为全部柱状晶者,以65Mn熔核为例,其形成过程模型如图5所示。图中: 图5a 凝固前,在熔合线上(固-液相界面)有许多晶粒处于半熔化状态,显然熔核的液态金属能很好的润湿取向不同的半熔化晶粒表面,为异质成核进行结晶提供了有利条件。 图5b 液态熔核的温度降低时,由于成分过冷较大,以半熔化晶粒作底面沿<100>向长出枝晶束。 在电极与母材的急冷作用下,凝固界面前形成较大的温度梯度,因而使枝晶主干伸入液体中较远,枝晶生长很快,枝晶臂间距H与冷却速度V间存在以下关系。 一次枝晶臂间距H1∝V-? 二次枝晶臂间距H2∝V-(?~?) 由于薄件脉冲点焊熔核尺寸小,电极与母材的急冷作用强,液体金属的冷却速度极快,因此枝晶臂的间距甚小。 图5c 枝晶继续生产、凝固层向前推进,液体向枝晶间充填。 枝晶间的液体逐渐向枝晶上凝固,使枝晶变长变粗,靠近母材处由于温度低,液体向枝晶上凝固快,以至形成连续的凝固层。由于65Mn合金具有较宽的凝固温度范围,故凝固层呈锯齿形起状,由于晶界在凝固层内形成,这就造成柱状

电阻焊接原理与电阻点焊过程四个阶段

电阻焊接原理与电阻点焊过程四个阶段 电阻焊虽然具有劳动条件好,不需另加焊接材料,操作简便,易实现机械化等优点;但也受到耗电量大、电极棒更换、被焊材料导电性能、适用的接头形式、以及可焊工件厚度(或断面尺寸)等因素的限制。 在动力电池的成组工艺中,电阻焊作为一种比较成熟的工艺,被在一些场合应用,比如单体与母排的焊接,电池极耳与并联导电条的连接等等。由于设备简单,成本较低,在电池行业发展早期,应用比较多。虽然近年有逐步被更先进的激光焊接和超声焊接替代的趋势……不管怎样,整理一份资料,了解一下这位成型工艺界的前辈。 电阻焊虽然具有劳动条件好,不需另加焊接材料,操作简便,易实现机械化等优点;但也受到耗电量大、电极棒更换、被焊材料导电性能、适用的接头形式、以及可焊工件厚度(或断面尺寸)等因素的限制。 电阻焊接原理 电阻焊(resistance welding)是把工件置于一定的电极力夹紧间,然后利用接电流通过件所析出的电阻热使被材料熔化,待冷却后形成可靠点的接方法。 电阻焊基本形式如下图所示,将即将接的材料 3 夹紧于两电极2 之间,在施加一定的接压力后,接变压器 1 在接区释放较大的电流,并持续一定的时间,直到件的接触面间出现了真实的接触点后,再继续加大接电流让熔核持续地生长,此时接材料接触位置的原子不断被激活后形成熔化核心4。 最后接变压器停止通电,被融化件材料遇冷凝固为点。利用电流流经工件接触面及邻近区域产生的电阻热效应将其加热到熔化或塑性状态,使之形成金属结合的一种方法。电阻焊方法主要有四种,即点、缝、凸、对。 电阻焊点的热源是电流通过接区产生的电阻热。电阻焊点时,电流通过件产生的热量可由下式确定: Q=I Rt

点焊机原理及自制

很累,初级一共绕了520圈次级还没有合适的线绕,次级一共绕11圈,要用32平方毫米的线绕,很粗,次级电压5V,电流100A ,功率500W左右, 足够焊电池了, 点焊机原理及自制 一、电阻焊 1.电阻焊的特点及应用 电阻焊是压焊的主要焊接方法。电阻焊是将焊件组合后,通过电极施加压力,利用电流通过接头的接触面及 邻近区域产生的电阻热进行的焊接方法。 电阻焊的主要特点是:焊接电压很低(1~12V)、焊接电流很大(几十~几千安培),完成一个接头的焊接 时间极短(0.01~几秒),故生产率高;加热时,对接头施加机械压力,接头在压力的作用下焊合;焊接时 不需要填充金属。 电阻焊的应用很广泛,在汽车和飞机制造业中尤为重要,例如新型客机上有多达几百万个焊点。电阻焊在宇宙飞行器、半导体器件和集成电路元件等都有应用。因此,电阻焊是焊接的重要方法之一。 电阻焊按工艺方法不同分为点焊、缝焊和对焊。这里仅介绍点焊。 2.点焊 点焊是焊件装配接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。点焊多用于薄板的连接,如飞机蒙皮、航空发动机的火烟筒、汽车驾驶室外壳等。 (1)点焊机 点焊机的主要部件包括机架、焊接变压器、电极与电极臂、加压机构及冷却水路等。焊接变压器是点焊电器,它的次级只有一圈回路。上、下电极与电极臂既用于传导焊接电流,又用于传递动力。冷却水路通过变压器、电极等部分,以免发热焊接时,应先通冷却水,然后接通电源开关。电极的质量直接影响焊接过程,焊接质量和生产率。电极材料常用紫铜、镉青铜、铬青铜等制成;电极的形状多种多样,主要根据焊件形状确定。安装电极时,要注意上、下电极表面保持平行;电极平面要保持清洁,常用砂布或锉刀修整。 (2)点焊过程 点焊的工艺过程为:开通冷却水;将焊件表面清理干净,装配准确后,送入上、下电极之间,施加压力,使其接触良好;通电使两工件接触表面受热,局部熔化,形成熔核;断电后保持压力,使熔核在压力下冷却凝固形成焊点;去除压力,取出工件。焊接电流、电极压力、通电时间及电极工作表面尺寸等点焊工艺参数对焊接质量有重大响。 所需材料:

点焊焊接原理及设备

点焊初级理论 1.电焊焊接原理 点焊过程,就是在热与电极压力作用下形成焊点的过程。 2.热过程 3.等效电阻 4.接触电阻 5.点焊过程 a)预压阶断:为了消除零件配合间隙,建立稳定的电流通道;(时间若短,电阻大,可能烧穿) b)通电加热阶段:形成焊核;(焊接时间和电流) c)维持阶段:维持压力,让焊核冷却;(使金属晶粒变细,熔核凝固并有足够强度) d)休止阶段:撤去压力,电极上升。 6.焊点强度的评价 a)焊核直径:半破坏,全拆解; b)剪切拉力值:拉力试验。 7.常见焊接不良 a)虚焊——焊点颜色发白 b)针孔 c)过烧/烧穿——凹陷,有飞出的熔质 d)焊核小 e)气孔 f)偏位 g)压痕深 h)焊核裂纹 i)飞溅 j)毛刺 k)边缘焊 l)漏焊 m)扭曲 8.引起缺陷的过程因素 a)板间装配不好 b)焊点间分流 c)不同的图层 d)胶水 e)电极磨损 f)多层板焊接 g)不同板厚焊接 h)不同压力变化 9.参数管理 a)电流 b)通电时间 c)压力 d)电阻 e)板材表面状态 f)电极 10.焊点强度管理

a)参数管理:调整后需要跟踪确认到位 b)目视检查 c)半破坏检查:是确认焊点强度的主要方式,用螺丝刀放在焊接部位,用一磅锤敲打, 有一声响感觉 螺丝刀受阻挡时就可判定有焊核。 d)整车全拆解 电极基础知识 1.电极的作用 传递焊接部位所需要的热和压力(包括电流、时间和压力),同时倒散焊接区域的热量。 2.电极的修磨要求 a)良好的表面状态 i.电极打点过程中端面变大,表面变差,影响焊接质量; ii.电极端面会越来越大,氧化层越来越厚,使得电流密度降低没有足够的热量形成焊核,导致发生虚焊、焊核小 b)初始锥度或标准锥度 i.电极的锥度直接影响打点过程中电极端面的变化; ii.为保证焊接质量,请保持你的锥度不变,按要求对电极进行修磨 c)端面直径6~8mm i.太小将导致过烧,压痕深,飞溅等; ii.太大则导致电流密度小,散热量大,有效热量小,易产生爆焊。 d)电极端面据第一条刻度线4mm以上 i.电极冷却过快会导致爆焊、焊核小等不良现象; ii.电极端面接近或达到冷却水通道,焊接时会使得电极穿孔。 e)上下电极对中 i.加压时焊点处会发生扭曲,打出焊点边缘有很大毛刺,时常伴有气孔发生。 ii.电极不对中时,电极只有对中的部分起作用,会造成焊点过烧,严重会导致穿孔。 焊机机构与原理 1.电阻焊的工作原理 利用电极对板件施加一定压力,将其夹紧,利用电极间电阻产生的焦耳热融化金属而达到的焊接目的。 2.悬挂式点焊机 控制柜:中频三核自适应控制器 a)一体式/分体式:变压器和焊臂一起; b)常见缺陷: i.飞溅毛刺 ii.压痕过深 iii.过烧或焊穿 iv.焊点扭曲 3.焊接系统三大路 a)水路:对焊钳本体和焊钳上的中频焊接变压器进行冷却 b)气路:控制焊钳的动静臂的打开和闭合,包括从大张口切换到小张口,及从小张口到闭合接触的 过程。 c)电路:控制焊钳动作的逻辑和提供板材焊点焊接时的足够热量。

第五章电阻点焊_百度文库.

第五章电阻点焊 5.1概述 点焊是电阻焊的一种, 是将被焊工件压紧于两电极之间, 并通过电流利用电流流经工件接触面及邻近区域产生的电阻热将其加热到熔化或塑性状态, 使之形成金属结合的一种方法, 如图 5.1 所示。 点焊是一种高速、经济的连接方法。它适用于制造接头不要求气密,厚度小于3mm, 冲压、轧制的薄板搭接构件,广泛用于汽车、摩托车、航空航天、家具等行业产品的生产。 图 5.1 点焊示意图 5.2点焊的基本原理 5.2.1点焊过程(焊接循环 图 5.2为点焊的基本焊接循环, 图 5.33为点焊焊接过程示表图。点焊过程由四个基本阶段组成。 图 5.2 点焊的基本焊接循环图 5.3 点焊焊接过程示意图 (1 预压阶段—将待焊的两个焊件搭接起来,置于上、下铜电极之间,然后施加一定的电极压力,将两个焊件压紧。 (2 焊接时间—焊接电流通过工件,由电阻热将两工件接触表面加热到熔化温度,并逐渐向四周扩大形成熔核。 (3 维持时间—当熔核尺寸达到所要求的大小时,切断焊接电流,电极压力继续保持,熔核在电极压力作用下冷却结晶形成焊点。 (4 休止时间—焊点形成后,电极提起,去掉压力,到下一个待焊点压紧工件的时间。休止时间只适用于焊接循环重复进行的场合。 为了提高焊点的物理和化学性能,可以在基本焊接循环中加入下列其中之一或多个过程: (1 预压力使电极和工件紧密、贴合; (2 预热来降低工件上开始焊接时的温度梯度; (3 顶锻力压实熔核,防止产生裂纹和缩孔;

(4 回火、退火时间对硬化合金钢以达到所需求的强度; (5 后热以细化晶粒; (6 电流衰减以延迟AL 的冷却。 图 5.4 为一个比较复杂的焊接循环。 图 5.4 复杂的点焊焊接循环示例 5.2.2 焊接热的产生及其影响因素 5. 2.2.1焊接热量的产生 点焊时产生的热量由下式决定: Q=I2RT 式中: Q—产生的热量(J I—焊接电流(A R—电极间电阻( T—焊接时间(S 点焊时导电通路上的总电阻及热量分布如图 5.5所示。 图 5.5 点焊时导电通路上的电阻及热量分布 总电阻由以下七个部分组成: ①1,7—电极电阻,与电极材料有关; ②2,6—电极与工件之间的接触电阻,与电极和工件的表面状态,电极大小、形状及压力有关。此处产生的热量较多,但由于电极的热传导较好,并有水冷,母材达不到熔化温度。 ③3,5—母材本身电阻,正比于材料的电阻率和板厚,反比于导电面积。 ④4—母材间接触电阻,此处电阻最大,产热最多对焊接形核有作用的是接触电阻4,其它的电阻应尽可能减少。在一定的焊接循环 内,影响点焊接头热量多少的因素有:A.工件及电极电阻;B.工件间接触电阻以及工件与电极之间的接触电阻;C.工件及电极上的热量损失。 5. 2.2.2影响因素

第一部分:点焊的原理及焊接工艺

第一部分:点焊的原理及焊接工艺   点焊工艺是一种形成永久结合的金属连接。在焊接时焊件通过焊接电流局部发热,并在焊件的接触加热处施加压力,形成一个焊点。点焊是一种高速、经济的连接方法,它适用于制造可以采用搭接、接头不需要气密、厚度小于5mm的冲压轧制的薄板类构件。点焊工艺目前被广泛地应用于各个工业部门,不仅能够焊接低碳钢和低合金钢,也可以焊接高碳钢、高锰钢及不锈钢、铝合金、钛合金等材料组成的零部件。 点焊工艺参数的选择:影响点焊的工艺参数包括焊接电极的结构直径、焊接能量、焊接时间和焊接压力。根据焊接速度和焊接效果可分为快速焊接、中速焊接、普通焊接三种条件,对于工件要求焊接强度高、焊接变形小的场合,最好选用大功率、短时间的强规范快速焊接。对于要求不严格的工件就可以采用小功率、长时间的普通焊接方式,这样可选择比较小的焊接设备,同时对电网的影响也比较小。通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸,其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检验熔核直径符合要求后,再在适当的范围内调节电极压力、焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时还需进行低倍测量、拉伸试验和X射线检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。 影响点焊焊接接头焊接质量的因素主要有焊接电流、电极压力、焊接时间、预压和休止时间、焊接电极直径等。 1、焊接电流 点焊形成的熔核所需的热量来源是利用电流通过焊接区电阻产生的热量。在其他条件给定的情况下,焊接电流的大小决定了熔核的焊透率。在焊接低碳钢时,熔核平均焊透率为钢板厚度的30~70%,熔核的焊透率在45~50%时焊接强度最高,当焊接电流超过某一规范值时,继续增大电流只能增大熔核率,而不会提高接头强度,由于多消耗了电能和增大了设备的损耗,因此从制造成本来讲是很不经济的。如果电流过大还会产生压痕过深和焊接烧穿等缺陷。 2、电极压力

电阻点焊基础.

?局部结合?形成结构-自发牛成 电阻焊接基础什么是屯阻点焊

为什么采用电阻焊 ?快速 -价廉 -零件兀配容差 -可靠 -能焊度层材料 .相对简单 什么使用电阻焊?厚度从0.6mm到 3.5m m的钢板 -热浸镀锌 ?电镀锌 -铝材

?辆现代汽车包含有3000多个 电阻焊点xm GM-4488M - -产品工程和制造间的规范. WS-1 - -GM的电阻点焊手册 GM9621P— -工艺控制文件 WESS- -WS-1计算器 WS?4— -焊接认证流程 WS-2 — -设备规范- 2 3—; A J BUU'K 二.'

?电阻点焊是对两层或 以上的金属板材加压 并保持, 同时进行加 执 八■ ■ ? Heat =PRT -作为电阻焊的a 的,热量是由焊接电流和电阻形 成的. -钢铁的电阻值范围是6()到150微欧. -电阻焊接钢铁的焊接电流范围J^7{)0()-l8(X)()安培 ?焊接时间范围是8到48个周波 热量-压力 -时间 □ 着

TMAHSFORMER 典型焊接程序 1 ()()()()安 2 X ().000100 欧 X 0.24 秒(12周波) =2400 ws (焦耳) 基本构件 -控制器 ?变压器 ?电极 I ^SECOBDMV I rJ ---- < C I i / I 、伫? / L ---------------------------- > SECOMDUV 3?3t VBLTS AMPS

?电极施压? -焊接电流导入零件 -冷却零件表面 电极施压目的 ?压紧零件 ?维持焊接电阻 ?如果电阻太低,生成热量不够. ?如果电阻太高,牛成热量过多. ?建立封闭压力 ?当焊接热量形成,在压力F热量扩散至焊接金属.

点焊原理

点焊方法和工艺 一、点焊方法分类 对焊件馈电进行电焊时,应遵循下列原则:①尽量缩短二次回路长度及减小回路所包含的空间面积,以节省能耗;②尽量减少伸入二次回路的铁磁体体积,特别是避免在焊接不同焊点时伸入体积有较大的变化,以减小焊接电流的波动,保证各点质量衡定(在使用工频交流时)。 1.双面单点焊所有的通用焊机均采用这个方案。从焊件两侧馈电,适用于小型零件和大型零件周边各焊点的焊接。 2.单面单点焊当零件的一侧电极可达性很差或零件较大、二次回路过长时,可采用这个方案。从焊件单侧馈电,需考虑另一侧加铜垫以减小分流并作为反作用力支点(图1d)。图1c 为一个特例。 3.单面双点焊从一侧馈电时尽可能同时焊两点以提高生产率。单面馈电往往存在无效分流现象(图1f及g),浪费电能,当点距过小时将无法焊接。在某些场合,如设计允许,在上板二点之间冲一窄长缺口(图1f)可使分流电流大幅下降。 4.双面双点焊图1b及j为双面双点的方案示意。图2-12b方案虽可在通用焊机上实施,但两点间电流难以均匀分配,较难保证两点质量一致。而图1j由于采用推挽式馈电方式,使分流和上下板不均匀加热现象大为改善,而且焊点可布置在任意位置。其唯一不足之处是须制作二个变压器,分别置于焊件两侧,这种方案亦称推挽式点焊。两变压器的通电需按极性进行。 5.多点焊当零件上焊点数较多,大规模生产时,常采用多点焊方案以提高生产率。多点焊机均为专用设备,大部分采用单侧馈电方式见图1h、i,以i方式较灵活,二次回路不受焊件尺寸牵制,在要求较高的情况下,亦可采用推挽式点焊方案。目前一般采用一组变压器同时焊二或四点(后者有二组二次回路)。一台多点焊机可由多个变压器组成。可采用同时加压同时通电、同时加压分组通电和分组加压分组通电三种方案。可根据生产率、电网容量来选择合适方案。 二、点焊循环 点焊过程由预压、焊接、维持和休止四个基本程序组成焊接循环,必要时可增附加程序,其基本参数为电流和电极力随时间变化的规律。 1.预压(F>0,I=0)这个阶段包括电极压力的上升和恒定两部分。为保证在通电时电极

铝合金电阻点焊和缝焊工艺

中华人民共和国航空工业部部标准 HB/Z 77-84 铝合金电阻点焊和缝焊工艺 1 总则 1.1 本标准适用于LF2、LF3、LF6、LF21、LY12、LY16、LC4、LC9变形铝合金电阻点焊及LF2、LF3、LF6、LF21变形铝合金电阻缝焊工艺。 1.2 焊工应有焊接航空产品的焊接操作证书。 2 设备 2.1 焊机:点焊机、缝焊机。 2.1.1 焊接铝合金一般选用直流脉冲式、电容储能式、次级整流式等类型的焊机,缝焊机建议选用步进式的。 2.1.2 焊机最好具有三种加压方式:不变的压力、附加锻压力、附加予压和锻压力。 2.1.3 焊机电极臂应有足够的刚性,当施加最大额定压力时,臂长不大于500㎜,弹性挠 度应不超过1.5㎜,臂长不大于1200㎜,挠度应不超过2㎜。 2.1.4 焊机在规定气压范围和额定焊接速度下工作时,电极压力的波动应不超过+8%。上电极下降时应平稳无冲击现象。 2.1.5 焊机工作时,电源电压应在额定值的+5%范围内。管道压缩空气压力应不低于 5kg/cm2,室温应不低于15℃。 2.1.6 焊机的次级回路电阻,直流脉冲焊机应不大于60μΩ,交流焊机应不大于100μΩ,单个活动连结处电阻不大于20μΩ,单个固定结合处电阻不大于2μΩ。焊机的次级回路电阻至少三个月测量一次,并记入设备档案中。 2.1.7 焊机应定期检修,活动导电部分应定期更换石墨润滑剂。 2.1.8 焊机应配备必要的专用工具。 2.1.9 焊机在安装、改装、大修或改变动力线路之后,由工厂主管部门组织进行鉴定,鉴定合格后才允许投入生产使用。 焊机鉴定内容如下: a.按附录A《焊机鉴定表》规定内容测量焊机的参数。 b.选用生产中常用的一种材料,取最薄和最厚的两种相同厚度的组合进行工艺稳定性试 验,试验内容列于表1,试验结果应符合表1及HB5276--84《铝合金电阻点焊和缝焊质量检验》的规定。在全部试验项目中有一项不合格,则应调整焊机重新试验,直到全部试验项目合格为止。鉴定试验结果应记入焊机鉴定表中(附录A)。 c.焊机鉴定试验应按生产需要在该焊机上焊接的最高等级接头的要求进行。 2.2 电极和滚盘 2.2.1 电极和滚盘可以采用镉青铜或其它铜合金,其导电率应不低于80%IACS(国际标准退火铜)。布氏硬度不小于110kgf/mm2。当电极压力不大于600kgf时,可选用布氏硬度不小于80 kgf/mm2的冷拉钢。 2.2.2 电极和滚盘应按不同材料分别打上印记,并不在损伤其工作面的条件下存放。 航空工业部1983-05-30发布1984-07-01实施

点焊操作的原理与工艺控制

点焊操作的原理与工艺控制 概述:本文详细介绍了点焊机的工作原理、操作方法、工艺控制、质量检验等,对制造工艺上的点焊操作具有重要的指导意义。 关键词:点焊机焊接热传导点焊工艺 在电子产品生产中,点焊机是基本的也是重要的设备之一。目前电子产品生产厂家使用的点焊机有美国凯斯公司生产的,也有国产的。由于没有系统化介绍点焊方面的资料,故点焊质量较难把握。本人在使用点焊机的过程中,总结出以下几个影响点焊质量的因素,供大家参考。 点焊可分为双面点焊法和单面双点焊法。在作为导线的带状金属(如镍带)与其它金属外壳的原料(如电池)进行连接的加工中一般用单面双点焊法。模型如图1(b)所示:一、点焊原理 点焊的原理是给电极加上一定的压力,由于电极的作用,熔接电流在极短的时间内由电源流至金属板,这时产生的热量使金属熔化后焊接在一起。若焊接电流为I,金属板的固有电阻为R1,材料间的接触电阻为R2,通电时间为T,则发热量的计算公式如下:Q=I2(R1+R2)T (1) 在实际点焊过程中,还要考虑散热量H。则用于金属板焊接的能量 E=Q-H=I2(R1+R2)T-H (2) 由公式(2)可以看出散热量越大,则用于金属板焊接的能量就越小。影响散热量的因素主要有两个方面:被焊接物自身固有的热传导系数和受被焊接物自身厚度影响的热容量。 1、被焊接物自身固有的热传导系数。 热传导系数表示的是材料的(包括电极)热传导速度。导热速度快,散热就越大。简单地说,导热率高的材料不易焊接。相反,导热率低的材料则容易焊接。作为材料(金属板)的物理特性,可以说固有电阻大、且对热率低的材料才适宜焊接。各种金属的物理特性如下表所示。

点焊工艺

点焊培训资料 1.1点焊 利用电流通过圆柱形电极和搭接的两焊件产生电阻热,将焊件加热并局部熔化,形成一个熔核(其周围为塑性状态),然后在压力作用下熔核结晶,形成一个焊点。 1.2气动式交流点焊机 电极的运动和对焊件的加压,均由气路系统来实现,采用交流电,实现点焊功能的机械设备。 2设备结构 主要由机身、焊接变压器、压力传动装置、气路、水路系统、上下电极以及脚踏开关等部分组成。 2.1机身 机身用箱体式结构,全部结构件均由钢板折弯成型后焊接而成。该结构体积小、重量轻,能承受较大的冲击力,上悬臂安装加压传动装置及上电极部分,下悬臂安装有下电极部分,机身内部装有焊接变压器、进出水管、机身上面装有电磁气阀及气动三大件,机身下部的底脚上设有四个地脚安装孔,正常焊接时,必须装上4只 M10以上的地螺栓紧固后,方可使用。 2.2焊接变压器 焊接变压器为单相壳式结构,变压器的次级线圈由单只内置冷却铜水管的铸铜绕组组成,通过软铜带与上电极相联接,紫铜板与下电极相联接,焊接 1

变压器采用调节可控硅导通角来调节焊接变压器的初级电压,从而达到调节次级电压的目的,同时改变了焊接电流,适应不同的焊接规范,次级电压的调节范围,按焊接规范要求可连续可调。 2.3压力传动装置 压力传动装置主要由活塞、气缸、支承座与滑块下端与上电极部分相联,活塞杆与上电极连为一体,当活塞杆上下移动时,使上电极在支承座导轨内上下移动。气缸供气采用电磁气阀控制,推出或推进气缸右侧的行程插销,可调节二档上电极的工作行程。而三气室工作头则可在0~100mm行程范围内无级可调。 2.4气路系统 点焊机电极的运动和对焊件的加压,均由气路系统来实现,气路系统由带有气压表的减压阀和电磁阀等组成。从而达到控制上电极上下运动,电极压力的大小根据工件厚度和相应工艺规范确定。 2.5上下电极部分 电极部分由电极压块、电极座、端头、电极杆及电极头组成,电极压块内部通有冷却水,它的后端分别由软铜带和导电排与焊接变压器次级线圈相连接。电极杆紧固在电极臂与端头之间,凸焊机还带有上、下电极平台。与工件直接接触的上下电极头材料采用铬锆铜。 2.6冷却系统 点焊机在工作过程中会产生大量热量,需要循环水进行充分冷却,否则将严重影响焊接质量。 2

点焊的基本原理

点焊的基本原理 摘要:本文从点焊的热源及熔核的形成过程、在焊接过程中焊接参数对焊点的影响及调整方法、在焊接过程中易出现的缺陷及处理措施、焊点的一般检验方法及常用的检验标准等四个方面综述了点焊的形成、调整及检验过程。 关键词:点焊焊接缺陷参数调整 一、点焊的热源及熔核的形成过程 在点焊过程中,点焊的热源主要有电极与金属的接触电阻热、金属内部的电阻热,金属与金属的接触电阻热,而在焊接过程中以金属内部的电阻热为主,占在焊接过程形核热量的95%左右。主要原因是在开始阶段,工件是靠接触电阻及工件本身电阻所产生的热量加热。但随着加热的进行,工件之间的接触点熔化消失,金属间接触电阻消失,但金属内部电阻率随着温度的升高而增大,所以在焊接过程中金属内部电阻为主要热源。 焊点的形成一般要经常过四个过程:预压-焊接-维持-休止。 预压的作用是在焊件的接触点得到尽可能大的接触面积。在焊接过程中,从宏观方面来看,件与件之间的接触是面与面之间的接触;但是从微观方面来看,件与件之间的接触其实是点与点之间的接触,因为每个工件的表面是不可能绝对光滑的,也就是说工件表面都有凸起和凹坑,所以件与件之间的接触就变成了件上面的凸起点之间的接触。当瞬间有很大的电流通过时,由于产生的电阻热很高,很快就使工件的接触点开始熔化,随着熔化金属的加多,工件之间的接触面也不断加大,电流密度相对减少。但是,如在电流闭合瞬间电极压力不够大,则接触面积相对较小,接触电阻相对较大,在接触点上会立即产生很多热量,接触点处金属会很快熔化,并以火花的形式飞溅出来,产生飞溅。这时,工件可能被烧穿,电极可能被烧坏。

在维持阶段,当熔核达到合格的形状与尺寸后,切断电流电源。熔核是在电极压力作用下冷却结晶。结晶一般从温度较低、散热较好、首先达到结晶温度的的熔核周界开始,即从半熔化晶粒表面开始,以结晶形式沿着与散热相反的方向生长。 休止时间是指第一个焊点焊接结束与第二个焊点焊点焊接开始之间的间隔时间,一般在焊接时无要求。 熔核的结晶是在封闭的金属模内进行的,结晶时不能自由收缩,用电极挤压可使正在结晶的金属变得致密,使之不易产生缩孔或裂缝。如压力不足则可能会造成外部缺陷。 二、在焊接过程中各焊接参数对焊点的影响及调整方法 熔核的形成过程中对熔核的形成产生重要影响的参数主要有:焊接电流、焊接时间、电极压力、电极头端面尺寸。 ⑴焊接电流及焊接时间的影响 根据焦耳定率 Q=I2RT 当时间一定时,电流增大时,在一定时间内的产热量增加;当电流一定时,时间增大,在一定时间内的产热量也会增加。 ⑵电极压力的影响 电极压力将影响焊接区的加热程度和塑性变形程度。随着电极力的增大,焊件接触电阻和本身电阻会减小,电流密度也会降低。在其他参数不变的情况下,增大电极力将减慢加热速度,并使焊点熔核尺寸减小而导致焊点强度降低。 ⑶电极头端面尺寸的影响

相关文档
最新文档