DSP芯片的简介

DSP芯片的简介
DSP芯片的简介

[摘要] 让你说出知道的芯片的名称,你可能会一时想不起,也不能一一罗列DSP 芯片都有哪些。或许是对DSP芯片深刻的了解才了然于心,由于种种原因的忘却;或许是因为大家在说DSP芯片好,既然大家都说好,那才是真的好,至于怎样好,可能是似懂非懂。那好吧,不管是懂还是不懂,现在让我们从新的视角来读懂这个芯片的世界,让你发现不曾明白的细节

让你说出知道的芯片的名称,你可能会一时想不起,也不能一一罗列DSP芯片都有哪些。或许是对DSP芯片深刻的了解才了然于心,由于种种原因的忘却;或许是因为大家在说DSP芯片好,既然大家都说好,那才是真的好,至于怎样好,可能是似懂非懂。那好吧,不管是懂还是不懂,现在让我们从新的视角来读懂这个芯片的世界,让你发现不曾明白的细节。

DSP芯片,也称数字信号处理器,采用特殊的软硬件结构,是一种专注于进行数字信号处理运算的微处理器,其主要应用是实时快速地实现各种数字信号处理,是数字信号处理理论实用化过程的重要技术工具。在语音处理、图像处理等技术领域得到了广泛的应用。那根据对DSP芯片的理解来对比与其他芯片的最要的区别是什么?杭州海康威视数字技术股份有限公司的高级嵌入式开发经理黄田认为,DSP芯片与其它芯片的最大区别在于它拥有针对各种算法设计的大量专用指令,比如各种向量运算。另外DSP芯片在设计时更多地考虑到数据总线的带宽以及吞吐量,避免数据访问成为影响算法性能的瓶颈。

芯片的基本结构

为了快速地实现数字信号处理运算,DSP芯片一般都采用特殊的软硬件结构。下面简单介绍DSP芯片的基本结构。

(1)哈佛结构

主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个相互独立的存储器,每个存储器独立编址,独立访问。与两个存储器相对应的是系统中设置了程序总线和数据总线,从而使数据的吞吐率提高了一倍。由于程序和数据在两个分开的空间,因此取指和执行能完全重叠。

(2)流水线操作

流水线与哈佛结构相关,DSP芯片广泛采用流水线以减少指令执行时间,从而增强了处理器的处理能力。处理器可以并行处理二到四条指令,每条指令处于流水线的不同阶段。下面所列是一个三级流水线操作的例子:

CLLOUT1

取指N N-1 N-2;

译码N-1 N N-2;

执行N-2 N-1 N,

(3)专用的硬件乘法器

专用的硬件乘法器,乘法速度越快,DSP处理器的性能越高。由于具有专用的应用乘法器,乘法可在一个指令周期内完成。

(4)特殊的DSP指令

DSP是采用特殊的指令。

(5)快速的指令周期

特殊的DSP指令,DSP芯片是采用特殊的指令。快速的指令周期、哈佛结构、流水线操作、专用的硬件乘法器、特殊的DSP指令,再加上集成电路的优化设计可使DSP芯片的指令周期在200ns以下。

DSP系统的特点

数字信号处理有别于普通的科学计算与分析,它强调运算处理的实时性,因此DSP除了具备普通微处理器所强调的高速运算和控制功能外,针对实时数字信号处理,在处理器结构、指令系统、指令流程上具有许多新的特征,其特点如下:

算术单元

具有硬件乘法器和多功能运算单元,硬件乘法器可以在单个指令周期内完成乘法操作,这是DSP区别于通用的微处理器的一个重要标志。多功能运算单元可以完成加减、逻辑、移位、数据传送等操作。新一代DSP内部甚至还包含多个并行的运算单元,以提高其处理能力。针对滤波、相关、矩阵运算等需要大量乘和累加运算的特点,DSP的算术单元的乘法器和加法器,可以在一个时钟周期内完成相乘、累加两个运算。近年出现的一些DSP如ADSP2106X、DSP96000系列DSP可以同时进行乘、加、减运算,大大加快了FFT的蝶形运算速度。

总线结构

传统的通用处理器采用统一的程序和数据空间、共享的程序和数据总线结构,即所谓的冯.诺依曼结构。DSP普遍采用了数据总线和程序总线分离的哈佛结构或者改进的哈佛结构,极大地提高了指令执行速度。片内的多套总线可以同时进

行取指令和多个数据存取操作,许多DSP片内嵌有DMA控制器,配合片内多总线结构,使数据块传送速度大大提高。

专用寻址单元

DSP面向数据密集型应用,伴随着频繁的数据访问,数据地址的计算也需要大量时间。DSP内部配置了专用的寻址单元,用于地址的修改和更新,它们可以在寻址访问前或访问后自动修改内容,以指向下一个要访问的地址。地址的修改和更新与算术单元并行工作,不需要额外的时间。DSP的地址产生器支持直接寻址、间接寻址操作,大部分DSP还支持位反转寻址(用于FFT算法)和循环寻址(用于数字滤波算法)。

片内存储器

针对数字信号处理的数据密集运算的需要,DSP对程序和数据访问的时间要求很高,为了减小指令和数据的传送时间,许多DSP内部集成了高速程序存储器和数据存储器,以提高程序和数据访问存储器的速度。

流水处理技术

DSP大多采用流水技术,即将一条指令的执行过程分解成取指、译码、取数、执行等若干个阶段,每个阶段称为一级流水。每条指令都由片内多个功能单元分别完成取指、译码、取数、执行等操作,从而在不提高时钟频率的条件下减少了每条指令的执行时间。

DSP与其它处理器的差别

数字信号处理器(DSP)、通用微处理器(MPU)、微控制器(MCU)三者的区别在于:DSP面向高性能、重复性、数值运算密集型的实时处理;MPU 大量应用于计算机;MCU则适用于以控制为主的处理过程。

DSP芯片的优点

DSP的运算速度比其它处理器要高得多,以FFT为例,高性能DSP不仅处理速度是MPU的4~10倍,而且可以连续不断地完成数据的实时输入/输出。DSP结构相对单一,普遍采用汇编语言编程,其任务完成时间的可预测性相对于结构和指令复杂(超标量指令)、严重依赖于编译系统的MPU强得多。以一

个FIR滤波器实现为例,每输入一个数据,对应每阶滤波器系数需要一次乘、一次加、一次取指、二次取数,还需要专门的数据移动操作,DSP可以单周期完成乘加并行操作以及3~4次数据存取操作,而普通MPU完成同样的操作至少需要4个指令周期。因此,在相同的指令周期和片内指令缓存条件下,DSP 的运算速度可以超过MPU运算速度的4倍以上。

DSP芯片的浮点与定点之分

在选择DSP器件的时候,是采用浮点还是采用定点,如果用定点是16位还是32位?其实这个问题和你的算法所要求的信号的动态范围有关。

浮点运算DSP比定点运算DSP的动态范围(动态范围:如音响系统重放时最大不失真输出功率与静态时系统噪声输出功率之比的对数值,又如一个多媒体硬盘播放器输出图像的最亮和最暗部分之间的相对比值)要大很多。定点DSP 的字长每增加1bit,动态范围扩大6dB,16bit字长的动态范围为96dB。程序员必须时刻关注溢出的发生。例如:在做图像处理时,图像做旋转、移动等,就很容易产生溢出。这时,要么不断地移位定标,要么作截尾。前者要耗费大量的程序空间和执行时间,后者则很快带来图像质量的劣化。总之,是使整个系统的性能下降。在处理低信噪比信号的场合,例如进行语音识别、雷达和声纳信号处理时,也会发生类似的问题。而32bit浮点运算DSP的动态范围可以作到1536dB,这不仅大大扩大了动态范围,提高了运算精度,还大大节省了运算时间和存储空间,因为大大减少了定标,移位和溢出检查。

由于浮点DSP的浮点运算用硬件来实现,可以在单周期内完成,因而其处理速度大大高于定点DSP,这一优点在实现高精度复杂算法时尤为突出。

定点的计算不过是把一个数据当作整数来处理,通常AD采样来的都是整数,这个数相对于真实的模拟信号有一个刻度因子,大家都知道用一个16位的AD 去采样一个0到5V的信号,那么AD输出的整数除以2^16再乘以5V就是对应的电压。在定点DSP中是直接对这个16位的采样进行处理,并不将它转换成以小数表示的电压,因为定点DSP无法以足够的精度表示一个小数,它只能对整数进行计算。而浮点DSP的优势在于它可以把这个采样得到的整数转换成小数表示的电压,并不损失精度(这个小数用科学记数法来表示),原因在于科学记数法可以表示很大的动态范围的一个信号,以IEEE754浮点数为例,单精度浮点格式:[31] 1位符号[30-23]8位指数[22-00]23位小数。这样的能表示的最小的数是+-2^-149,最大的数是+-(2-2^23)*2^127,动态范围为20*log(最大的数/最小的数)=1667.6dB这样大的动态范围使得在编程的时候几乎不必考虑乘法和累加的溢出,而如果使用定点处理器编程,对计算结果进行舍入和移位则是家常便饭,这在一定程度上会损失精度。原因在于定点处理的信号的动态范围有限,比如16位定点DSP,可以表示整数范围为1-65536,其动态范围为

20*log(65536/1)=96dB.对于32定点DSP,动态范围为20*log(2^32/1)=192dB,远小于32位ieee浮点数的1667.6dB,但是实际上192dB对绝大多数应用所处理的信号已经足够了。由于AD转换器的位数限制,一般输入信号的动态范围都比较小,但在DSP的信号处理中,由于点积运算会使中间节点信号的动态范围增加,所以主要考虑信号处理流程中中间结果的动态范围,以及算法对中间结果

的精度要求,来选择相应的DSP。另外就是浮点的DSP更易于编程,定点DSP 编程中程序员要不断调整中间结果的PQ值,实际就是不断对中间结果进行移位调整和舍入。

实数运算可直接透过代码加入硬件运算中,而定点元件必须透过软件才能间接执行实数运算,这就增加了运算法指令并延长了开发时间。

整体上说,定点DSP在成本上具有优势而浮点DSP在易用上较优。

DSP芯片的发展现状与应用

自从DSP芯片诞生以来,DSP芯片得到了飞速的发展。一方面得益于集成电路的发展,另一方面也得益于巨大的市场。在短短的十多年时间,DSP芯片已经在信号处理、通信等许多领域得到了广泛的应用。

对于DSP芯片的发展现状和DSP如何与其他产品搭配应用解决方案海康威视的黄田作出了如下这样的看法:DSP芯片已经在向专业化、多元化方向发展,各厂家的市场划分越来越细,差异性也越来越大。另外,单纯的DSP芯片已经不多见,更多的是DSP芯片与其它处理核心集成在一起,形成一个集成度高、针对性强的SOC,不仅极大地降低了板级空间,也带来了功耗、成本以及开发周期的全面优势,从而推动了行业的发展和产品性能的提高。

DSP的优势在于灵活的算法集成,可以给产品提供强大的性能以及灵活的定制,同一产品针对各类客户不同的需求实现不同的解决方案。为了提高产品的竞争力,厂商都会在算法上做足文章,算法变得越来越复杂,但是算法的稳定性、产品的功耗、开发周期等都会成为难以驾驭的风险。DSP算法不是一大堆理论公式的堆砌,而是与所使用DSP芯片的具体特点紧密结合的精致软件。这些因素在产品设计时就需要予以充分考虑,不要为了一些噱头功能而盲目采用所谓的先进算法和高性能DSP,而是要从用户需求出发,寻找算法与DSP的最佳组合。在产品方案中,算法和DSP是核心,这个组合确定了,再去搭配其它的处理芯片和外围设备,才能形成一套高效的产品解决方案。

目前DSP技术应用从军用到民用,从航空航天到生产生活,都越来越多地使用DSP。DSP技术在航空航天方面,主要用于雷达和声纳信号处理;在通信方面,主要用于移动电话、IP电话(voice over IP)、ADSL和HFC的信号传输;在控制方面,主要用于电机控制、光驱和硬盘驱动器;在测试/测量方面,主要用于虚拟仪器、自动测试系统、医疗诊断等;在电子娱乐方面,主要用于高清

晰度电视(HDTV)、机顶盒(STB)、AC-3、家庭影院、DVD等应用;在图像/图形上,主要用于二维和三维图形处理、图像压缩与传输、图像增强、动画等;还有数字相机、网络相机等等都应用了DSP技术。同时,SOC芯片系统、无线应用、嵌入式DSP都是未来DSP的发展方向和趋势。可以说,没有DSP就没有对互联网的访问,也不会有多媒体,也没有无线通信。因此,DSP仍将是整个半导体工业的技术驱动力。现在,DSP应用领域不断拓宽,其函盖面包括宽带Internet接入业务、下一代无线通信系统的发展、数字消费电子市场、汽车电子市场的发展等诸多方面。

DSP芯片的分类

为不同算法而专门设计的DSP芯片可以分为基础特性、数据格式和按用途分三大类。

按基础特性分,根据DSP芯片的工作时钟和指令类型来分类的。如果DSP 芯片在某时钟频率范围内的任何频率上能正常工作,除计算速度有变化外,没有性能的下降,这类DSP芯片一般称之为静态DSP芯片。如果有两种或两种以上的DSP芯片,它们的指令集和相应的机器代码机管脚结构相互兼容,则这类DSP芯片称之为一致性的DSP芯片。

按数据格式分,这是根据DSP芯片工作的数据格式来分类的。数据以定点格式工作的DSP芯片称之为定点DSP芯片。以浮点格式工作的称为DSP芯片。不同的浮点DSP芯片所采用的浮点格式不完全一样,有的DSP芯片采用自定义的浮点格式,有的DSP芯片则采用IEEE的标准浮点格式。

按用途分,可分为通用型DSP芯片和专用型的DSP芯片。通用型DSP芯片适合普通的DSP应用,如TI公司的一系列DSP芯片。专用型DSP芯片是为特定的DSP运算而设计,更适合特殊的运算,如数字滤波,卷积和FFT等。

结语

随着安防行业的高速发展,特别是高清和智能化需求的井喷,整个行业已经全面进入数字化时代,而作为数字化安防产品的核心,安防芯片已经成为一个巨大的产业,所以需要更多不同的算法。对于不断涌现的算法需求来说,DSP的处理能力永远是不够的,算法开发人员需要不断在性能指标和DSP的处理能力之间做平衡,是少做一次循环,还是允许偶尔丢帧,类似这样,如果无法做取舍,则需要进一步对算法进行优化,可能是算法架构上的,也可能是汇编代码级的。片内缓存是影响算法性能的一个重要因素,DDR带宽则往往是系统级的。由于DSP精于计算,而不善于逻辑处理,特别是网络协议、数据库管理方面,因此DSP往往与其它芯片配合使用。在安防领域的各种开发方案中,DSP+ARM最为主流,ARM负责网络、存储、外设管理,DSP负责图像、音频处理及编解码。目前DSP+ARM基本上都集成到一个SOC中,尽管如此,对于软件开发来说,DSP和ARM还都是分开的。在需要更高处理性能的领域,往往采用多片DSP 共同处理的方式。这些也是海康威视黄田,具多年行业资深技术人的深刻体会。

信息材料-基因芯片简介

基因芯片 Gene Chip 羽【内容摘要】 基因芯片技术是生物芯片的一种,它是生命科学领域里兴起的一项高新技术,它集成了微电子制造技术、激光扫描技术、分子生物学、物理和化学等先进技术。本文简要阐述了基因芯片的定义、特点、分类、工作原理及应用,并提出了基因芯片进一步发展所存在的问题。 Gene chip technology is a kind of biological chip which is a new technology integrating the microelectronics manufacturing technology, laser scanning technology, molecular biology, physics and chemistry and other advanced technology. Gene chip used a large number of specific oligonucleotide fragment or gene fragment as a probe, and fixed wafer, glass sheet, plastic sheet or nylon substrate fixed on the support which combined with the device for photoelectric measurement regularly form a two-dimensional array, and the probe will hybridize with the gene in labeled sample lead to the change electrical signal. The article describes the definition and characteristics of gene chip as well as the classification, working principle and application briefly. And put forward some existing problems for the further development of gene chip in the end. 【关键词】 Gene Chip DNA mRNA蛋白质遗传疾病核苷酸序列蚀刻打印【正文】 一、生物芯片 生物芯片是指将成千上万的靶分子(比如DNA、RNA或蛋白质等)经过一定的方法有序地固化在面积较小的支持物(如玻璃片、硅片、尼龙膜等)上,组成密集分子排列,然后将已经标记的样品与支持物上的靶分子进行杂交,经洗脱、激光扫描后,运用计算机将所得的信号进行自动化分析。 这种方法不仅节约了试剂与样品,而且节省了大量的人力、物力与时间,使检测更为快速、准确、敏感,是目前生物检测中效率高、最为敏感和最具前途的

半导体封装制程简介

(Die Saw) 晶片切割之目的乃是要將前製程加工完成的晶圓上一顆顆之芯片(Die)切割分離。首先要在晶圓背面貼上蓝膜(blue tape)並置於鋼 製的圆环上,此一動作叫晶圓粘片(wafer mount),如圖一,而後再 送至晶片切割機上進行切割。切割完後,一顆顆之芯片井然有序的排 列在膠帶上,如圖二、三,同時由於框架之支撐可避免蓝膜皺摺而使 芯片互相碰撞,而圆环撐住膠帶以便於搬運。 圖一 圖二

(Die Bond) 粘晶(装片)的目的乃是將一顆顆分離的芯片放置在导线框架(lead frame)上並用銀浆(epoxy )粘着固定。引线框架是提供芯片一個粘着的位置+ (芯片座die pad),並預設有可延伸IC芯片電路的延伸腳(分為內 引腳及外引腳inner lead/outer lead)一個引线框架上依不同的設計可以有 數個芯片座,這數個芯片座通常排成一列,亦有成矩陣式的多列排法 。引线框架經傳輸至定位後,首先要在芯片座預定粘着芯片的位置上点

上銀浆(此一動作稱為点浆),然後移至下一位置將芯片置放其上。 而經過切割的晶圓上的芯片則由焊臂一顆一顆地置放在已点浆的晶 粒座上。装片完後的引线框架再由传输设备送至料盒(magazine) 。装片后的成品如圖所示。 引线框架装片成品 胶的烧结 烧结的目的是让芯片与引线框晶粒座很好的结合固定,胶可分为银浆(导电胶)和绝缘胶两种,根据不同芯片的性能要求使用不同的胶,通常导电胶在200度烤箱烘烤两小时;绝缘胶在150度烤箱烘烤两个半小时。 (Wire Bond) 焊线的目的是將芯片上的焊点以极细的金或铜线(18~50um)連接到引线框架上的內引腳,藉而將IC芯片的電路訊號傳輸到外界。當

生物芯片及应用简介

生物芯片及应用简介 简介 生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄影像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已经被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。 生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量

芯片封装介绍

1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板得背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板得正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,就是多引脚LSI 用得一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1、5mm 得360 引脚BGA 仅为31mm 见方;而引脚中心距为0、5mm 得304 引脚QFP 为40mm 见方。而且BGA 不用担心QFP 那样得引脚变形问题。该封装就是美国Motorola 公司开发得,首先在便携式电话等设备中被采用,今后在美国有 可能在个人计算机中普及。最初,BGA 得引脚(凸点)中心距为1、5mm,引脚数为225。现在也有一些LSI 厂家正在开发500 引脚得BGA。BGA 得问题就是回流焊后得外观检查。现在尚不清楚就是否有效得外观检查方法。有得认为, 由于焊接得中心距较大,连接可以瞧作就是稳定得,只能通过功能检查来处理。美国Motorola 公司把用模压树脂密封得封装称为OMPAC,而把灌封方法密封得封装称为 GPAC(见OMPAC 与GPAC)。 2、BQFP(quad flat package with bumper) 带缓冲垫得四侧引脚扁平封装。QFP 封装之一,在封装本体得四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器与ASIC 等电路中采用此封装。引脚中心距0、635mm,引脚数从84 到196 左右(见QFP)。 3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 得别称(见表面贴装型PGA)。 4、C-(ceramic) 表示陶瓷封装得记号。例如,CDIP 表示得就是陶瓷DIP。就是在实际中经常使用得记号。 5、Cerdip 用玻璃密封得陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口得Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 得微机电路等。引脚中心距2、54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封得意思)。 6、Cerquad 表面贴装型封装之一,即用下密封得陶瓷QFP,用于封装DSP 等得逻辑LSI 电路。带有窗口得Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1、5~2W 得功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1、27mm、0、8mm、0、65mm、0、5mm、0、4mm 等多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded chip carrier) 带引脚得陶瓷芯片载体,表面贴装型封装之一,引脚从封装得四个侧面引出,呈丁字形。带有窗口得用于封装紫外线擦除型EPROM 以及带有EPROM 得微机电路等。此封装也称为QFJ、QFJ-G(见QFJ)。 8、COB(chip on board) 板上芯片封装,就是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板得电气连接用引线缝合方法实现,芯片与基板得电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 就是最简单得裸芯片贴装技术,但它得封装密度远不如TAB 与倒片焊技术。 9、DFP(dual flat package) 双侧引脚扁平封装。就是SOP 得别称(见SOP)。以前曾有此称法,现在已基本上不用。10、DIC(dual in-line ceramic package)

半导体封装简介(精)

半导体封装简介: 半导体生产流程由晶圆制造、晶圆测试、芯片封装和封装后测试组成。塑封之后,还要进行一系列操作,如后固化(Post Mold Cure)、切筋和成型(Trim&Form)、电镀(Plating)以及打印等工艺。典型的封装工艺流程为:划片装片键合塑封去飞边电镀打印切筋和成型外观检查成品测试包装出货。 各种半导体封装形式的特点和优点: 一、DIP双列直插式封装 DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP 结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 DIP封装具有以下特点: 1.适合在PCB(印刷电路板)上穿孔焊接,操作方便。 2.芯片面积与封装面积之间的比值较大,故体积也较大。 Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。 二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 QFP封装 QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。 PFP(Plastic Flat Package)方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

基因芯片数据处理流程与分析介绍

基因芯片数据处理流程与分析介绍 关键词:基因芯片数据处理 当人类基因体定序计划的重要里程碑完成之后,生命科学正式迈入了一个后基因体时代,基因芯片(microarray) 的出现让研究人员得以宏观的视野来探讨分子机转。不过分析是相当复杂的学问,正因为基因芯片成千上万的信息使得分析数据量庞大,更需要应用到生物统计与生物信息相关软件的协助。要取得一完整的数据结果,除了前端的实验设计与操作的无暇外,如何以精确的分析取得可信数据,运筹帷幄于方寸之间,更是画龙点睛的关键。 基因芯片的应用 基因芯片可以同时针对生物体内数以千计的基因进行表现量分析,对于科学研究者而言,不论是细胞的生命周期、生化调控路径、蛋白质交互作用关系等等研究,或是药物研发中对于药物作用目标基因的筛选,到临床的疾病诊断预测,都为基因芯片可以发挥功用的范畴。 基因表现图谱抓取了时间点当下所有的动态基因表现情形,将所有的探针所代表的基因与荧光强度转换成基本数据(raw data) 后,仿如尚未解密前的达文西密码,隐藏的奥秘由丝丝的线索串联绵延,有待专家抽丝剥茧,如剥洋葱般从外而内层层解析出数千数万数据下的隐晦含义。 要获得有意义的分析结果,恐怕不能如泼墨画般洒脱随兴所致。从raw data 取得后,需要一连贯的分析流程(图一),经过许多统计方法,才能条清理明的将raw data 整理出一初步的分析数据,当处理到取得实验组除以对照组的对数值后(log2 ratio),大约完成初步的统计工作,可进展到下一步的进阶分析阶段。

图一、整体分析流程。基本上raw data 取得后,将经过从最上到下的一连串分析流程。(1) Rosetta 软件会透过统计的model,给予不同的权重来评估数据的可信度,譬如一些实验操作的误差或是样品制备与处理上的瑕疵等,可已经过Rosetta error model 的修正而提高数据的可信值;(2) 移除重复出现的探针数据;(3) 移除flagged 数据,并以中位数对荧光强度的数据进行标准化(Normalized) 的校正;(4) Pearson correlation coefficient (得到R 值) 目的在比较技术性重复下的相似性,R 值越高表示两芯片结果越近似。当R 值超过0.975,我们才将此次的实验结果视为可信,才继续后面的分析流程;(5) 将技术性重复芯片间的数据进行平均,取得一平均之后的数据;(6) 将实验组除以对照组的荧光表现强度差异数据,取对数值(log2 ratio) 进行计算。 找寻差异表现基因 实验组与对照组比较后的数据,最重要的就是要找出显著的差异表现基因,因为这些正是条件改变后而受到调控的目标基因,透过差异表现基因的加以分析,背后所隐藏的生物意义才能如拨云见日般的被发掘出来。 一般根据以下两种条件来筛选出差异表现基因:(i) 荧光表现强度差异达2 倍变化(fold change 增加2 倍或减少2倍) 的基因。而我们通常会取对数(log2) 来做fold change 数值的转换,所以看的是log2 ≧1 或≦-1 的差异表现基因;(ii) 显著值低于0.05 (p 值< 0.05) 的基因。当这两种条件都符合的情况下所交集出来的基因群,才是显著性高且稳定的差异表现基因。

基因芯片相关图像技术的简单介绍

本科课程论文 基因芯片相关图像技术的简单介绍 张大力 201330200125 指导教师邓继忠 学院名称生命科学学院专业名称14生物科学2班论文提交日期2017年6月9日

摘要 生物芯片是一种高效快速地生物学检测手段,以探针和底物的特异性结合为基本原理。其反应结果常常显示为荧光点阵列,往往具有信息量大,信息密度大的特点,人工难以识别和处理,因此多采用自动化手段进行处理,包括图像技术和计算机技术。本文简单介绍现有的几天芯片图像处理过程中所用到的图像技术。 关键词:图像技术、生物芯片、基因芯片。

1 生物芯片简介 生物芯片是20世纪90年代出现的一种将分子生物学/基因工程和芯片结合的一项技术,根据性能可分为功能芯片和信息芯片两大类。 功能芯片是指在芯片上集成一系列反应所需的试剂和条件,在一块芯片生完成固定的,程序化的,复杂的反应,从而大大减少检测人员的劳动强度,并使检测过程快速方便。 信息芯片又可以根据芯片探针和探测目标的不同分为基因芯片、蛋白芯片、细胞芯片、组织芯片等。[1]信息芯片是现在广泛使用的一类芯片,是在芯片基质材料上安装许多,基质可以是玻璃、金属、尼龙或者其他材料。基因芯片又是信息芯片中最常使用的。 生物芯片上探针可与样品液体中的目标的特异性结合,结合的产物可以经过处理,在激光的照射下发出特定波长的荧光,如果没有发生结合的探针或者目标不会发出荧光。 用特定的光照射反应后的芯片,使其上面发生特异性结合的部位发出荧光,再用技术手段取得此时芯片的图像。通过对芯片图像中荧光的位置,颜色、强弱进行分析可以推测基因芯片上探针发生反应的情况。进而得知样品中待测目标的情况,包括样品中某同可以和探针特异性结合的目标是否存在,含量、浓度是多少等,这些信息可以作为进一步判断的依据。 2 生物芯片图像信息的采集 反应后经光源照射发出荧光的芯片包含我们所需要的信息,所谓基因芯片的扫描就是指将含有大量的以微阵列方式排列的生物杂交反应样点的基因芯片以图像的方式读取出来,且在保证样点信息的能够准确描述前提下,扫描图像转变成可供计算机处理的数字图像[2]。基因芯片以外的生物芯片的与基因芯片类似。 常见的生物芯片扫描仪有两种分别是:CCD 系统扫描仪和激光共聚焦扫描仪,中CCD 扫描仪的应用较为广泛。[3]

常见的几种芯片封装介绍

常见的几种芯片封装介绍 一、DIP双列直插式封装 DIP(Dual In-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 DIP封装具有以下特点: (1)适合在PCB(印刷电路板)上穿孔焊接,操作方便。 (2)芯片面积与封装面积之间的比值较大,故体积也较大。 Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。 二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。 PFP(Plastic Flat Package)方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。 QFP/PFP封装具有以下特点: (1)适用于SMD表面安装技术在PCB电路板上安装布线。 (2)适合高频使用。 (3)操作方便,可靠性高。 (4)芯片面积与封装面积之间的比值较小。 Intel系列CPU中80286、80386和某些486主板采用这种封装形式。 三、PGA插针网格阵列封装 PGA(Pin Grid Array Package)芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2-5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。ZIF(Zero Insertion Force Socket)是指

介绍各种芯片封装形式的特点和优点..

介绍各种芯片封装形式的特点和优点。常见的封装材料有:塑料、陶瓷、玻璃、金属等,现在基本采用塑料封装。按封装形式分:普通双列直插式,普通单列直插式,小型双列扁平,小型四列扁平,圆形金属,体积较大的厚膜电路等。 由于电视、音响、录像集成电路的用途、使用环境、生产历史等原因,使其不但在型号规格上繁杂,而且封装形式也多样。我们经常听说某某芯片采用什么什么的封装方式,比如,我们看见过的电板,存在着各种各样不同处理芯片,那么,它们又是是采用何种封装形式呢?并且这些封装形式又有什么样的技术特点以及优越性呢?那么就请看看下面的这篇文章,将为你介绍各种芯片封装形式的特点和优点。 1) 概述 常见的封装材料有:塑料、陶瓷、玻璃、金属等,现在基本采用塑料封装。 按封装形式分:普通双列直插式,普通单列直插式,小型双列扁平,小型四列扁平,圆形金属,体积较大的厚膜电路等。 按封装体积大小排列分:最大为厚膜电路,其次分别为双列直插式,单列直插式,金属封装、双列扁平、四列扁平为最小。 两引脚之间的间距分:普通标准型塑料封装,双列、单列直插式一般多为2.54±0.25 mm,其次有2mm(多见于单列直插式)、1.778±0.25mm(多见于缩型双列直插式)、1.5±0.25mm,或1.27±0.25mm(多见于单列附散热片或单列V 型)、1.27±0.25mm(多见于双列扁平封装)、1±0.15mm(多见于双列或四列扁平封装)、0.8±0.05~0.15mm(多见于四列扁平封装)、0.65±0.03mm(多见于四列扁平封装)。 双列直插式两列引脚之间的宽度分:一般有7.4~7.62mm、10.16mm、12.7mm、1 5.24mm等数种。 双列扁平封装两列之间的宽度分(包括引线长度:一般有6~6.5±mm、7.6mm、10.5~10.65mm等。 四列扁平封装40引脚以上的长×宽一般有:10×10mm(不计引线长度)、13.6×1 3.6±0.4mm(包括引线长度)、20.6×20.6±0.4mm(包括引线长度)、8.45×8.45±0.5mm(不计引线长度)、14×14±0.15mm(不计引线长度)等。 2)DIP双列直插式封装 DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 DIP封装具有以下特点: 1.适合在PCB(印刷电路板)上穿孔焊接,操作方便。 2.芯片面积与封装面积之间的比值较大,故体积也较大。 Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。 3)QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在

基因芯片技术论文

生物技术导论 ——基因芯片技术

基因芯片技术 摘要:基因芯片技术具有无可比拟的高效、快速和多参量特点,使其进行基因研究、法医鉴定、疾病检测和药物筛选等方面远远超过了传统方式方法在不远的将来,用它制作的微缩分析仪将广泛地应用于分子生物学、医学基础研究、临床诊断治疗、新药开发、司法鉴定、食品卫生监督、生物武器战争等领域。 关键字:基因芯片简介、基因芯片的种类、基因芯片技术、基因芯片的应用技术举例及其应用领域 一、基因芯片简介 基因芯片(Gene Chip)通常指DNA芯片,其基本原理是将指大量寡核苷酸分子固定于支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强弱进而判断样品中靶分子的数量,是在90年代中期发展出来的高科技产物。基因芯片大小如指甲盖一般,其基质一般是经过处理后的玻璃片。每个芯片的基面上都可划分出数万至数百万个小区。在指定的小区内,可固定大量具有特定功能、长约20个碱基序列的核酸分子(也叫分子探针)。 二、基因芯片的种类 基因芯片产生的基础则是分子生物学、微电子技术、高分子化学合成技术、激光技术和计算机科学的发展及其有机结合。根据基因芯片制造过程中主要技术的区别,以下是主要的三类基因芯片。 (1)光引导原位合成技术生产寡聚核苷酸微阵列 它采用了照相平板印刷技术技术结合光引导原位寡聚核苷酸合成技术制作DNA芯片,生产过程同电子芯片的生产过程十分相似。采用这种技术生产的基因芯片可以达到1×106/cm2的微探针排列密度,能够在一片1厘米多见方的片基上排列几百万个寡聚核苷酸探针。它不仅可用于寡聚核苷酸的合成,也可用于合成寡肽分子,为合成高密度核酸探针及短肽列阵提供了一条快捷的途径。 (2)微电子芯片 微电子基因芯片,其基质全部以硅、锗与基础的半导体材料,在其上构建25-400个微铂电极位点,各位点可由计算机独立或组合控制。它通过相似微电极的电场变化来使核酸结合,由于引入“电子严谨度”参数使芯片检测通过靶、探针序列特征和使用者要求来控制杂交过程中的严格性。 (3)微量点样技术 使用这种方法生产的芯片上探针不受探针分子大小种类的限制,能够灵活机动地根据使用者的要求制作出符合目的的芯片。由于对检测仪的要求很高,其使用范围受到很大限制

基因芯片技术基本过程

基因芯片技术基本过程 1 DNA方阵的构建 选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物,并作相应处理,然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针;(2)或者通过液相化学合成寡核苷酸链探针,或PCR技术扩增基因序列,再纯化、定量分析,由阵列复制器(arraying and replicating device ARD),或阵列机(arrayer)及电脑控制的机器人,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上,再由紫外线交联固定后即得到DNA微阵列或芯片。 2 样品DNA或mRNA的准备。 从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须进行扩增提高阅 读灵敏度。Mosaic Technologies公司发展了一种固相PCR系统,好于传统PCR技术,他们在靶DNA上设计一对双向引物,将其排列在丙烯酰胺薄膜上,这种方法无交叉污染且省去液相处理的繁锁;Lynx Therapeutics公司提出另一个革新的方法,即大规模平行固相克隆(massively parallel solid-phase cloning)这个方法可以对一个样品中数以万计的DNA片段同时进行克隆,且不必分离和单独处理每个克隆,使样品扩增更为有效快速。 在PCR扩增过程中,必须同时进行样品标记,标记方法有荧光标记法、生物素标记法、同位素标记法等。 3 分子杂交 样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。如用于基因表达监测,杂交的严格性较低、低温、时间长、盐浓度高;若用于突变检测,则杂交条件相反。芯片分子杂交的特点是探针固化,样品荧光标记,一次可以对大量生物样品进行检测分析,杂交过程只要30min。美国Nangon公司采用控制电场的方式,使分子杂交速度缩到1min,甚至几秒钟(6)。德国癌症研究院的Jorg Hoheisel等认为以肽核酸(PNA)为探针效果更好。

基因芯片技术及其应用简介(精)

基因芯片技术及其应用简介 生物科学学院杨汝琪 摘要:随着基因芯片技术的发展,基因芯片越来越多的被人们利用,它可应用于生活中的方方面面,如:它可以应用于医学、环境科学、微生物学和农业等多个方面,基因技术的发展将有利于社会进一步的发展。 关键词:基因芯片;技术;应用 基因(gene是载有生物体遗传信息的基本单位,存在于细胞的染色体(chromosome上。将大量的基因片段有序地、高密度地排列在玻璃片或纤维膜等载体上,称之为基因芯片(又称DNA 芯片、生物芯片。在一块1 平方厘米大小的基因芯片上,根据需要可固定数以千计甚至万计的基因片段,以此形成一个密集的基因方阵,实现对千万个基因的同步检测。基因芯片技术是近年来兴起的生物高新技术,把数以万计的基因片段以显微点阵的方式排列在固体介质表面,可以实现基因检测的快速、高通量、敏感和高效率检测,将可能为临床疾病诊断和健康监测等领域,带来全新的技术并开拓广阔的市场。 1 基因芯片技术原理及其分类 1.1基因芯片的原理: 基因芯片属于生物芯片的一种"其工作原理是:经过标记的待测样本通过与芯片上特定位置的探针杂交,可根据碱基互补配对的原则确定靶序列[1],经激光共聚集显微镜扫描,以计算机系统对荧光信号进行比较和检测,并迅速得出所需的信息"基因芯片技术比常规方法效率高几十到几千倍,可在一次试验中间平行分析成千上万个基因,是一种进行序列分析及基因表达信息分析的强有力工具。 1.2基因芯片分类: 1.2.1根据其制造方法可分原位合成法和合成后点样法;

1.2.2根据所用载体材料不同分为玻璃芯片!硅芯片等; 1.2.3根据载体上所固定的种类可分为和寡核苷酸芯片两种; 1.2.4根据其用途可分测序芯片!表达谱芯片!诊断芯片等 2 基因芯片技术常规流程 2.1 芯片设计根据需要解决的问题设计拟采用的芯片,包括探针种类、点阵数目、片基种类等。 2.2 芯片制备将DNA, cDNA或寡核昔酸探针固定在片基上的过程。从本质上可分为两大类fz} ,一类是在片基上直接原位合成,有光蚀刻法、压电印刷法和分子印章多次压印法三种;另一类是将预先合成的探针固定于片基表面即合成点样法。 2.3 样品制备常规方法提取样品总RNA,质检控制。再逆转录为。DNAo 2.4 样品标记在逆转录过程中标记荧光素等。 2.5 芯片杂交标记的cDNA溶于杂交液中,与芯片杂交。 2.6 芯片扫描一用激光扫描仪扫描芯片。 2.7 图像采集和数据分析专用软件分析芯片图像,然后对数据进行归一化,最后以差异为两倍的标准来确定差异表达基因。 2.8 验证用定量PCR或原位杂交验证芯片结果的可信性。 3基因芯片合成的主要方法 目前已有多种方法可以将基因片段(寡核苷酸或短肽固定到固相支持物上。这些方法总体上有两种: 3.1原位合成:

28种芯片封装技术的详细介绍

28种芯片封装技术的详细介绍 1、BGA|ball grid array 也称CPAC(globe top pad array carrier)。球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm的360引脚BGA仅为31mm见方;而引脚中心距为0.5mm的304 引脚QFP 为40mm 见方。而且BGA不用担心QFP 那样的引脚变形问题。 该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,随后在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有一些LSI 厂家正在开发500 引脚的BGA。BGA 的问题是回流焊后的外观检查。美国Motorola公司把用模压树脂密封的封装称为MPAC,而把灌封方法密封的封装称为GPAC。 2、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。 3、COB (chip on board)

COB (chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB和倒片焊技术。 4、DIP(dual in-line package) DIP(dual in-line package) 双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。欧洲半导体厂家多用DIL。DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52mm和10.16mm 的封装分别称为SK-DIP(skinny dual in-line package) 和SL-DIP(slim dual in-line package)窄体型DIP。但多数情况下并不加区分,只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP也称为Cerdip(4.2)。

介绍各种芯片封装形式的特点和优点

. 介绍各种芯片封装形式的特点和优点。常见的封装材料有:塑料、陶瓷、玻璃、金属等,现在基本采用塑料封装。按封装形式分:普通双列直插式,普通单列直插式,小型双列扁平,小型四列扁平,圆形金属,体积较大的厚膜电路等。由于电视、音响、录像集成电路的用途、使用环境、生产历史等原因,使其不但我们经常听说某某芯片采用什么什么在型号规格上繁杂,而且封装形式也多样。的封装方式,比如,我们看见过的电板,存在着各种各样不同处理芯片,那么,它们又是是采用何种封装形式呢?并且这些封装形式又有什么样的技术特点以将为你介绍各种芯片封装形式的特及优越性呢?那么就请看看下面的这篇文章,点和优点。 1) 概述常见的封装材料有:塑料、陶瓷、玻璃、金属等,现在基本采用塑料封装。 按封装形式分:普通双列直插式,普通单列直插式,小型双列扁平,小型四列扁平,圆形金属,体积较大的厚膜电路等。 单列直插式,最大为厚膜电路,其次分别为双列直插式,按封装体积大小排列分:金属封装、双列扁平、四列扁平为最小。 2.54两引脚之间的间距分:普通标准型塑料封装,双列、单列直插式一般多为(多见于缩型±0.25mm2mm(多见于单列直插式)、1.778±0.25 mm,其次有 V0.25mm(多见于单列附散热片或单列,或1.27±双列直插式)、1.5±0.25mm多见于双列或四列扁平0.15mm(±)、1)、1.27±0.25mm(多见于双列扁平封装型多见于四列0.03mm(、0.65±±0.05~0.15mm(多见于四列扁平封装)封装)、0.8 扁平封装)。1、10.16mm、12.7mm双列直插式两列引脚之间的宽度分:一般有7.4~7.62mm、 5.24mm等数种。、7.6mmmm、双列扁平封装两列之间的宽度分(包括引线长度:一般有6~6.5± 10.65mm等。10.5~1×、13.6×10mm(不计引线长度)四列扁平封装40引脚以上的长×宽一般有:108.458.45×0.4mm(包括引线长度)、0.4mm(包括引线长度)、20.6×20.6±3.6±、14×14±0.15mm(不计引线长度)等。±0.5mm(不计引线长度) 双列直插式封装) DIP2是指采用双列直插形式封装的集成电路Package)DIP(DualIn-line 其引脚数一般不超均采用这种封装形式,绝大多数中小规模集成电路(IC)芯片,结构的芯DIP芯片有两排引脚,需要插入到具有采用DIP封装的CPU个。过100也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。片插座上。当然,DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 DIP封装具有以下特点: 上穿孔焊接,操作方便。PCB(适合在印刷电路板)1. 芯片面积与封装面积之间的比值较大,故体积也较大。2.和早期的内缓存(Cache)8088系列CPU中就采用这种封装形式,Intel 存芯片也是这种封装形式。塑料扁平组件式封装QFP塑料方型扁平式封装和PFP)3封装的芯片引脚之间距离很小,)Quad Flat PackagePlastic QFP (其引脚数一般在一般大规模或超大型集成电路都采用这种封装形式,管脚很细,资料Word .

基因芯片综述

基因芯片文献综述 摘要:基因芯片技术是伴随着人类基因组计划的实施而发展起来的生命科学领域里的前沿生物技术。目前,人们对疾病的分类和诊断的水平已经有了进一步的提高,基于基因芯片的特征选择技术在其中起到了关键性的作用。经过十几年的发展,基因芯片技术也在不断完善、成熟,并广泛运用于生命科学的各个领域。本文重点介绍基因芯片技术的进展、分类、应用领域及发展前景。 关键词:基因芯片技术背景,分类,应用领域,展望 1.基因芯片技术背景 1.1技术背景 20世纪80年代启动的由多个国家参加的人类基因组计划,被称为是继曼哈顿原子计划、阿波罗登月计划之后的第三大科学计划,这个计划的完成对人类认识自身,提高健康水平,推动生命科学、医学、生物技术、制药业、农业等的发展具有极其重要的意义。 随着人类基因组计划(Human Genome Project, HGP)的完成以及分子生物学相关学科的迅猛发展,极大地带动了人类疾病相关基因以及病原微生物基因的定位、克隆、结构与功能研究,基因芯片(gene chip)就是在这个背景下发展起来的一项分子生物学新技术[1]。 1.2基因芯片概念 基因芯片即DNA芯片或DNA微阵列,大小如指甲盖一般,每个芯片的基而上都可以划分出数万至数百万个小区,在指定的小区内,可固定大量具有特定功能、长约20个碱基序列的核酸分子。它是把大量己知序列探针集成在同一个基片(如玻片、膜)上[2-4],经过标记的若干靶核苷酸序列与芯片特定位点上的探针杂交,通过检测杂交信号,对生物细胞或组织中大量的基因信息进行分析。 1.3基因芯片特点 其突出特点在十高度并行性、多样性、微型化和自动化。高度的并行性不仅可以大大提高实验的进程,而且有利于DNA芯片技术所展示图谱的快速对照和阅读。多样性可以在单个芯片中同时一进行样品的多参数分析,从而避免因不同实验条件产生的误差,大大提高分析的精确性。微型化可以减少试剂用量和减小反应液体积,降低实验费用。高度自动化则可以降低制造芯片的成本和保证芯片的制造质量[5]。1995年Science杂志首次报道了Schena等人用DNA微阵列技术并行检测拟南芥多个基因的表达水平。1994年第一张商业化基因芯片由Affymetrix公司推出。 二.分类 基因芯片有不同的分类方法: ①按其片基不同可分为无机片基芯片和有机合成片基芯片; ②按其应用不同,可分为表达谱芯片、诊断芯片、检测芯片; ③按其制备方法不同可分为原位合成芯片和合成后交联芯片(合成后点样芯片); 最常用的还是按载体上所点探针的长度分为cDNA芯片和寡核苷酸芯片两种。

iC封装制程简介

半导体的产品很多应用的场合非常广泛图一是常见的几种半导体组件外型半导体组件一般是以接脚形式或外型来划分类别图一中不同类别的英文缩写名称原文为 PDID Plastic Dual Inline Package SOP Small Outline Package SOJ Small Outline J-Lead Package PLCC Plastic Leaded Chip Carrier QFP Quad Flat Package PGA Pin Grid Array BGA Ball Grid Array 虽然半导体组件的外型种类很多在电路板上常用的组装方式有二种一种是插入电路板的焊孔或脚座如PDIP PGA另一种是贴附在电路板表面的焊垫上如SOP SOJ PLCC QFP BGA 从半导体组件的外观只看到从包覆的胶体或陶瓷中伸出的接脚而半导体组件真正的的核心是包覆在胶体或陶瓷内一片非常小的芯片透过伸出的接脚与外部做信息传输图二是一片EPROM组件从上方的玻璃窗可看到内部的芯片图三是以显微镜将内部的芯片放大可以看到芯片以多条焊线连接四周的接脚这些接脚向外延伸并穿出胶体成为芯片与外界通讯的道路请注意图三中有一条焊线从中断裂那是使用不当引发过电流而烧毁致使芯片失去功能这也是一般芯片遭到损毁而失效的原因之一 图四是常见的LED也就是发光二极管其内部也是一颗芯片图五是以显微镜正视LED的顶端可从透明的胶体中隐约的看到一片方型的芯片及一条金色的焊线若以LED二支接脚的极性来做分别芯片是贴附在负极的脚上经由焊线连接正极的脚当LED通过正向电流时芯片会发光而使LED发亮如图六所示 半导体组件的制作分成两段的制造程序前一段是先制造组件的核心─芯片称为晶圆制造后一段是将晶中片加以封装成最后产品称为IC封装制程又可细分成晶圆切割黏晶焊线封胶印字剪切成型等加工步骤在本章节中将简介这两段的制造程序

Affymetrix生物芯片简介

Affymetrix生物芯片解决方案概述 Affymetrix公司作为全球销量第一的基因芯片厂家,以其完备的芯片设计,稳定可靠的分析结果和强大的生物信息学分析能力,帮助研究人员在最短的时间内获得大量可靠的结果,为后续研究提供重要的线索和帮助。Affymetrix公司目前已经在纳斯达克上市,在基因芯片领域中成为行业标准。 Affymetrix公司的巨大优势在于为客户提供“完整的基因芯片解决方案”,即提供全套的基因芯片相关产品。包括:1. 性能优异、种类齐全的各类研究应用系列芯片产品;2. Affymetrix基因芯片相关试剂和试剂盒;3. 基因芯片杂交、洗涤、扫描检测仪器系统及相关分析软件工具;4. 基因芯片相关技术手册及使用指南等。 相关目录: z GeneChip? 独特的原位光刻技术 z GeneChip? 独特的PM-MM探针设计 z GeneChip? 严密的质控步骤 z GeneChip? 种类齐全,应用广泛 z GeneChip? 强大的配套分析软件 z GeneChip? 强大的网上注释及分析工具 z GeneChip? 发表的研究论文 z GeneChip? 项目合作及技术培训 GeneChip?独特的原位光刻技术 美国著名的Affymetrix公司率先开发的寡聚核苷酸原位光刻专利技术,是生产高密度寡核苷酸基因芯片的核心关键技术。该方法的最大优点在于用很少的步骤可合成大量的DNA阵列。 Affymetrix的原位合成技术可制作的点阵密度高达106~1010/cm2。

首先,使固相片基羟基化,并用光敏保护基团将其保护起来,然后选取适当的避光膜(mask)使需要聚合的部位透光,其他部位不透光。这样,当光通过避光膜照射到支持物上时,受光部位的羟基就会发生脱保护而活化,从而可以反应结合碱基。由于参与合成的碱基单体一端可以进行固相合成,另一端受光敏基团的保护,所以原位合成后,可进行下一轮的光照、脱保护和固相合成。循环下去,不断改变避光膜的透光位点,就可以实现在同一玻片上合成成千上万种预定序列的寡核苷酸探针。 GeneChip?独特的PM-MM探针设计 基因芯片杂交的灵敏度和特异性是芯片技术的核心。 Affymetrix在探讨了各种各样的影响因素后,设计出了一种独特的PM-MM探针方案(见下图)。芯片上的每一个基因或EST都是由一个或几个探针组(probe set)组成,每组探针组又由11-20对25mer的探针对(probe pair)组成,每探针对包括两个探针池(probe cell),其中一个是完全匹配(Perfect-Match,PM)的,另外一个是序列中间有一个碱基错配的(Mis-match, MM)。 独特的PM-MM探针设计的优势 z特异性好 z灵敏度高 z定量精确、重复性好 z提供样品质控 特异性的提高 相比cDNA芯片和单一序列的寡核苷酸芯 片,Affymetrix设计多个短的探针片段,可以 有效的区分有同源性的基因序列,克服了背景 噪声、错误和偏差,避免了同源性靶序列与探

相关文档
最新文档