函数与方程的含参零点问题

函数与方程的含参零点问题
函数与方程的含参零点问题

函数与方程的含参零点问题

?方法导读

函数与方程问题常以基本初等函数或分段函数为载体,考查函数零点的存在区间、确定零点的个数、参数的取值范围、方程的根或函数图象的交点等问题.函数与方程不仅考查考生计算、画图等方面的能力,还考查考生函数与方程、数形结合及转化化归等数学思想的综合应用.在解决函数零点问题时,既要注意利用函数的图象,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来.

?高考真题

【·天津卷理·】已知,函数,若关于的方程

恰有个互异的实数解,则的取值范围是______.

?解题策略

本题属于分段函数的零点问题,所以需要分类讨论:

当时,由,推出,

当时,由,推出,

再分别画出它们的图象,由图象可知,

当直线和的图象有两个不同的交点,而直线和

的图象无交点时满足条件.

?解题过程

当时,由,得,

当时,由,得,

令,作出直线,函数的图象如图所示,

的最大值为,由图象可知,若恰有个互异的实数解,则

,得.

?解题分析

1.求函数零点问题,是高考试卷中的热点问题,这类问题要通过学生的直观想

象能力,画出函数图象求解比较直观、易理解;

2.本题由求解问题,通过变形转化为求和

的问题,然后通过图象可以顺利求解;

3.分类讨论思想贯穿整个高中阶段的数学学习中,在每年的高考试卷做题中都

会出现,尤其是解决综合题型时,很多学生不知道该如何分类讨论,所以学生在

平时的训练中要有意识的加以培养和应用.

?拓展推广

1.判断函数零点个数的常见方法

(1)直接法:解方程,方程有几个解,函数就有几个零点;

(2)图象法:画出函数的图象,函数的图象与轴的交点个数即为函数的零点个数;

(3)将函数拆成两个常见函数和的差,从而

,则函数的零点个数即为函数与函数

的图象的交点个数;

(4)二次函数的零点问题,通过相应的二次方程的判别式来判断.

2.判断函数在某个区间上是否存在零点的方法

(1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间

上;

(2)利用零点存在性定理进行判断;

(3)画出函数图象,通过观察图象与轴在给定区间上是否有交点来判断.

3.已知函数有零点(方程有根)求参数值(取值范围)常用的方法

(1)把函数零点问题转化为方程根的问题

利用函数的零点方程的根,把求函数零点的相关问题转化为求方程根的问题,通过方程的根所满足的条件建立不等式来解决问题.

(2)把函数零点问题转化为函数图象与坐标轴的交点问题

利用函数的零点函数的图象与轴的交点,把函数零点的相关问题转化为图象与坐标轴的交点问题,再利用数形结合的思想方法来解决问题.

(3)把零点问题分离变量后转化为函数值域问题

将函数零点问题先转化为方程根的问题,然后进行变量分离,将参数分离出来转化为求函数值域问题,这种方法思路简洁,学生容易想到.

(4)把函数零点问题转化为两个函数图象的交点问题

将函数零点的个数问题通过等价转化为两个函数图象的交点个数问题,再借助图象找出所满足的条件,建立不等式或不等式组是解决与函数零点相关问题的重要策略.

变式训练1

【·全国Ⅰ卷理·】已知函数.若存在个零点,则的取值范围是( )

A

B

C

D

变式训练2

【·天津理·】已知函数,函数,其中,若函数恰有4个零点,则的取值范围是( )

A

B

C

D

变式训练3

【·重庆文·】已知函数, 且在内有且仅有两个不同的零点,则实数的取值范围是( )

A

B

C

D

变式训练4

【·天津卷理·】已知函数=(,且)在上单调递减,且关于的方程恰好有两个不相等的实数解,则的取值范围是( )

A

B

C

D

变式训练5

【·浙江·】已知函数,函数恰有个零点,则( )

A ,

B ,

C ,

D ,

答案

变式训练1

C

函数存在个零点,即关于的方程有个不同的实根,即函数的图象与直线有个交点,作出直线与函数的图象,如图所示,

由图可知,,解得,故选C.

变式训练2

D

由,得,

所以,

即,

,所以恰有个零点等价于方程

有个不同的解,即函数与函数

的图象的个公共点,由图象可知.

变式训练3

A

在内有且仅有两个不同的零点就是函数

的图象与函数的图象有两个交点,在同一直角坐标系内作出函数

和函数的图象,如图,

当直线与和都相交时;当直线与有两个交点时,

由,消元得,即,

化简得,当,即时直线

与相切,当直线过点时,,所以

,综上实数的取值范围是.

变式训练4

D

当时,单调递减,必须满足,故,此时函数在上单调递减,若在上单调递减,还需,即,所以;当时,函数的图象和直线只有一个公共点,即当时,方程只有一个实数解;因此,只需当时,方程只有一个实数解,根据已知条件可得,当时,方程

,即在上恰有唯一的实数解,判别式

,当时,,此时满足题意,令

,由题意得,即,即时,方程

有一个正根、一个负根,满足要求,当,即时,方程

有一个为、一个根为,满足要求;当,即,即时对称轴,此时方程有两个负根,不满足要求;综上实数的取值范围是.

变式训练5

C ,

法一(特殊值法):令成立.

法二(导数法):函数恰有个零点转化为

与三个不同的交点.

(1)当时,,无论取何值,与不可能有三个不同交点.

(2)当时,在上单调递减,,易得

在上单调递减,在上单调递减,无论取何值,与不可能有三个不同交点.

(3)当时,,

结合(2)得,

则, 与有三个不同交点.

(4)当时,结合(2)知在上是单调递增,无论取何值,与不可能有三个不同交点.

综上所述,.

谈含参函数零点问题的解题策略

谈含参函数零点问题的解题策略 摘要:含参函数零点问题一直是高考热点和难点,全国卷中常常均导数压轴题 形式出现,对大部分学生而言有一定的难度。本文主要针对此类问题举例说明两 种方法:直接法和参变分离法,让学生有迹可循,进而达到落实数学核心素养的 目的。 关键词:直接法参变分离法导数零点问题含参函数 导数及其应用一直是高考的重点与难点,尤其是含参函数的零点问题[1-3],一般 以基本初等函数为载体,考察函数的单调性,函数的零点存在性定理及指数函数、幂函数、对数函数的增长速度,难度较大,解题时要熟练运用导数与函数单调性 的关系,注重函数与方程化归、分类讨论及数形结合等思想方法的应用。 针对导数压轴题中的含参函数零点问题,本文将用两道例题来说明两种常用方法:直接法和参变分离法,例一是已知零点情形求参数范围,例二是直接求解函数零 点个数,其中例一选自2018年全国卷理科Ⅱ卷21题第二问,例二选自2018年 广一模理科21题第一问。直接法是通过对参量进行分类讨论直接分析所求函数 的单调性、极值、最值和极限,大致确定函数的图象进而分析函数的零点个数。 参变分离法则是利用函数与方程思想把参数和变量进行分离,得到一个不含参的 函数和常函数,通过分析不含参函数的大概走势,进而确定不含参函数与常函数 交点个数,从而解决原函数的零点问题。在采用这两种方法求解时,我们利用极 限思想降低计算复杂度。虽然在高中数学没有涉及极限的计算方法,但是人教A 版选修2-2中提到了极限的思想,所以我们根据指数函数、幂函数、对数函数增 长速度来求一些简单函数的极限来确保函数在某些区间满足零点存在性定理。本 文将通过对这两道例题讨论分析说明两种求解方法,让学生有迹可循,进而达到 落实数学核心素养的目的。 通过上述两个例题的详细解析,我们可以直观感受到两种方法的特点。直接法解 决零点问题时,是直接对所研究函数进行分析,求其单调性、极值、最值,并且 根据指数函数、幂函数、对数函数增长速度求函数的极限,从而大致确定函数的 图象,进而分析函数的零点。采用直接法可以对所求函数有更全面的认识,如果 零点问题作为导数压轴题第一问,采用直接法在回答第二问时就避免再次分析函数,相比参变分离法就有较大优势。参变分离法求解含参函数零点问题时,首先 根据函数与方程思想,把问题转化成直线与不含参数的函数图象交点问题,然后 通过分析不含参函数的单调性、极值、最值和极限确定它的大致图象,从而判断 直线与其交点个数。根据上述例题可以发现参变分离后只需分析不含参函数的性质,相比直接法在分析函数时更简单,所以单纯求解零点问题时参数分离法更具 优势。在采用这两种方法求解时,我们采用了极限的思想分析函数的走势,避免 了对含参函数取点判断函数值正负以使其满足函数零点存在性定理,从而大大降 低了计算复杂度。 综上所述,针对含参函数零点问题,本文采用了直接法和参变分离法进行解决, 对于不同的情况,两种方法各有优势。如果零点问题作为第一问,优先采用直接法;如果零点问题为第二问,优先采用参变分离法会更简单些。针对不同情况, 采用不同方法,可以取得事半功倍的效果。 参考文献 [1] 段伟军.一道含参零点问题课堂教学展示与拓展[J].中学数学研究,2018(03):15-17.

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之间的关系课 后课时精练新人教B 版必修第一册 A 级:“四基”巩固训练 一、选择题 1.下列说法中正确的有( ) ①f (x )=x +1,x ∈[-2,0]的零点为(-1,0); ②f (x )=x +1,x ∈[-2,0]的零点为-1; ③y =f (x )的零点,即y =f (x )的图像与x 轴的交点; ④y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标. A .①③ B .②④ C .①④ D .②③ 答案 B 解析 根据函数零点的定义,f (x )=x +1,x ∈[-2,0]的零点为-1,函数y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标.因此,说法②④正确.故选B. 2.函数f (x )=x 2 -x -1的零点有( ) A .0个 B .1个 C .2个 D .无数个 答案 C 解析 Δ=(-1)2 -4×1×(-1)=5>0,所以方程x 2 -x -1=0有两个不相等的实根,故函数f (x )=x 2 -x -1有2个零点. 3.函数f (x )=2x 2 -3x +1的零点是( ) A .-1 2,-1 B.12,1 C.1 2,-1 D .-12 ,1 答案 B 解析 方程2x 2-3x +1=0的两根分别为x 1=1,x 2=12,所以函数f (x )=2x 2 -3x +1的 零点是1 2 ,1. 4.函数y =x 2 -bx +1有一个零点,则b 的值为( )

A .2 B .-2 C .±2 D .3 答案 C 解析 因为函数有一个零点,所以Δ=b 2 -4=0,所以b =±2. 5.设a <-1,则关于x 的不等式a (x -a )? ?? ??x -1a <0的解集为( ) A .(-∞,a )∪? ?? ??1a ,+∞ B .(a ,+∞) C.? ????-∞,1a ∪(a ,+∞) D.? ?? ??-∞,1a 答案 A 解析 ∵a <-1,∴a (x -a )? ????x -1a <0?(x -a )? ?? ??x -1a >0.又a <-1,∴1a >a ,由函数f (x ) =(x -a )·? ?? ??x -1a 的图像可得所求不等式的解集为(-∞,a )∪? ?? ??1a ,+∞. 二、填空题 6.函数f (x )=? ???? 2x -4,x ∈[0,+∞, 2x 2 -3x -2,x ∈-∞,0的零点为________. 答案 2,-1 2 解析 当x ≥0时,由2x -4=0,得x =2;当x <0时,由2x 2 -3x -2=0,得x =-12或 2(舍去).故函数f (x )的零点是2,-1 2 . 7.已知函数f (x )=ax 2 -5x +2a +3的一个零点为0,则f (x )的单调递增区间为________. 答案 ? ????-∞,-53 解析 由已知,得f (0)=2a +3=0,∴a =-32,∴f (x )=-32x 2 -5x ,∴f (x )的单调递 增区间为? ????-∞,-53. 8.已知a 为常数,则函数f (x )=|x 2 -9|-a -2的零点个数最多为________. 答案 4 解析 令g (x )=|x 2 -9|,h (x )=a +2,在同一平面直角坐标系内画出两个函数的图像,如图所示.

函数与方程零点问题考点例题讲解

函数与方程 考纲解读 1.求常见函数的零点;2.判断基本初等函数零点所在区间;3.判断二次函数零点个数及分布;4.根据函数零点与方程根的关系求参数范围;5.根据具体函数的图象,能够用二分法求相应方程的近似解. [基础梳理] 1.函数的零点 (1)函数零点的定义 对于函数y =f (x ),把使f (x )=0的实数x 叫作函数y =f (x )的零点. (2)函数零点的判定(零点存在性定理) 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根. 2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系 (x 0),(x 0) (x 0) 无交点 1.函数f (x )=lg x +x -3的零点个数为( ) A .0 B .1 C .2 D .3 答案:B 2.函数f (x )=e x - 1+4x -4的零点所在区间为( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3) 答案:B 3.函数f (x )=ln x -2 x 的零点所在的大致范围是( ) A .(1,2) B .(2,3) C.????1e ,1和(3,4) D .(4,+∞) 答案:B

4.用二分法求f (x )=2x +3x -7的零点的近似解,若第一次零点区间为(1,2),则第二次的零点区间为________. 答案:(1,1.5) 5.(2017·高考全国卷Ⅰ改编)函数y =x 2+1 x 的零点为__________. 答案:-1 [考点例题] 考点一 判定函数零点区间|方法突破 [例1] (1)函数f (x )=2x +ln 1 x -1的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(1,2)与(2,3) [解析] f (x )=2x +ln 1x -1=2x -ln(x -1),当1<x <2时,ln(x -1)<0,2 x >0,所以f (x )> 0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln 1=1,f (3)=2 3-ln 2=2-3ln 23=2-ln 83.∵8= 22≈2.828>e ,∴8>e 2,即ln 8>2,即f (3)<0.又f (4)=1 2-ln 3<0,∴f (x )在(2,3)内存在 一个零点. [答案] B (2)已知函数f (x )=2x +x ,g (x )=log 3x +x ,h (x )=x -1 x 的零点依次为a ,b ,c ,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c [解析] 在同一坐标系下分别画出函数y =2x ,y =log 3x ,y =-1 x 的图象,如图,观察它们与y =-x 的交点可知a

利用导数解决函数零点问题

利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 ④综上所述送1分. )(x f ' )(x f

(三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2 --=存在唯一 的极大值点0x ,且202 2)(--<

函数与方程的含参零点问题

函数与方程的含参零点问题 ?方法导读 函数与方程问题常以基本初等函数或分段函数为载体,考查函数零点的存在区间、确定零点的个数、参数的取值范围、方程的根或函数图象的交点等问题.函数与方程不仅考查考生计算、画图等方面的能力,还考查考生函数与方程、数形结合及转化化归等数学思想的综合应用.在解决函数零点问题时,既要注意利用函数的图象,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来. ?高考真题 【·天津卷理·】已知,函数,若关于的方程 恰有个互异的实数解,则的取值范围是______. ?解题策略 本题属于分段函数的零点问题,所以需要分类讨论: 当时,由,推出, 当时,由,推出, 再分别画出它们的图象,由图象可知, 当直线和的图象有两个不同的交点,而直线和 的图象无交点时满足条件. ?解题过程 当时,由,得, 当时,由,得,

令,作出直线,函数的图象如图所示, 的最大值为,由图象可知,若恰有个互异的实数解,则 ,得. ?解题分析 1.求函数零点问题,是高考试卷中的热点问题,这类问题要通过学生的直观想 象能力,画出函数图象求解比较直观、易理解; 2.本题由求解问题,通过变形转化为求和 的问题,然后通过图象可以顺利求解; 3.分类讨论思想贯穿整个高中阶段的数学学习中,在每年的高考试卷做题中都 会出现,尤其是解决综合题型时,很多学生不知道该如何分类讨论,所以学生在 平时的训练中要有意识的加以培养和应用. ?拓展推广 1.判断函数零点个数的常见方法 (1)直接法:解方程,方程有几个解,函数就有几个零点;

(2)图象法:画出函数的图象,函数的图象与轴的交点个数即为函数的零点个数; (3)将函数拆成两个常见函数和的差,从而 ,则函数的零点个数即为函数与函数 的图象的交点个数; (4)二次函数的零点问题,通过相应的二次方程的判别式来判断. 2.判断函数在某个区间上是否存在零点的方法 (1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间 上; (2)利用零点存在性定理进行判断; (3)画出函数图象,通过观察图象与轴在给定区间上是否有交点来判断. 3.已知函数有零点(方程有根)求参数值(取值范围)常用的方法 (1)把函数零点问题转化为方程根的问题 利用函数的零点方程的根,把求函数零点的相关问题转化为求方程根的问题,通过方程的根所满足的条件建立不等式来解决问题. (2)把函数零点问题转化为函数图象与坐标轴的交点问题 利用函数的零点函数的图象与轴的交点,把函数零点的相关问题转化为图象与坐标轴的交点问题,再利用数形结合的思想方法来解决问题. (3)把零点问题分离变量后转化为函数值域问题 将函数零点问题先转化为方程根的问题,然后进行变量分离,将参数分离出来转化为求函数值域问题,这种方法思路简洁,学生容易想到. (4)把函数零点问题转化为两个函数图象的交点问题

函数的零点与方程的解教学讲义

函数的零点与方程的解教学讲义 必备知识·探新知 基础知识 知识点1 函数的零点 (1)函数f (x )的零点是使f (x )=0的__实数x __. (2)函数的零点、函数的图象、方程的根的关系. 思考1:(1)函数的零点是点吗? (2)函数的零点个数、函数的图象与x 轴的交点个数、方程f (x )=0根的个数有什么关系? 提示:(1)不是,是使f (x )=0的实数x ,是方程f (x )=0的根. (2)相等. 知识点2 函数的零点存在定理 (1)条件:函数y =f (x )在区间[a ,b ]上的图象是__连续不断的曲线__,f (a )f (b )<0; (2)函数y =f (x )在区间(a ,b )上有零点,即存在c ∈(a ,b )使f (c )=0,这个c 也就是f (x )=0的根. 思考2:(1)函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,f (a )f (b )<0时,能否判断函数在区间(a ,b )上的零点个数? (2)函数y =f (x )在区间(a ,b )上有零点,是不是一定有f (a )f (b )<0? 提示:(1)只能判断有无零点,不能判断零点的个数. (2)不一定,如f (x )=x 2在区间(-1,1)上有零点0,但是f (-1)f (1)=1×1=1>0. 基础自测 1.函数f (x )=4x -6的零点是( C ) A .2 3 B .(3 2,0) C .3 2 D .-32 [解析] 令4x -6=0,得x =32,∴函数f (x )=4x -6的零点是3 2 . 2.(2020·广州荔湾区高一期末测试)函数f (x )=x -2+log 2x ,则f (x )的零点所在区间为( B )

函数与方程、零点

函数与方程 一、考点聚焦 1.函数零点的概念 对于函数))((D x x f y ∈=,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点,注意以下几点: (1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零。 (2)函数的零点也就是函数)(x f y =的图象与x 轴的交点的横坐标。 (3)一般我们只讨论函数的实数零点。 (4)求零点就是求方程0)(=x f 的实数根。 2、函数零点的判断 如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有0)()(

函数与方程(零点问题)

§2.8 函数与方程 函数零点问题 学习目标;(1)理解函数零点定义,会应用函数零点存在性定理 (2)体会函数与方程的转化思想 一 知识导练 1. (必修1 P43练习3改编) 函数32()2f x x x x =-+的零点是____________. 解析:解方程x3-2x2+x =0得x =0或x =1,所以函数的零点是0或1. 导航:函数零点的求解 2.(必修1 P111复习13改编)已知函数()23x f x x =-,则函数f(x)的零点个数是____. 解析:解法1:令f(x)=0,则2x =3x ,在同一坐标系中分别作出y =2x 和y =3x 的图象,由图知函数y =2x 和y =3x 的图象有2个交点,所以函数f(x)的零点个数为2. 解法2:由f(0)>0,f(1)<0,f(3)<0,f(4)>0,…,所以有2个零点,分别在区间(0,1)和(3,4)内. 导航:函数零点个数的判定 3.给出以下三个结论:(1)0一定是奇函数的一个零点; (2)单调函数有且仅有一个零点; (3)周期函数一定有无穷多个零点. 其中正确的结论共有_____个。 4.(必修1 P97习题8)若关于x 的方程27(13)20x m x m -+--=的一个根在区间(0,1)上,另一个在区间(1,2)上,则实数m 的取值范围为_____________. 解析:设f(x)=7x2-(m +13)x -m -2,则???? ?f (0)>0,f (1)<0,f (2)>0,解得-41. 要点回顾:

函数与方程(零点)

§1-10 函数的应用---根与零点及二分法 【课前预习】阅读教材P86-90完成下面填空 1.方程()0=x f 有实根 ? ? 7.若()y f x =的最小值为1,则()1y f x =-的零点个数为 ( ) A .0 B .1 C .0或l D .不确定

8.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点 9.若函数()f x 在[],a b 上连续,且有()()0f a f b >.则函数()f x 在[],a b 上 ( ) A .一定没有零点 B .至少有一个零点C .只有一个零点 D .零点情况不确定 10.如果二次函数)3(2 +++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞ 11.方程22lg x x -=的实数根的个数是 ( ) A .1 B .2 C .3 D .无数个 12.二次函数()f x =ax 2 +bx+c 中,ac<0则函数的零点个数是 13.若()f x 的图像关于y 轴对称,且()f x =0有三个零点,则这三个零点之和等于 14.若()f x =???--≤≥--2 1,11 2,12 x x x x x 或则函数g(x)= ()f x -x 的零点为 15.已知()f x 是R 上最小正周期为2的周期函数,且当0≤x<2时,()f x =x 3 -x,则函数y=()f x 的图像在区间[0,6]上与x 轴的交点的个数为 16.已知函数()f x =4x +m.2x +1仅有一个零点,求m 的取值范围,并求出零点 17.若函数()f x =(m-2)x 2 +mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则的取值范围是( ) A .(-21,41) B.(- 41,21) C.( 41,21) D.[ 41,2 1] 18.数()f x =ax+b(a ≠0)有一个零点是2,那么函数g(x)=bx 2 -ax 的零点是 19.数()f x =x 3 -3x+a 有3个不同的零点,则实数a 的取值范围是( ) A .(-2,2) B. [-2,2] C.(-∞,1) D. (1,+∞) 20.=cosx 在(-∞,+∞)内 ( ) A .没有根 B.有且仅有一个根 C. 有且仅有两个根 D. 有无穷多个根 21.()ln 2f x x x =-+的零点个数为 。 [学后反思]____________________________________________________

方程的根与函数的零点题型及解析

方程的根与函数的零点 题型及解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

方程的根与函数的零点题型及解析1.求下列函数的零点 (1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4. 分析:根据函数零点的定义解f(x)=0,即可得到结论. 解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0 得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2. 2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log 2 x﹣x+2的零点的个数;③求函数的零点个数是多少? 分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可 得,函数y=log 2 x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数 y=lnx 的图象与函数y=的图 象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数. 解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3 有且只有一个零点 ②函数f(x)=log 2x﹣x+2的零点的个数,即函数y=log 2 x 的图象和直线y=x﹣2 的交点个数,如图所示:故函数y=log 2 x 的图象(红色部分)和直线y=x﹣2(蓝 色部分)的交点个数为2,即函数f(x)=log 2 x﹣x+2的零点的个数为2;③函数 f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象 的 交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图 所示, 可得函数f(x)=lnx-(1/x)的零点个数是1 3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围 ②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个 零点,求a的取值. ③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围 分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可; ②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案 解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有

方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿 1教材分析 1.1地位与作用 本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课. 新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识. 之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 从研究方法而言,零点概念的形成和零点存在性定理的发现,符合

从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台. 1.2教学重点 基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理. 2学情分析 2.1学生具备必要的知识与心理基础. 通过前面的学习,学生己经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础. 方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础. 2.2学生缺乏函数与方程联系的观点. 高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位. 例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成

函数与方程(零点)

§1-10 函数的应用---根与零点及二分法 【课前预习】阅读教材P86-90完成下面填空 1.方程()0=x f 有实根 ? ? 2.零点定理:如果函数()x f y =在区间 上的图象是 的一条曲线,并且 有 ,那么,函数()x f y =在区间 内有零点,即存在()b a c ,∈,使得 ,这个c 也就是方程()0=x f 的根. 3.二分法求函数()x f y =零点近似值的步骤: ⑴确定区间 ,验证 ,给定 。 ⑵求 ; ⑶计算 ;①若 ,则 ; ②若 ,则令 ; ③若 ,则令 。 ⑷判断 【课初5分钟】课前完成下列练习,课前5分钟回答下列问题 1.下列函数中有2个零点的是 ( ) A .lg y x = B .2x y = C .2y x = D .1y x =- 2.若函数()f x 在区间[],a b 上为减函数,则()f x 在[],a b 上 ( ) A .至少有一个零点 B .只有一个零点 C .没有零点 D .至多有一个零点 3.函数)(x f =-x 2+5x-6的零点是 4. 函数)(x f =x 21-( 21)x 的零点个数 5.函数)(x f =x 3-x 2-x+1在[0,2]上 零点 6.下列函数图像与x 轴均有交点,但不宜用二分法求函数零点的是( ) A B C D 7.若()y f x =的最小值为1,则()1y f x =-的零点个数为 ( ) A .0 B .1 C .0或l D .不确定 8.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点 9.若函数()f x 在[],a b 上连续,且有()()0f a f b >.则函数()f x 在[],a b 上 ( )

2020高考数学热点难点微专题含参函数的零点问题(3页)

2020高考数学热点难点微专题含参函数的零点问题 含参函数的零点问题常以超越方程、分段函数等为载体,达到考察函数性质、函数零点的个数、参数的范围和通过函数性质求解不等式问题等目的.要注意函数的零点、方程的根、不等式的解集三者之间的关系,进行彼此之间的转化是解决该类题的关键,等价转化是这类问题的难点.解决该类问题的途径往往是根据函数的性质作出示意图,利用数形结合研究分界位置,结合函数、方程、不等式刻画边界位置,其间要注意导数的应用. 例1 已知函数f (x )=x 2+ax (a ∈R ),g (x )=????? f (x ), x ≥0,f ′(x ), x <0.若方程 g (f (x ))=0有4个不等的实根,则a 的取值范围是________. 点评: 例2 (1) 若关于x 的方程|x 4-x 3|=ax 在R 上存在4个不同的实根,则实数a 的取值范围为________. (2) 已知函数f (x )=x 2+|x -a |,g (x )=(2a -1)x +a ln x ,若函数y =f (x )与函数

y =g (x )的图象恰好有2个不同的交点,则实数a 的取值范围为________. 点评: 【思维变式题组训练】 1. 已知函数f (x )=????? 2x -1, x ≥2,2, 1≤x < 2.若方程f (x )=ax +1恰有一个解时,则实数a 的取值范围为________. 2. 设函数f (x )=??? x -1e x , x ≥a ,-x -1, x

函数的零点问题

函数零点问题的求解 【教学目标】 知识与技能: 1.理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数 零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 过程与方法: 1.函数零点反映了函数和方程的联系,函数零点与方程的根能相互转化,能把方程问题合理 转化为函数问题进行解决. 2.函数的零点问题的解决涉及到分类讨论,数形结合,化归转化等数学思想方法,有效提升了 学生的数学思想方法的应用. 情感、态度与价值观: 1.培养学生认真、耐心、严谨的数学品质; 2.让学生在自我解决问题的过程中,体验成功的喜悦. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理问题的意识. 【教学难点】 根据函数零点所在的区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 【教学过程】 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2. 零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有

专题 含参函数的零点问题

含参函数的零点问题 含参函数的零点问题常以超越方程、分段函数等为载体,达到考察函数性质、函数零点的个数、参数的范围和通过函数性质求解不等式问题等目的.要注意函数的零点、方程的根、不等式的解集三者之间的关系,进行彼此之间的转化是解决该类题的关键,等价转化是这类问题的难点.解决该类问题的途径往往是根据函数的性质作出示意图,利用数形结合研究分界位置,结合函数、方程、不等式刻画边界位置,其间要注意导数的应用. 例1已知函数f (x )=x 2+ax (a ∈R),g (x )=????? f (x ), x ≥0,f ′(x ), x <0.若方程g (f (x ))=0有4 个不等的实根,则a 的取值范围是________. 例2(1) 若关于x 的方程|x 4-x 3 |=ax 在R 上存在4个不同的实根,则实数a 的取值范围为________. (2) 已知函数f (x )=x 2+|x -a |,g (x )=(2a -1)x +a ln x ,若函数y =f (x )与函数y =g (x )的图象恰好有2个不同的交点,则实数a 的取值范围为________. 思维变式题组训练 1. 已知函数f (x )=??? 2x -1, x ≥2,2, 1≤x < 2. 若方程f (x )=ax +1恰有一个解时,则实数 a 的取值范围为________.

2. 设函数f (x )=????? x -1e x , x ≥a ,-x -1, x 0,若关于x 的方程f (x )=kx +2有且只 有4个不同解,则实数k 的取值构成的取值集合为________. 强化训练 1. 若方程ln x +x -4=0在区间(a ,b )(a ,b ∈Z ,且b -a =1)上有一根,则a 的值为________.

函数零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用 函数观点处理问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). < A.()2,1-- B.()1,0- C.()0,1 D.() 1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()11e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选 C. 二、 基础知识回顾

1.函数零点概念 对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 有零点吗 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗 · 解法二:几何解法 (1). ()e 2x f x x =+- 可化为2x e x =-+. 画出函数x y e =和 2y x =-+的图象,可观察得出C 正确. ) )0=有实数根

函数方程与零点(精)

函数的零点 .【高考考情解读】常考查:1.结合函数与方程的关系,求函数的零点.2.结合根的存在性定理或函数图像,对函数是否存在零点或存在零点的个数进行判断.3.判定函数零点(方程的根)所在的区间.4.利用零点(方程实根)的存在求相关参数的值或取值范围.高考题突出数形结合思想与函数方程思想的考查,以客观题的形式为主. (1)函数与方程的关系:函数f (x )有零点?方程f (x )=0有根?函数f (x )的图象与x 轴有交点?f (x )与g (x )有交点?f (x )=g (x ). 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y =f(x)的图像与函数y =g(x)的图像交点的横坐标. (2)函数f (x )的零点存在性定理:如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且有f (a )·f (b )<0,那么,函数f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使f (c )=0. 注:①如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且函数f (x )在区间[a ,b ]上是一个单调函数,那么当f (a )·f (b )<0时,函数f (x )在区间(a ,b )内有唯一的零点,即存在唯一的c ∈(a ,b ),使f (c )=0. ②如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且有f (a )·f (b )>0,那么,函数f (x )在区间(a ,b )内不一定没有零点. ③如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,那么当函数f (x )在区间(a ,b )内有零点时不一定有f (a )·f (b )<0,也可能有f (a )·f (b )>0. (3)判定函数零点的方法:①解方程法;②利用零点存在性定理判定;③数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解. (2013·重庆)若a 0), 2x +1(x ≤0),的零点个数是 ( )

函数的含参零点问题

函数的含参零点问题 根据函数的零点情况,讨论参数的范围是高考的重点和难点.对于此类题目,我们常利用零点定理、数形结合、函数单调性与分离参数等思想方法来求解. [典例] (2014·全国卷Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为( ) A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) [答案] B [思路点拨] 本题的实质是函数f (x )存在唯一的零点x 0∈(0,+∞),因此可利用其代数特征转化为方程有唯一的正根来构思解析,也可以从零点本身的几何特征入手,将其转化为曲线的交点问题来突破,还可以利用选项的唯一性选取特例求解. [方法演示] 法一 单调性法:利用函数的单调性求解 由已知得,a ≠0,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x =0或x =2 a . 当a >0时,x ∈(-∞,0),f ′(x )>0;x ∈????0,2a ,f ′(x )<0;x ∈2 a ,+∞,f ′(x )>0.所以函数f (x )在(-∞,0)和2a ,+∞上单调递增,在0,2 a 上单调递减,且f (0)=1>0,故f (x )有小于零的零点,不 符合题意. 当a <0时,x ∈-∞,2a ,f ′(x )<0;x ∈2 a ,0,f ′(x )>0;x ∈(0,+∞),f ′(x )<0.所以函数f (x )在 -∞,2a 和(0,+∞)上单调递减,在2 a ,0上单调递增,所以要使f (x )有唯一的零点x 0且x 0>0,只需 f 2 a >0,即a 2>4,解得a <-2. 法二 数形结合法:转化为直线与曲线的位置关系求解 由ax 3-3x 2+1=0可知x ≠0,可得ax =3-1x 2,作出y =3-1 x 2的图 象如图所示,转动直线y =ax ,显然a >0时不成立;当a <0,直线y =ax 与左边的曲线相切时,设切点为t,3-1 t 2,其中t <0,则切线方程为y -3-1t 2=2t 3(x -t ).又切线过原点,则有0-3-1t 2=2 t 3(0-t ),解得t =-

相关文档
最新文档