正态分布

正态分布
正态分布

正态分布

1.关于正态分布N (μ,σ2),下列说法正确的是( )

A .随机变量落在区间长度为3σ的区间之外是一个小概率事件

B .随机变量落在区间长度为6σ的区间之外是一个小概率事件

C .随机变量落在(-3σ,3σ)之外是一个小概率事件

D .随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件

2.已知随机变量ξ服从正态分布N (4,σ2),则P (ξ>4)=( )

A.15 B .14 C.13 D .12 3.若随机变量X 的密度函数为f (x )=12π·e -x 22,X 在区间(-2,-1)和(1,2)内取值的概率分别为p 1,p 2,则p 1,p 2的关系为( )

A .p 1>p 2

B .p 1

C .p 1=p 2

D .不确定

4.若随机变量X ~N (1,9),则D ????13X 的值是( )

A .1

B .3

C .9

D .13

5.已知随机变量X 服从正态分布N (μ,σ2),且P (μ-2σ

+σ)=0.682 6,若μ=4,σ=1,则P (5

A .0.135 8

B .0.135 9

C .0.271 6

D .0.271 8

6.已知随机变量ξ服从正态分布N (3,σ2),则P (ξ<3)等于( )

A.15

B.14

C.13

D.12

7.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ≤0)等于( )

A .0.16

B .0.32

C .0.68

D .0.84

8.设随机变量ξ~N (μ,σ2),且P (ξ≤c )=P (ξ>c )=p ,则p 的值为( )

A .0

B .0.5

C .1

D .不确定

9.已知随机变量X ~N (0,σ2).若P (X >2)=0.023,则P (-2≤X ≤2)=( )

A .0.477

B .0.628

C .0.954

D .0.977

10.某地区高二女生的体重X (单位:kg)服从正态分布N (50,25),若该地区共有高二女生2 000人,则体重在50 kg ~65 kg 间的女生共有( )

A .683人

B .954人

C .997人

D .994人

11.图是三个正态分布X ~N (0,0.25),Y ~N (0,1),Z ~N (0,4)的密度曲线,则三个随机变量X ,Y ,Z 对应曲线分别是图中的________、________、________.

12.设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ

13.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(2,+∞)上取值的概率为________.

9.设X ~N (0,1).

(1)求P(-1<X≤1);

(2)求P(0<X≤2).

14.一批电阻的阻值X服从正态分布N(1 000,52)(Ω).今从甲、乙两箱出厂成品中各随机抽取一个电阻,测得阻值分别为1 011 Ω和982 Ω,可以认为()

A.甲、乙两箱电阻均可出厂

B.甲、乙两箱电阻均不可出厂

C.甲电阻箱可出厂,乙电阻箱不可出厂

D.甲电阻箱不可出厂,乙电阻箱可出厂

15.设随机变量X~N(1,22),则Y=3X-1服从的总体分布可记为________.12.抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分.已知P(400<X<450)=0.3,则P(550<X<600)=________.

16.已知某种零件的尺寸X(单位:mm)服从正态分布,其正态曲线在(0,80)上是增函数,在

[80,+∞)上是减函数,且f(80)=1

82π

.

(1)求概率密度函数;

(2)估计尺寸在72 ~88 mm间的零件大约占总数的百分之几?

标准正态分布表

标准正态分布表 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

标准正态分布表

4432198653 1.80.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0.970 6 1.90.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0.975 6 0.976 2 0.976 7 20.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.10.982 1 0.982 6 0.983 0.983 4 0.983 8 0.984 2 0.984 6 0.985 0.985 4 0.985 7 2.20.986 1 0.986 4 0.986 8 0.987 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.989 2.30.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.40.991 8 0.992 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.50.993 8 0.994 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.60.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0.996 1 0.996 2 0.996 3 0.996 4 2.70.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0.997 1 0.997 2 0.997 3 0.997 4 2.80.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0.998 1 2.90.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x00.10.20.30.40.50.60.70.80.9 30.998 7 0.999 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 正态分布概率表 Φ( u ) =

正态概率图(normal probability plot)

正态概率图(normal probability plot) 方法演变:概率图,分位数-分位数图( Q- Q) 概述 正态概率图用于检查一组数据是否服从正态分布。是实数与正态分布数据之间函数关系的散点图。如果这组实数服从正态分布,正态概率图将是一条直线。通常,概率图也可以用于确定一组数据是否服从任一已知分布,如二项分布或泊松分布。 适用场合 ·当你采用的工具或方法需要使用服从正态分布的数据时; ·当有50个或更多的数据点,为了获得更好的结果时。 例如: ·确定一个样本图是否适用于该数据; ·当选择作X和R图的样本容量,以确定样本容量是否足够大到样本均值服从正态分布时;·在计算过程能力指数Cp或者Cpk之前; ·在选择一种只对正态分布有效的假设检验之前。 实施步骤 通常,我们只需简单地把数据输入绘图的软件,就会产生需要的图。下面将详述计算过程,这样就可以知道计算机程序是怎么来编译的了,并且我们也可以自己画简单的图。 1将数据从小到大排列,并从1~n标号。 2计算每个值的分位数。i是序号: 分位数=(i-0.5)/n 3找与每个分位数匹配的正态分布值。把分位数记到正态分布概率表下面的表A.1里面。然后在表的左边和顶部找到对应的z值。 4根据散点图中的每对数据值作图:每列数据值对应个z值。数据值对应于y轴,正态分位数z值对应于x轴。将在平面图上得到n个点。 5画一条拟合大多数点的直线。如果数据严格意义上服从正态分布,点将形或一条直线。将点形成的图形与画的直线相比较,判断数据拟合正态分布的好坏。请参阅注意事项中的典型图

形。可以计算相关系数来判断这条直线和点拟合的好坏。 示例 为了便于下面的计算,我们仅采用20个数据。表5. 12中有按次序排好的20个 值,列上标明“过程数据”。 下一步将计算分位数。如第一个值9,计算如下: 分位数=(i-0.5)/n=(1-0.5)/20=0.5/20=0.025 同理,第2个值,计算如下: 分位数=(i-0.5)/n=(2-0.5)/20=1.5/20=0.075 可以按下面的模式去计算:第3个分位数=2.5÷20,第4个分位数=3 5÷20 以此类推直到最后1个分位数=19. 5÷20。 现在可以在正态分布概率表中查找z值。z的前两 个阿拉伯数字在表的最左边一列,最后1个阿拉伯数 字在表的最顶端一行。如第1个分位数=0. 025,它位 于-1.9在行与0.06所在列的交叉处,故z=-1.96。 用相同的方式找到每个分位数。 如果分位数在表的两个值之间,将需要用插值法 进行求解。例如:第4个分位数为0. 175,它位于0.1736 与0.1762之间。0.1736对应的z值为-0.94,0.1762 对应的z值为-0.93,故 这两数的中间值为z=-0.935。 现在,可以用过程数据和相应的z值作图。图表5. 127显示了结果和穿过这些点的直线。注意:在图形的两端,点位于直线的上侧。这属于典型的右偏态数据。图表5.128显示了数据的直方图,可进行比较。 概率图( probability plot) 该方法可以用于检验任何数据的已知分布。这时我们不是在正态分布概率表中查找分位数,而是在感兴趣的已知分布表中查找它们。 分位数-分位数图(quantile-quantile plot) 同理,任意两个数据集都可以通过比较来判断是否服从同一分布。计算每个分布的分位数。一个数据集对应于x轴,另一个对应于y轴。作一条45°的参照线。如果这两个数据集来自同一分布,那么这些点就会靠近这条参照线。 注意事项 ·绘制正态概率图有很多方法。除了这里给定的程序以外,正态分布还可以用概率和百分数来表示。实际的数据可以先进行标准化或者直接标在x轴上。 ·如果此时这些数据形成一条直线,那么该正态分布的均值就是直线在y轴截距,标准差就是直线斜率。 ·对于正态概率图,图表5.129显示了一些常见的变形图形。 短尾分布:如果尾部比正常的短,则点所形成的图形左边朝直线上方弯曲,右边朝直线下方弯曲——如果倾斜向右看,图形呈S型。表明数据比标准正态分布时候更加集中靠近均值。 长尾分布:如果尾部比正常的长,则点所形成的图形左边朝直线下方弯曲,右边朝直线上方弯曲——如果倾斜向右看,图形呈倒S型。表明数据比标准正态分布时候有更多偏离的数据。

(完整版)t分布的概念及表和查表方法.doc

t分布介绍 在概率论和统计学中,学生 t - 分布(t -distribution ),可简称为 t 分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。 t 分布曲线形态与 n(确切地说与自由度 df )大小有关。与标准正态分布曲线相比,自由度df 越小, t 分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度 df 愈大, t 分布曲线愈接近正态分布曲线,当自由度 df= ∞时, t 分布曲线为标准正态分布曲线。 中文名t 分布应用在对呈正态分布的总体 外文名t -distribution 别称学生 t 分布 学科概率论和统计学相关术语t 检验 目录 1历史 2定义 3扩展 4特征 5置信区间 6计算 历史 在概率论和统计学中,学生 t -分布( Student's t-distribution )经常应用在对呈正态分布的总体的均值进行估计。它是对两个样本均值差异进行显著性测试的学生t 测定的基础。 t 检定改进了Z 检定(en:Z-test ),不论样本数量大或小皆可应用。在样本数量大(超过 120 等)时,可以应用Z 检定,但 Z 检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t 检定。在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t 检定。 当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。 学生 t-分布可简称为t 分布。其推导由威廉·戈塞于 1908 年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生(Student )这一笔名。之后t 检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。 定义

如何检验数据是否服从正态分布

如何检验数据是否服从正态分布 一、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 以上两种方法以Q-Q图为佳,效率较高。 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 二、计算法 1、偏度系数(Skewness)和峰度系数(Kurtosis) 计算公式: g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。两种检验同时得出U0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。 2、非参数检验方法 非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W 检验)。 SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。 SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。对于无权重或整数权重,在加权样本大小位于3和5000之间时,计算该统计量。由此可见,部分SPSS教材里面关于“Shapiro –Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。 对于此两种检验,如果P值大于0.05,表明资料服从正态分布。 三、SPSS操作示例

标准正态分布表

标准正态分布表 x 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0 0.500 0 0.504 0 0.508 0 0.512 0 0.516 0 0.519 9 0.523 9 0.527 9 0.531 9 0.535 9 0.1 0.539 8 0.543 8 0.547 8 0.551 7 0.555 7 0.559 6 0.563 6 0.567 5 0.571 4 0.575 3 0.2 0.579 3 0.583 2 0.587 1 0.591 0 0.594 8 0.598 7 0.602 6 0.606 4 0.610 3 0.614 1 0.3 0.617 9 0.621 7 0.625 5 0.629 3 0.633 1 0.636 8 0.640 4 0.644 3 0.648 0 0.651 7 0.4 0.655 4 0.659 1 0.662 8 0.666 4 0.670 0 0.673 6 0.677 2 0.680 8 0.684 4 0.687 9 0.5 0.691 5 0.695 0 0.698 5 0.701 9 0.705 4 0.708 8 0.712 3 0.715 7 0.719 0 0.722 4 0.6 0.725 7 0.729 1 0.732 4 0.735 7 0.738 9 0.742 2 0.745 4 0.748 6 0.751 7 0.754 9 0.7 0.758 0 0.761 1 0.764 2 0.767 3 0.770 3 0.773 4 0.776 4 0.779 4 0.782 3 0.785 2 0.8 0.788 1 0.791 0 0.793 9 0.796 7 0.799 5 0.802 3 0.805 1 0.807 8 0.810 6 0.813 3 0.9 0.815 9 0.818 6 0.821 2 0.823 8 0.826 4 0.828 9 0.835 5 0.834 0 0.836 5 0.838 9 1 0.841 3 0.843 8 0.846 1 0.848 5 0.850 8 0.853 1 0.855 4 0.857 7 0.859 9 0.86 2 1 1.1 0.864 3 0.866 5 0.868 6 0.870 8 0.872 9 0.87 4 9 0.877 0 0.879 0 0.881 0 0.883 0 1.2 0.884 9 0.886 9 0.888 8 0.890 7 0.892 5 0.894 4 0.89 6 2 0.898 0 0.899 7 0.901 5 1.3 0.903 2 0.904 9 0.906 6 0.90 8 2 0.90 9 9 0.911 5 0.913 1 0.914 7 0.916 2 0.917 7 1.4 0.919 2 0.920 7 0.922 2 0.923 6 0.925 1 0.926 5 0.927 9 0.929 2 0.930 6 0.931 9 1.5 0.933 2 0.934 5 0.935 7 0.937 0 0.938 2 0.939 4 0.940 6 0.941 8 0.943 0 0.944 1 1.6 0.945 2 0.946 3 0.947 4 0.948 4 0.949 5 0.950 5 0.951 5 0.952 5 0.953 5 0.953 5 1.7 0.955 4 0.956 4 0.957 3 0.958 2 0.959 1 0.959 9 0.960 8 0.961 6 0.962 5 0.963 3 1.8 0.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0 0.970 6 1.9 0.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0 0.975 6 0.976 2 0.976 7 2 0.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.1 0.982 1 0.982 6 0.983 0 0.983 4 0.983 8 0.984 2 0.984 6 0.98 5 0 0.985 4 0.985 7 2.2 0.98 6 1 0.986 4 0.986 8 0.98 7 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.98 9 0 2.3 0.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.4 0.991 8 0.992 0 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.5 0.993 8 0.994 0 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.6 0.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0 0.996 1 0.996 2 0.996 3 0.996 4 2.7 0.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0 0.997 1 0.997 2 0.997 3 0.997 4 2.8 0.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0 0.998 1 2.9 0.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3 0.998 7 0.999 0 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 0

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

标准正态分布

标准正态分布 标准正态分布(英语:standard normal distribution,德语Standardnormalverteilung),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 定义: 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布 特点: 密度函数关于平均值对称 平均值与它的众数(statistical mode)以及中位数(median)同一数值。 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。 95.449974%的面积在平均数左右两个标准差的范围内。 99.730020%的面积在平均数左右三个标准差的范围内。 99.993666%的面积在平均数左右四个标准差的范围内。 函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。 标准偏差:

深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。 在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”

数据不服从正态分布,怎么进行方差分析

方差分析基于三个基本假设,只有符合以下三个假设条件才能进行方差分析 (1)效应的可加性 (2)方差是齐性的 (3)分布的正态性 是否服从正态分布可通过SPSS进行正态性检验,以A、B、C三个自交系发芽实验为例。

如果样本量较小(<50),并且对正态Q-Q图或其它图形方法的结果诠释不够有把握,推荐采用Shapiro-Wilk检验如上图所示。每组自变量都会有一个Shapiro-Wilk正态性检验结果。如果数据符合正态分布,显著性水平应该大于0.05。Shapiro-Wilk检验的无效假设是数据服从正态分布,备择假设是数据不服从正态分布。因此,如果拒绝无效假设(p<0.05),表示数据不服从正态分布。本例中每组正态性检验P值均大于0.05。如果样本量大于50,推荐使用正态Q-Q图等图形方法进行正态判断,因为当样本量较大时,Shapiro-Wilk检验会把稍稍偏离正态分布的数据也标记为有统计学差异,即数据不服从正态分布。Q-Q图中点离线越近,数据越服从正态分布。 若不服从正态分布可进行数据转换,对转换后呈正态分布的数据进行单因素方差分析。当各组因变量的分布形状相同时,正态转换才有可能成功。数据是比例或以百分率表示的,其分布趋向于二项分布,方差分析时应作反正弦转换,用下式把它们转化成一个相应的角度:如发芽率、昆虫死亡率,发病率等。数据转化方式如下图所示:

直接进行分析:由于单因方差分析对于偏离正态分布比较稳健,尤其是在各组样本量相等或近似相等的情况下,而且非正态分布实质上并不影响犯I型错误的概率。因此可以直接进行检验,但是结果中仍需报告对正态分布的偏离。检验结果的比较:将转换后和未转换的原始数据分别进行单因素方差分析,如果二者结论相同,则再对未转换的原始数据进行分析。

标准正态分布查询表

附表1. 标准正态分布表 x0.000.010.020.030.040.050.060.070.080.09 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.90.500 0 0.539 8 0.579 3 0.617 9 0.655 4 0.691 5 0.725 7 0.758 0 0.788 1 0.815 9 0.841 3 0.864 3 0.884 9 0.903 2 0.919 2 0.933 2 0.945 2 0.955 4 0.964 1 0.971 3 0.977 2 0.982 1 0.986 1 0.989 3 0.991 8 0.993 8 0.995 3 0.996 5 0.997 4 0.998 1 0.504 0 0.543 8 0.583 2 0.621 7 0.659 1 0.695 0 0.729 1 0.761 1 0.791 0 0.818 6 0.843 8 0.866 5 0.886 9 0.904 9 0.920 7 0.934 5 0.946 3 0.956 4 0.964 8 0.971 9 0.977 8 0.982 6 0.986 4 0.989 6 0.992 0 0.994 0 0.995 5 0.996 6 0.997 5 0.998 2 0.508 0 0.547 8 0.587 1 0.625 5 0.662 8 0.698 5 0.732 4 0.764 2 0.793 9 0.821 2 0.846 1 0.868 6 0.888 8 0.906 6 0.922 2 0.935 7 0.947 4 0.957 3 0.965 6 0.972 6 0.978 3 0.983 0 0.986 8 0.989 8 0.992 2 0.994 1 0.995 6 0.996 7 0.997 6 0.998 2 0.512 0 0.551 7 0.591 0 0.629 3 0.666 4 0.701 9 0.735 7 0.767 3 0.796 7 0.823 8 0.848 5 0.870 8 0.890 7 0.908 2 0.923 6 0.937 0 0.948 4 0.958 2 0.966 4 0.973 2 0.978 8 0.983 4 0.987 1 0.990 1 0.992 5 0.994 3 0.995 7 0.996 8 0.997 7 0.998 3 0.516 0 0.555 7 0.594 8 0.633 1 0.670 0 0.705 4 0.738 9 0.770 3 0.799 5 0.826 4 0.850 8 0.872 9 0.892 5 0.909 9 0.925 1 0.938 2 0.949 5 0.959 1 0.967 2 0.973 8 0.979 3 0.983 8 0.987 4 0.990 4 0.992 7 0.994 5 0.995 9 0.996 9 0.997 7 0.998 4 0.519 9 0.559 6 0.598 7 0.636 8 0.673 6 0.708 8 0.742 2 0.773 4 0.802 3 0.828 9 0.853 1 0.874 9 0.894 4 0.911 5 0.926 5 0.939 4 0.950 5 0.959 9 0.967 8 0.974 4 0.979 8 0.984 2 0.987 8 0.990 6 0.992 9 0.994 6 0.996 0 0.997 0 0.997 8 0.998 4 0.523 9 0.563 6 0.602 6 0.640 4 0.677 2 0.712 3 0.745 4 0.776 4 0.805 1 0.835 5 0.855 4 0.877 0 0.896 2 0.913 1 0.927 9 0.940 6 0.951 5 0.960 8 0.968 6 0.975 0 0.980 3 0.984 6 0.988 1 0.990 9 0.993 1 0.994 8 0.996 1 0.997 1 0.997 9 0.998 5 0.527 9 0.567 5 0.606 4 0.644 3 0.680 8 0.715 7 0.748 6 0.779 4 0.807 8 0.834 0 0.857 7 0.879 0 0.898 0 0.914 7 0.929 2 0.941 8 0.952 5 0.961 6 0.969 3 0.975 6 0.980 8 0.985 0 0.988 4 0.991 1 0.993 2 0.994 9 0.996 2 0.997 2 0.997 9 0.998 5 0.531 9 0.571 4 0.610 3 0.648 0 0.684 4 0.719 0 0.751 7 0.782 3 0.810 6 0.836 5 0.859 9 0.881 0 0.899 7 0.916 2 0.930 6 0.943 0 0.953 5 0.962 5 0.970 0 0.976 2 0.981 2 0.985 4 0.988 7 0.991 3 0.993 4 0.995 1 0.996 3 0.997 3 0.998 0 0.998 6 0.535 9 0.575 3 0.614 1 0.651 7 0.687 9 0.722 4 0.754 9 0.785 2 0.813 3 0.838 9 0.862 1 0.883 0 0.901 5 0.917 7 0.931 9 0.944 1 0.953 5 0.963 3 0.970 6 0.976 7 0.981 7 0.985 7 0.989 0 0.991 6 0.993 6 0.995 2 0.996 4 0.997 4 0.998 1 0.998 6 x0.00.10.20.30.40.50.60.70.80.9 30.998 70.999 00.999 30.999 50.999 70.999 80.999 80.999 90.999 9 1.000 0

卡方分布概念及表和查表方法

若n个相互独立的随机变量ξ?,ξ?,...,ξn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。 目录 1简介 2定义 3性质 4概率表 简介 分布在数理统计中具有重要意义。分布是由阿贝(Abbe)于1863年首先提出的,后来由海尔墨特(Hermert)和现代统计学的奠基人之一的卡·皮尔逊(C K·Pearson)分别于1875年和1900年推导出来,是统计学中的一个非常有用的著名分布。 定义 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为分布(chi-square distribution), 卡方分布是由正态分布构造而成的一个新的分布,当自由度很大时,分布近似为正态分布。

对于任意正整数x,自由度为的卡方分布是一个随机变量X的机率分布。 性质 1) 分布在第一象限内,卡方值都是正值,呈正偏态(右偏态),随着参数 的增大,分布趋近于正态分布;卡方分布密度曲线下的面积都是1。 2) 分布的均值与方差可以看出,随着自由度的增大,分布向正无穷方向延伸(因为均值越来越大),分布曲线也越来越低阔(因为方差越来越大)。 3)不同的自由度决定不同的卡方分布,自由度越小,分布越偏斜。 4) 若互相独立,则:服从分布,自由度为 。 5) 分布的均数为自由度,记为 E( ) = 。 6) 分布的方差为2倍的自由度( ),记为 D( ) = 。 概率表 分布不象正态分布那样将所有正态分布的查表都转化为标准正态分布去查,在 分布中得对每个分布编制相应的概率值,这通过分布表中列出不同的自由度来表示, 查分布概率表时,按自由度及相应的概率去找到对应的值。如上图所示的单侧概率(7)=的查表方法就是,在第一列找到自由度7这一行,在第一行中找到概率这一列,行列的交叉处即是。 表中所给值直接只能查单侧概率值,可以变化一下来查双侧概率值。例如,要在自由度为7的卡方分布中,得到双侧概率为所对应的上下端点可以这样来考虑:双侧概率指的是在

正态分布

正态分布 1.关于正态分布N (μ,σ2),下列说法正确的是( ) A .随机变量落在区间长度为3σ的区间之外是一个小概率事件 B .随机变量落在区间长度为6σ的区间之外是一个小概率事件 C .随机变量落在(-3σ,3σ)之外是一个小概率事件 D .随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件 2.已知随机变量ξ服从正态分布N (4,σ2),则P (ξ>4)=( ) A.15 B .14 C.13 D .12 3.若随机变量X 的密度函数为f (x )=12π·e -x 22,X 在区间(-2,-1)和(1,2)内取值的概率分别为p 1,p 2,则p 1,p 2的关系为( ) A .p 1>p 2 B .p 1

c )=p ,则p 的值为( ) A .0 B .0.5 C .1 D .不确定 9.已知随机变量X ~N (0,σ2).若P (X >2)=0.023,则P (-2≤X ≤2)=( ) A .0.477 B .0.628 C .0.954 D .0.977 10.某地区高二女生的体重X (单位:kg)服从正态分布N (50,25),若该地区共有高二女生2 000人,则体重在50 kg ~65 kg 间的女生共有( ) A .683人 B .954人 C .997人 D .994人 11.图是三个正态分布X ~N (0,0.25),Y ~N (0,1),Z ~N (0,4)的密度曲线,则三个随机变量X ,Y ,Z 对应曲线分别是图中的________、________、________. 12.设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ

标准正态分布表

标准正态分布表 0.000.010.020.030.040.050.060.070.080.09 0.00.50000.50400.50800.51200.51600.51990.52390.52790.53190.5359 0.10.53980.54380.54780.55170.55570.55960.56360.56750.57140.5753 0.20.57930.58320.58710.59100.59480.59870.60260.60640.61030.6141 0.30.61790.62170.62550.62930.63310.63680.64060.64430.64800.6517 0.40.65540.65910.66280.66640.67000.67360.67720.68080.68440.6879 0.50.69150.69500.69850.70190.70540.70880.71230.71570.71900.7224 0.60.72570.72910.73240.73570.73890.74220.74540.74860.75170.7549 0.70.75800.76110.76420.76730.77040.77340.77640.77940.78230.7852 0.80.78810.79100.79390.79670.79950.80230.80510.80780.81060.8133 0.90.81590.81860.82120.82380.82640.82890.83150.83400.83650.8389 1.00.84130.84380.84610.84850.85080.85310.85540.85770.85990.8621 1.10.86430.86650.86860.87080.87290.87490.87700.87900.88100.8830 1.20.88490.88690.88880.89070.89250.89440.89620.89800.89970.9015 1.30.90320.90490.90660.90820.90990.91150.91310.91470.91620.9177 1.40.91920.92070.92220.92360.92510.92650.92790.92920.93060.9319 1.50.93320.93450.93570.93700.93820.93940.94060.94180.94290.9441 1.60.94520.94630.94740.94840.94950.95050.95150.95250.95350.9545 1.70.95540.95640.95730.95820.95910.95990.96080.96160.96250.9633 1.80.96410.96490.96560.96640.96710.96780.96860.96930.96990.9706 1.90.97130.97190.97260.97320.97380.97440.97500.97560.97610.9767 2.00.97720.97780.97830.97880.97930.97980.98030.98080.98120.9817 2.10.98210.98260.98300.98340.98380.98420.98460.98500.98540.9857 2.20.98610.98640.98680.98710.98750.98780.98810.98840.98870.9890 2.30.98930.98960.98980.99010.99040.99060.99090.99110.99130.9916 2.40.99180.99200.99220.99250.99270.99290.99310.99320.99340.9936 2.50.99380.99400.99410.99430.99450.99460.99480.99490.99510.9952 2.60.99530.99550.99560.99570.99590.99600.99610.99620.99630.9964 2.70.99650.99660.99670.99680.99690.99700.99710.99720.99730.9974 2.80.99740.99750.99760.99770.99770.99780.99790.99790.99800.9981 2.90.99810.99820.99820.99830.99840.99840.99850.99850.99860.9986 3.00.99870.99870.99870.99880.99880.99890.99890.99890.99900.9990

正态分布分析

正态分布 以平均值为中心呈对称分布的钟形曲线。正态分布是最常见的统计分布,因为许多物理、生物和社会方面的测量值都自然近似于正态。许多统计分析均要求数据来自正态分布总体。 例如,居住在宾夕法尼亚州的所有成年男性的身高近似于正态分布。因此,大多数男性的身高都将接近于 69 英寸的平均身高。高于和矮于 69 英寸的男性的数量相近。只有一小部分身材特别高或特别矮。 平均值 (μ) 和标准差 (σ) 是定义正态分布的两种参数。平均值是钟形曲线的波峰或中心。标准差决定数据的散布情况。大约有 68% 的观测值与平均值相差不到 +/- 1 个标准差;95% 与平均值相差不到 +/- 2 个标准差;而 99% 的观测值与平均值相差不到 +/- 3 个标准差。 就宾夕法尼亚州男性的身高而言,平均身高为 69 英寸,标准差为 2.5 英寸。 大约68% 的宾夕法尼亚男性身高介于66.5 (μ- 1σ) 和71.5 (μ+ 1σ) 英寸之间。 大约95% 的宾夕法尼亚男性身高介于64 (μ- 2σ) 和74 (μ+ 2σ) 英寸之间。 大约99% 的宾夕法尼亚男性身高介于61.5 (μ- 3σ) 和76.5 (μ+ 3σ) 英寸之间。 过程能力

生产或提供满足根据客户需要定义的规格的产品或服务的能力。例如,影印机制造商要求橡胶辊筒的宽度必须介于 32.523 cm 与 32.527 cm 之间,才能避免卡纸。能力分析揭示了制造过程满足这些规格的程度,并提供有关如何改进该过程和维持改进的见解。 在评估过程能力之前,必须确保过程是稳定的。不稳定的过程是无法预测的。如果过程稳定,则可以预测将来的性能并改进其能力。 应定期测量并分析过程的能力。能力分析有助于回答以下问题: ?过程是否满足客户规格? ?过程将来的性能如何? ?过程是否需要改进? ?过程是保持了这些改进还是回复到了原来的未改进状态? 可使用过程指标(如 Cp、Pp、Cpk 和 Ppk)来分析过程能力。 潜在(组内)能力和整体能力 大多数能力评估都可以分组为两种类别中的一种:潜在(组内)能力和整体能力。每种能力都表示对过程能力的唯一度量。潜在能力通常称为过程的“权利”:它忽略子组之间的差异并表示当消除了子组之间的偏移和漂移时执行过程的方法。另一方面,整体能力是客户所体验到的;它考虑了子组之间的差异。评估潜在能力的能力指标包括 Cp、CPU、CPL 和 Cpk。评估整体能力的能力指标包括 Pp、PPU、PPL、Ppk 和 Cpm。 例如,您检查某一糖果厂的设备,其中包括将特定重量的糖果装入容器的机器。糖果每周从工厂出货一次。为评估此过程的能力,在一周内的每天,对袋子样本进行称重;每个样本在分析中表示一个子组。观察发现,每个子组内的变异性很小,但由于子组平均值每天都有偏移,因此袋子重量的总体变异性很大。因此,整个一周的出货在袋子重量上与给定日期内生产的袋子重量之间存在较大的变异性。在下图中,较小的分布表示连续七天内每天的袋子重量的分布。最上面的分布表示整周的出货,它是子组的合计。

相关文档
最新文档