高中物理 静电场及其应用精选测试卷同步检测(Word版 含答案)

高中物理 静电场及其应用精选测试卷同步检测(Word 版 含答案)

一、第九章 静电场及其应用选择题易错题培优(难)

1.如图所示,在圆心为O 、半径为R 的圆周上等间距分布着三个电荷量均为q 的点电荷a 、b 、c ,其中a 、b 带正电,c 带负电。已知静电力常量为k ,下列说法正确的是

( )

A .a 受到的库仑力大小为2

2

33kq R

B .c 受到的库仑力大小为2

2

33kq

R

C .a 、b 在O 3kq

,方向由O 指向c D .a 、b 、c 在O 点产生的场强为22kq

R

,方向由O 指向c 【答案】BD 【解析】 【分析】 【详解】

AB .根据几何关系得ab 间、bc 间、ac 间的距离

3r R =

根据库仑力的公式得a 、b 、c 间的库仑力大小

22

223q q F k k r R

==

a 受到的两个力夹角为120?,所以a 受到的库仑力为

2

23a q F F k R

==

c 受到的两个力夹角为60?,所以c 受到的库仑力为

2

33c kq F F == 选项A 错误,B 正确;

C .a 、b 在O 点产生的场强大小相等,根据电场强度定义有

02

q E k

R = a 、b 带正电,故a 在O 点产生的场强方向是由a 指向O ,b 在O 点产生的场强方向是由

b 指向O ,由矢量合成得a 、b 在O 点产生的场强大小

2q E k R

=

方向由O →c ,选项C 错误;

D .同理c 在O 点产生的场强大小为

02q

E k R

=

方向由O →c

运用矢量合成法则得a 、b 、c 在O 点产生的场强

22q

E k R

'=

方向O →c 。选项D 正确。 故选BD 。

2.如图()a 所示,光滑绝缘水平面上有甲、乙两个点电荷.0t =时,甲静止,乙以

6m /s 的初速度向甲运动.此后,它们仅在静电力的作用下沿同一直线运动(整个运动过程

中没有接触),它们运动的v t -图像分别如图()b 中甲、乙两曲线所示.则由图线可知( )

A .两电荷的电性一定相反

B .甲、乙两个点电荷的质量之比为2:1

C .在20t ~时间内,两电荷的静电力先减小后增大

D .在30t ~时间内,甲的动能一直增大,乙的动能先减小后增大 【答案】BD 【解析】 【详解】

A .由图象0-t 1段看出,甲从静止开始与乙同向运动,说明甲受到了乙的排斥力作用,则知两电荷的电性一定相同,故A 错误.

B .由图示图象可知:v 甲0=0m/s ,v 乙0=6m/s ,v 甲1=v 乙1=2m/s ,两点电荷组成的系统动量守

恒,以向左为正方向,由动量守恒定律得:

m v m v m v m v

+=+

甲甲0乙乙0甲甲1乙乙1

代入数据解得:

m甲:m乙=2:1

故B正确;

C.0~t1时间内两电荷间距离逐渐减小,在t1~t2时间内两电荷间距离逐渐增大,由库仑

定律得知,两电荷间的相互静电力先增大后减小,故C错误.

D.由图象看出,0~t3时间内,甲的速度一直增大,则其动能也一直增大,乙的速度先沿原方向减小,后反向增大,则其动能先减小后增大,故D正确.

3.如右图,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的圆心,.电荷量相等、符号相反的两个电荷分别置于M、N两点,这时O点电场强度的大小为E1;若将N点处的点电荷移至P点,则O点的场强大小变为E2.E1与E2之比为( )

A.1:2 B.2:1 C.D.

【答案】B

【解析】

【分析】

【详解】

试题分析:由得:;若将N点处的点电荷移至P点,则O点的场强大小变为E2,知两点电荷在O点的场强夹角为1200,由矢量的合成知,得:,B对

4.如图所示,a、b、c、d四个质量均为m的带电小球恰好构成“三星拱月”之形,其中a、b、c三个完全相同的带电小球在光滑绝缘水平面内的同一圆周上绕O点做半径为R的匀速圆周运动,三小球所在位置恰好将圆周等分,小球d位于O点正上方h处,且在外力F作用下恰处于静止状态。已知a、b、c三小球的电荷量均为q,d球的电荷量为-6q, ,重力加速度为g,静电力常量为k,则()

2

h R

A.小球a的线速度为

2 3

kq

Rm

B.小球b的角速度为

2

2

3

3

kq

R m

C.小球c的向心加速度大小为

2

3kq

D.外力F竖直向上,大小为

2

2

26kq

R

【答案】C

【解析】

【分析】

【详解】

A.通过分析,a、b、c一定带同种电荷,d与a、b、c一定带异种电荷,对小球a受力分析,在水平面上和竖直面分别如下图,小球最终的合力为

222

1222

3

3

2

2

(3)3(3)

R kq

F F F k k

R

R R R

=-=?-??=

合力提供小球做圆周运动的向心力,有

22

3

=

kq v

m

R

可得

2

3

3

kq

v

mR

=,A错误;

B.合力提供小球做圆周运动的向心力,有

2

2

3kq

mωR

解得

2

3

3

3

kq

ω

mR

=,B错误;

C.合力提供小球做圆周运动的向心力,有

2

3kq

ma

解得

2

2

3

3

kq

a

mR

=,C正确;

D.对d球受力分析,由平衡条件得:

2

22

2

3

(2)3

R

F k mg

R R R

=?+

+

解得

2

2

26kq

mg

R

F+

=,D错误。

故选C。

5.物理学中有些问题的结论不一定必须通过计算才能验证,有时只需通过一定的分析就可以判断结论是否正确.如图所示为两个彼此平行且共轴的半径分别为R1和R2的圆环,两圆环上的电荷量均为q(q>0),而且电荷均匀分布.两圆环的圆心O1和O2相距为2a,连线的中点为O,轴线上的A点在O点右侧与O点相距为r(r

A.

()

()

()

()

33

22

22

22

12

kq a r kq a r

E

R a r R a r

+-

=-

????

+++-

????

B.

()

()

()

()

33

22

22

22

12

kq a r kq a r

E

R a r R a r

+-

=+

????

+++-

????

C.

()()

12

22

22

12

kqR kqR

E

R a r R a r

=-

????

+++-

????

D.

()()

12

33

22

22

22

12

kqR kqR

E

R a r R a r

=-

????

+++-

????

【答案】A

【解析】

题目要求不通过计算,只需通过一定的分析就可以判断结论,所以根据点电荷场强的公式

E=k

2

Q

r

,与选项相对比,寻找不同点,再用极限分析问题的思想方法就可以分析出结果.【详解】

与点电荷的场强公式E=k

2

Q

r

,比较可知,C表达式的单位不是场强的单位,故可以排除C;

当r=a时,右侧圆环在A点产生的场强为零,则A处场强只由左侧圆环上的电荷产生,即场强表达式只有一项,故可排除选项D;

左右两个圆环均带正电,则两个圆环在A点产生的场强应该反向,故可排除B,综上所述,可知A正确.故选A.

6.如图所示:在光滑绝缘水平面上,ABCD分布在边长为L的正方形四个顶点。在A和D处分别固定电荷量为Q的正点电荷,B处固定电荷量为Q的负点电荷,O点为两对角线的交点,静电力常量为k。关于三个点电荷形成的静电场,下列说法中正确的是()

A.O处电场强度大小为

2

2kQ

L

B.C处电场强度大小为

2

kQ

L

C.从O到C的过程中电场强度大小逐渐增大

D.从O到C的过程中电场强度大小先减小后增大

【答案】A

【解析】

【分析】

【详解】

A.A、D两点点电荷在O点的场强相互抵消,故O点的场强大小等于B点的负点电荷Q 在O点产生的场强,即

2

2

2

2

()

O

kQ

E k

L

L

==

B .A 、D 两点点电荷在

C 处的合场强为

122

C Q E L L == 方向OC 方向,B 点的负点电荷Q 在C 点产生的场强为

222C kQ

E k

L

==

方向沿CO 方向,故C 处的场强为

1222

1)

22C C C kQ kQ

E E E L L =-=

-= 方向沿OC 方向,故B 错误;

CD .从O 到C 的过程中电场强度大小先减小后增大再减小,故CD 错误。 故选A 。

7.在雷雨云下沿竖直方向的电场强度为410V/m ,已知一半径为1mm 的雨滴在此电场中不会下落,取重力加速度大小为10m/2s ,水的密度为310kg/3m .这雨滴携带的电荷量的最小值约为 A .2?910-C B .4?910-C

C .6?910-C

D .8?910-C

【答案】B 【解析】 【详解】

带电雨滴在电场力和重力作用下保持静止,根据平衡条件电场力和重力必然等大反向

mg qE = m V ρ=

34

3

V r π=

解得:

9410q C -?=

ACD 、与计算不符,ACD 错误; B 、与计算结果相符,B 正确 【点睛】

本题关键在于电场力和重力平衡,要求熟悉电场力公式和二力平衡条件;要使雨滴不下落,电场力最小要等于重力.

8.如图所示,两个可视为质点的带同种电荷的小球a 和b ,放置在一个光滑绝缘半球面内,已知小球a 和b 的质量分别为m 1、m 2,电荷量分别为q 1、q 2,两球处于平衡状态时α<β.则以下判断正确的是

A .m 1>m 2

B .m 1

C .q 1>q 2

D .q 1

【答案】A 【解析】 【分析】

根据两小球处于平衡状态,通过对两个小球进行受力分析,进行正交分解后,列出关系式,即可解决问题。 【详解】

A 和

B 小球受力分析如下,对小球A :

1cos sin F F θα=库

11sin cos m g F F θα+=库

对小球B :

2cos sin F F θβ=库 22sin cos m g F F θβ+=库

通过上式可知:

12sin sin F F αβ=,

由于αβ<,则sin sin αβ<,所以12F F >,由于cos cos αβ>,则有:

12cos cos F F αβ>

所以有:

12sin sin m g F m g F θθ+>+库库

可推导出:12m m >,故选A 。

【点睛】

考察对物体的受力分析和正交分解的运用。

9.如图所示,小球A 、B 质量均为m ,初始带电荷量均为+q ,都用长为L 的绝缘细线挂在绝缘的竖直墙上O 点,A 球紧靠绝缘的墙壁且其悬线刚好竖直,球B 悬线偏离竖直方向

θ角而静止.如果保持B 球的电荷量不变,使小球A 的电荷量缓慢减小,当两球间距缓慢变为原来的

1

3

时,下列判断正确的是( )

A .小球

B 受到细线的拉力增大 B .小球B 受到细线的拉力变小

C .两球之间的库仑力大小不变

D .小球A 的电荷量减小为原来的

127

【答案】D 【解析】 【详解】

AB.小球B 受力如图所示,两绝缘线的长度都是L ,则△OAB 是等腰三角形,如果保持B 球

的电量不变,使A 球的电量缓慢减小,当两球间距缓慢变为原来的

1

3

时,θ变小,F 减小; 线的拉力T 与重力G 相等,G =T ,即小球B 受到细线的拉力不变;对物体A :

cos()22

A A T G F πθ

=+-

则θ变小,T A 变小;故AB 错误;

CD.小球静止处于平衡状态,当两球间距缓慢变为原来的1/3时,由比例关系可知,库仑力变为原来的1/3,因保持B 球的电量不变,使A 球的电量缓慢减小,由库仑定律

2

A B

Q Q F k

r = 解得:球A 的电量减小为原来的

1

27

,故C 错误,D 正确;

10.一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳分为左右两部分,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称,已知一均匀带电球壳内部任一点的电场强度为零;取无穷远处电势为零,点电荷q 在距离其为r 处

的电势为φ=k

q

r

(q 的正负对应φ的正负)。假设左侧部分在M 点的电场强度为E 1,电势为φ1;右侧部分在M 点的电场强度为E 2,电势为φ2;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4.下列说法正确的是( )

A .若左右两部分的表面积相等,有12E E >,12??>

B .若左右两部分的表面积相等,有12E E <,12??<

C .不论左右两部分的表面积是否相等,总有12E E >,34E E =

D .只有左右两部分的表面积相等,才有12

E E >,34E E = 【答案】C 【解析】 【详解】

A 、设想将右侧半球补充完整,右侧半球在M 点的电场强度向右,因完整均匀带电球壳内部任一点的电场强度为零,可推知左侧半球在M 点的电场强度方向向左,根据对称性和矢量叠加原则可知,E 1方向水平向左,E 2方向水平向右,左侧部分在M 点产生的场强比右侧电荷在M 点产生的场强大,E 1>E 2,根据几何关系可知,分割后的右侧部分各点到M 点的距离均大于左侧部分各点到M 点的距离,根据k q

r

?=,且球面带负电,q 为负,得:φ1<φ2,故AB 错误;

C 、E 1>E 2与左右两个部分的表面积是否相等无关,完整的均匀带电球壳内部任一点的电场强度为零,根据对称性可知,左右半球壳在M 、N 点的电场强度大小都相等,故左半球壳在M 、N 点的电场强度大小相等,方向相同,故C 正确,

D 错误。

11.如图所示,16个电荷量均为+q(q>0)的小球(可视为点电荷),均匀分布在半径为R 的圆周上若将圆周上P 点的一个小球的电荷量换成-2q ,则圆心 0点处的电场强度为

A .22kq

R

,方向沿半径向左 B .

22kq

R

,方向沿半径向右

C .2

3kq

R ,方向沿半径向左 D .

2

3kq

R ,方向沿半径向右 【答案】D 【解析】

该点场强可以看成是与P 对称的那个电荷+q 和P 点的电荷-2q 在该点场强的叠加,根据点电荷的场强公式得+q 的点电荷在圆心O 点处的电场强度大小为2

q

k R ,方向向右,点电荷-2q 在圆心O 点处的电场强度大小为22q k R ,方向向右,所以叠加来是2

3q

k R ,方向沿半径

向右.故选择D.

【点睛】该题考查了场强叠加原理,还有对对称性的认识.由于成圆周对称性,所以如果没改变电荷之前肯定圆心处场强为0,而该点场强是所有电荷在该点场强的叠加,可以把这些电荷归为两类:一种是要移去的电荷,另一种是其他电荷.不管怎样,总之这两种电荷产生的合场强为0,所以只要算出改变的电荷在该点的场强和与它对称的电荷的场强即可得到.

12.如图所示,一倾角为30?的粗糙绝缘斜面固定在水平面上,在斜面的底端A 和顶端B 分别固定等量的同种负电荷。质量为m 、带电荷量为?q 的物块从斜面上的P 点由静止释放,物块向下运动的过程中经过斜面中点O 时速度达到最大值v m ,运动的最低点为Q (图中没有标出),则下列说法正确的是( )

A .P 、Q 两点场强相同

B .U PO = U OQ

C .P 到Q 的过程中,物体先做加速度减小的加速,再做加速度增加的减速运动

D .物块和斜面间的动摩擦因数12

μ= 【答案】C 【解析】 【分析】 【详解】

ABD .物块在斜面上运动到O 点时的速度最大,加速度为零,又电场强度为零,所以有

sin30cos300mg mg μ?-?=

所以物块和斜面间的动摩擦因数为

3tan 3

μθ==

由于运动过程中

sin30cos300mg mg μ?-?=

所以物块从P 点运动到Q 点的过程中受到的合外力为电场力,因此最低点Q 与释放点P 关于O 点对称,根据等量的异种点电荷周围电势的对称性可知,P 、Q 两点的电势相等,则有U OP = U OQ ,根据等量的异种点电荷产生的电场特征可知,P 、Q 两点的场强大小相等,方向相反,故ABD 错误;

C .根据点电荷的电场特点和电场的叠加原理可知,沿斜面从B 到A 电场强度先减小后增大,中点O 的电场强度为零。设物块下滑过程中的加速度为a ,根据牛顿第二定律有

qE ma =

物块下滑的过程中电场力qE 先方向沿斜面向下逐渐减少后沿斜面向上逐渐增加,所以物块的加速度大小先减小后增大,所以P 到O 电荷先做加速度减小的加速运动,O 到Q 电荷做加速度增加的减速运动,故C 正确。 故选C 。

13.如图所示,质量为m 的带电小球A 用绝缘细线悬挂于O 点,另一个相同的带电小球B 固定于O 点的正下方,已知细线长L ,O 到B 点的距离也为L ,平衡时,BO 与AO 间的夹角为45°,已知重力加速度为g ,则下列说法正确的是( )

A .细线对A 球的拉力等于库仑力和重力的合力,因此拉力大于重力

B .两球之间的库仑力大小为22mg -

C .A 球漏了少量电后,细线对A 球的拉力减小

D .A 球漏了少量电后,B 球对A 球的库仑力增大 【答案】B 【解析】 【分析】 【详解】

A .小球A 的受力分析,如图所示

由于力的三角形与OAB 相似,对应边成比例,设AB 间距离为x ,因此

mg T F

l l x

==① 可得

T mg =

A 错误;

B .根据余弦定理,可得

222o 2cos4522x l l l l =+-=-

根据①式可得,库仑力大小

22F mg =-

B 正确;

C .A 球漏了少量电后,力的三角形与OAB 仍相似,根据①式可知,细线对A 球的拉力仍等于mg ,C 错误;

D .根据相似三角形,可得当x 减小时,根据①可知,库仑力也减小,D 错误。 故选B 。

14.如图所示,三个质量均为m 的带电小球(球A 、球B 和球C )被三根不可伸长的绝缘细绳(绳①、绳②和绳③)系于O 点,三球平衡时绳②处于竖直方向,且悬点O 、球A 、球B 和球C 所在位置正好组成一个边长为a 的正方形。已知球A 、球B 和球C 均带正电,

电荷量分别为1q 、2q 和3q ,若2

12kq mg a

=,静电力常量为k ,重力加速度为g ,则下列说

法正确的是( )

A .1q 和3q 可以不相等

B .绳①和绳②的拉力之比为1:2

C .绳②的拉力为2mg

D .122:1q q =: 【答案】B 【解析】 【分析】 【详解】

A .因②竖直,可知两边电荷AC 对

B 的库仑力相等,因距离相等可知A

C 带电量必然相

等,选项A 错误;

BC .因为2

12kq mg a

=,且13q q =,则

1

2CA F mg =

= 对A 受力分析可知绳①的拉力

1132

cos 45cos 4524

T mg mg mg =

+= 对ABC 整体受力分析可得

212cos 453T T mg +=

解得

23

2

T mg =

12T T =:选项B 正确,C 错误;

D .对球B ,设A 对B 以及C 对B 的库仑力均为F ,则

22cos 45T mg F =+

解得

F =

12

2

4

q q k

F a == 结合2

12kq mg a

=可得

12q q =:

选项D 错误。 故选B 。

15.两个等量异种电荷A 、B 固定在绝缘的水平面上,电荷量分别为+Q 和-Q ,俯视图如图所示。一固定在水平桌面的足够长的光滑绝缘管道与A 、B 的连线垂直,且到A 的距离小于到B 的距离,管道内放一个带负电小球P(可视为试探电荷),现将电荷从图示C 点静止释放,C 、D 两点关于O 点(管道与A 、B 连线的交点)对称。小球P 从C 点开始到D 点的运动过程中,下列说法正确的是( )

A .先做减速运动,后做加速运动

B .经过O 点的速度最大,加速度也最大

C .O 点的电势能最小,C 、

D 两点的电势相同 D .C 、D 两点受到的电场力相同 【答案】C 【解析】 【分析】 【详解】

A .根据电场分布和力与运动的关系可知带电小球先做加速运动,后做减速运动,选项A 错误;

B .经过O 点的速度最大,沿着光滑绝缘管道方向上的加速度为零,选项B 错误;

C .带电小球P 在O 点的电势能最小,C 、

D 两点的电势相同,选项C 正确; D .C 、D 两点受到的电场力方向不同,故电场力不同,选项D 错误。 故选C 。

二、第九章 静电场及其应用解答题易错题培优(难)

16.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远

小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G .

①求该双星系统中每个星体的线速度大小v ;

②如果质量分别为m 1和m 2的质点相距为r 时,它们之间的引力势能的表达式为

12

p m m E G

r

=-,求该双星系统的机械能. (2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.假设核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量均为e .已知电荷量分别为+q 1和-q 2的点电荷相距为r 时,它们之间的电势能的表达式为12

p q q E k

r

=-.

①模型Ⅰ、Ⅱ中系统的能量分别用E Ⅰ、 E Ⅱ表示,请推理分析,比较E Ⅰ、 E Ⅱ的大小关系; ②模型Ⅰ、Ⅱ中电子做匀速圆周运动的线

速度分别用v Ⅰ、v Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从线速度的角度分析这样做的合理性.

【答案】(1

)①v =②202M G L -(2)①2

-2ke r

②模型Ⅰ的简化是合理的

【解析】

(1)① 22

002/2

M M v G L L =,解得

v =

②双星系统的动能22

00k 0012222GM GM E M v M L L =?==

,双星系统的引力势能20P GM E L =-,该双星系统的机械能E=E k +E p =2

02M G L - (2)①对于模型Ⅰ:22I 2mv ke r r =,此时电子的动能E k Ⅰ=2

2ke r

又因电势能2pI e E k r =-,所以E Ⅰ= E k Ⅰ+E p Ⅰ=2

-2ke r

对于模型Ⅱ:对电子有:22121mv ke r r =, 解得 22

112

mv r r ke =

对于原子核有:22222Mv ke r r =, 解得 22

222Mv r

r ke =

因为r 1+r 2=r ,所以有2222

1222

+mv r Mv r

r ke ke

= 解得E k Ⅱ=222

1211222ke mv Mv r

+=

又因电势能2p

e E k r =-Ⅱ

,所以E Ⅱ= E k Ⅱ+E p Ⅱ=2

-2ke r

即模型Ⅰ、Ⅱ中系统的能量相等,均为2

-2ke r

②解法一:

模型Ⅰ中:对于电子绕原子核的运动有22I I 2=mv ke m v r r ω=,解得2

I 2

=ke v m r ω

模型Ⅱ中:

对电子有:2

2II 1II 21=mv ke m v r r ω=, 解得2

II 2

1=ke v m r ω

对于原子核有:22

222

=ke Mv M v r r ω=

因ω1=ω2,所以mv Ⅱ=Mv

又因原子核的质量M 远大于电子的质量m ,所以v Ⅱ>>v ,所以可视为M 静止不动,因此ω1=ω2=ω,即可视为v Ⅰ=v Ⅱ.故从线速度的角度分析模型Ⅰ的简化是合理的. ②解法二:

模型Ⅰ中:对于电子绕原子核的运动有22I 2mv ke r r =,解得2

I =ke v mr

模型Ⅱ中:

库仑力提供向心力:2

22122=ke mr Mr r

ωω== (1)

解得

12=r M r m

; 又因为r 1+r 2=r 所以1=M r m M + 2=m

r m M

+ 带入(1)式:()2ke M m rMm

ω+=

所以:()21=?ke M v r r m M m ω=+Ⅱ ()22=?ke m

v r r m M M

ω=+

又因原子核的质量M 远大于电子的质量m ,所以v Ⅱ>>v ,所以可视为M 静止不动;故从线速度的角度分析模型Ⅰ的简化是合理的.

17.如图所示,在绝缘的水平面上,相隔2L 的,A 、B 两点固定有两个电量均为Q 的正点电荷,C 、O 、D 是AB 连线上的三个点,O 为连线的中点,CO=OD=L/2?一质量为m 、电量为q 的带电物块以初速度v 0从c 点出发沿AB 连线向B 运动,运动过程中物块受到大小恒定的阻力作用?当物块运动到O 点时,物块的动能为初动能的n 倍,到达D 点刚好速度为零,然后返回做往复运动,直至最后静止在O 点?已知静电力恒量为k,求: (1)AB 两处的点电荷在c 点产生的电场强度的大小; (2)物块在运动中受到的阻力的大小; (3)带电物块在电场中运动的总路程?

【答案】(1)

(2) (3)

【解析】 【分析】 【详解】

(1)设两个正点电荷在电场中C 点的场强分别为E 1和E 2,在C 点的合场强为E C ;则

12()2kQ E L =

;223()2kQ

E L = 则E C =E 1-E 2 解得:E C =

2

32 9kQ

L

. (2)带电物块从C 点运动到D 点的过程中,先加速后减速.AB 连线上对称点φC =φD ,电场力对带电物块做功为零.设物块受到的阻力为f , 由动能定理有:?fL =0?1

2

mv 02 解得:2

012f mv L

(3)设带电物块从C 到O 点电场力做功为W 电,根据动能定理得:

22

0011222

L W f n mv mv 电=-??-

解得:()201

214

W n mv -电=

设带电物块在电场中运动的总路程为S ,由动能定理有:W 电?fs =0?1

2

mv 02 解得:s=(n+0.5)L 【点睛】

本题考查了动能定理的应用,分析清楚电荷的运动过程,应用动能定理、点电荷的场强公式与场的叠加原理即可正确解题.

18.一带正电的 A 点电荷在电场中某点的电场强度为 4.0×104N/C ,电荷量为+5.0×10-8 C 的 B 点电荷放在该点,求: (1)点电荷在该点受到的电场力?

(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的电场强度? 【答案】(1)3210N -?,方向由A 指向B (2)4410/N C ?,方向由A 指向B 【解析】 【分析】 【详解】 (1)

方向:由A 指向B

(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的场强不变,仍为

方向:由A 指向B

19.如图所示,空间存在方向水平向右的匀强电场,两个可视为点电荷的带电小球P 和Q 用绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,已知匀强电场强度为E ,

两小球之间的距离为L ,PQ 连线与竖直方向之间的夹角为θ,静电常数为k (1)画出小球P 、Q 的受力示意图; (2)求出P 、Q 两小球分别所带的电量。

【答案】(1)P 带负电,Q 带正电;(2)2

sin EL k θ

【解析】 【详解】

(1)依题意得,小球P 、Q 受力示意图如图

根据平衡条件,P 带负电,Q 带正电 ① (2)设P 带电量为-q 1,Q 带电量为q 2 根据库仑定律:

12

2

C q q F k

L = ② 根据牛顿第三定律:

F C =F C / ③

对于P 球: 根据平衡条件:

1sin C q E F θ= ④

解得:

2

1sin EL q k θ

=

⑤ 对于Q 球: 根据平衡条件:

'

2sin c q E F θ= ⑥

解得:

2

2sin EL q k θ

=

20.如图,在足够大的平行金属板间的水平匀强电场中,有一长为L 的轻质绝缘棒OA ,一端可绕O 点在竖直平面内自由转动,另一端A 处有一带负电、电量为q 、质量为m 的小球,当变阻器滑片在P 点处时,棒静止在与竖直方向成30°角的位置,如图所示。已知此时BP 段的电阻为R ,平行金属板间的水平距离为d 。 (1)求此时金属板间电场的场强大小E 1;

(2)若金属板旋转30°(图中虚线表示),并移动滑片P 的位置,欲使棒能静止的位置与竖直方向的夹角不变,BP 段的电阻R ’应调节为多大?

(3)若金属板不转动,将BP 段的电阻突然调节为3R ,则棒摆动中小球最大动能为多少?

【答案】(1)3mg

(2)32

R (3) (2-3)mgL 【解析】 【详解】

(1)由平衡可知

E 1q =mg tan30°

解得

E 1=

3mg

(2)金属板旋转30°后电场强度方向也相应旋转30°,而合力方向仍与竖直方向成30°角,受力如右图所示。

E 1q =mg

解得

E 2=

mg

q

金属板旋转前,两板间电势差

相关文档
最新文档