网络布线测试中的三个关键步骤.

网络布线测试中的三个关键步骤.
网络布线测试中的三个关键步骤.

网络布线测试中的三个关键步骤

步骤1:通断测试是基础

通断测试是测试的基础,是对线路施工的一种最基本的检测。虽然此时只测试线缆的通断和线缆的打线要领能不能正确,但这个步骤不能少。可以运用能手测试仪执行测试。通常这是给布线施工工人运用的一般性线缆检测工具。

步骤2:认证测试最关键

当线缆布线施工完毕后,须要对全部电缆系统执行认证测试。此时要根据国际标准,例如TSB67、ISO11801等,对线缆系统执行彻底测试,以保证所安装的电缆系统符合所设计的标准,如超5类标准、6类标准、超6类标准等。这个流程须要测试各种电气参数,最后要给出每一条链路即每条线缆的测试报告。测试报告中包括了测试的时间、地点、操作人员姓名、运用的标准、测试的结果。测试的参数也很多,比如:WareMap打线图、长度、衰减、近端串扰、衰减串扰比、回波损耗、传输时延、时延偏离、综合近端串扰、远端串扰、等效远端串扰等参数。

每一个参数都代表不同的意思,各个参数之间又不是独立的,而是相互影响的,如果某个参数不符合规范,须要分析原由,然后对模块、配线架、水晶头的打法执行相应的调整或者重新压接。如果用的是假冒伪劣的线缆或者模块,造成很多指标不通过,甚至须要重新敷设线缆,这个工作量是可想而知的。有些时候,即使有能力投入资金和人力,想换线也未必能够换得了,因为工程有很多工序是不可逆的,比如对于更换石膏板吊顶内的线缆是非常困难的。因此,建议大家从公司声誉出发,为公司的验收和售后服务减少不必要的麻烦,多多运用品牌产品,拒绝假冒伪劣。比如,安普、西蒙、康普等国际知名布线品牌都是很好的选择。

测试报告可以根据须要打印成中文。福禄克公司的DSP100/2000/4000都可以执行不同级别线缆的认证测试。

步骤3:抽查测试不可少

施工完毕,须要由第三方对综合布线系统执行抽测,比如质量检测部门。抽测是必不可少的,而且要收取相应的抽测费用,地域间可能存在差别,但基本上是一个信息点要收50元检测费。综合布线系统抽测的比例通常为10%至20%。

在执行测试的流程中,可能出现的疑问主要有如下情况。

接线图未通过原由可能有:两端的接头有断路、短路、交叉、破裂开路;跨接不正确(某些网络须要发送端和接收端跨接,当为这些网络构筑测试链路时,由于设备线路的跨接,测试接线图会出现交叉)。

长度未通过原由可能有:线缆实际长度过长;线缆开路或短路;设备连线及跨接线的总长度过长。

近端串扰未通过原由可能有:近端连接点不牢固;远端连接点短路;外部噪声干扰;链路线缆和接插件的质量、电气性能有疑问或不是同一类产品;器件施工工艺水平有疑问、打线不规范;阻抗不匹配。

衰减未通过原由可能有:长度超长;周围温度过高;不恰当的端接;链路线缆和接插件的质量、电气性能有疑问或不是同一类产品;器件施工工艺水平有疑问、打线不规范;阻抗不匹配。

软件开发的几个关键过程 三

软件开发的几个关键过程三 - 一.软件项目管理(Software Project Management) SW-CMM将项目管理分为两个部分,即软件项目计划(Software Project Planning)和软件项目跟踪及监控(Software Project Tracking and Oversighting)。 软件项目计划的目的是为完成软件工程和管理软件项目制定合理的计划。 软件项目计划包含估计待完成的工作,建立必要的约定和确定进

行该工作的计划。 软件计划计划首先作出有关待完成的工作和其它定义及界定软件项目的约束和目标(由需求管理关键过程区域的实践所建立的)的陈述。软件计划过程包括以下步骤:估计软件工作产品规模及所需的资源,制定时间表,鉴别和评估软件风险和协商约定。为了制定软件计划(即软件开发计划),可能需要重复地通过这些步骤。 该计划提供完成和管理软件项目活动的基础,并按照软件项目的资源、约束和能力,阐述对软件项目的顾客作的约定。 软件项目跟踪和监控的目的是建立对实际进展的适当的可视性,使管理者能在软件项目性能明显偏离软件计划时采取有效措施。

软件项目跟踪和监控包括对照已文档化的估计、约定、和计划评审和跟踪软件完成情况和结果。基于实际的完成情况和结果调整这些计划。 软件项目的已文档化的计划(即软件开发计划,正如在软件项目计划关键过程区域中所描述的)用作跟踪软件活动、传送状态和修订计划的基础。管理者监控软件活动。主要通过在所选出的软件工作产品完成时和在所选择的里程碑处,将实际的软件规模。工作量、成本和时间表与计划相比较,来确定进展情况。当确定未实现软件项目计划时,采取纠正措施。这些措施可以包括修订软件开发计划以反映实际的完成情况和重新计划遗留的工作或者采取改进性能的措施。 二.软件需求(Software Requirement) 需求管理的目的是在顾客和将处理顾客需求的软件项目之间建立对顾客需求的共同理解。

霍尔效应实验和霍尔法测量磁场

DH-MF-SJ组合式磁场综合实验仪 使用说明书 一、概述 DH-MF-SJ组合式磁场综合实验仪用于研究霍尔效应产生的原理及其测量方法,通过施加磁场,可以测出霍尔电压并计算它的灵敏度,以及可以通过测得的灵敏度来计算线圈附近各点的磁场。 二、主要技术性能 1、环境适应性:工作温度 10~35℃; 相对湿度 25~75%。 2、通用磁学测试仪 2.1可调电压源:0~15.00V、10mA; 2.2可调恒流源:0~5.000mA和0~9.999mA可变量程,为霍尔器件 提供工作电流,对于此实验系统默认为0-5.000mA恒流源功能; 2.3电压源和电流源通过电子开关选择设置,实现单独的电压源和电 流源功能; 2.4电流电压调节均采用数字编码开关; 2.5数字电压表:200mV、2V和20V三档,4位半数显,自动量程转换。 3、通用直流电源 3.1直流电源,电压0~30.00V可调;电流0~1.000A可调; 3.2电流电压准确度:0.5%±2个字; 3.3电压粗调和细调,电流粗调和细调均采用数字编码开关。 4、测试架 4.1底板尺寸:780*160mm; 4.2载物台尺寸:320*150mm,用于放置螺线管和双线圈测试样品; 4.3螺线管:线圈匝数1800匝左右,有效长度181mm,等效半径21mm; 4.4双线圈:线圈匝数1400匝(单个),有效直径72mm,二线圈中心 间距 52mm; 4.5移动导轨机构:水平方向0~60cm可调;垂直方向0~36cm可调,最小分辨率1mm; 5、供电电源:AC 220V±10%,总功耗:60VA。 三、仪器构成及使用说明

DH-MF-SJ组合式磁场综合实验仪由实验测试台、双线圈、螺线管、通用磁学测试仪、通用直流电源以及测试线等组成。 1、测试架 1.双线圈; 2.载物台(上面绘制坐标轴线); 3,4 双线圈励磁电源输入接口; 5.霍尔元件; 6.立杆; 7.刻度尺; 8.传感器杆(后端引出2组线,一组 为传感器工作电流Is,输出端号码管标识为Input;一组为霍尔电势V H输出,输出端号码管标识为Output); 9.滑座; 10.导轨; 11. 螺线管励磁电源输入接口; 12.螺线管; 13.霍尔工作电流I S输入,号码管标有Input(红正,黑负); 14.霍尔电势V H输出,号码管标有Output(红正,黑负); 15.底座 图1-1组合式磁场综合实验仪(测试架图) 2、通用磁学测试仪(DH0802) 1.电压或电流显示窗口(霍尔元件工作电流或电压指示); 2.恒流源指示灯; 3.恒压源指示灯; 4.调节旋钮(左右旋转用于减小或增加输出;按下弹起按钮用于

CMMI3级过程域(PA)

被访谈角色问题说明 -CMMI3 1)高层经理: 高层经理Sheet页内容; 2)EPG人员: 公共实践、OPD、OPF sheet页内容;3)培训管理员: 公共实践、OT sheet页内容。 4)项目经理: 公共实践、立项与结项、PP、PMC、 IPM、RSKM、MA、REQM、VER、DAR sheet页内容。 5)需求人员: 公共实践、RD、REQM、VER、DAR sheet 页内容; 6)设计开发人员: 公共实践、TS、VER、DAR、PI sheet 页内容; 7)测试人员: 公共实践、VAL、VER sheet页内容;8)配置管理员: 公共实践、CM、VER sheet页内容;9)QA人员: 公共实践、PPQA、VER sheet页内容。CMMI3级过程域(PA): 过程管理 1、OPD:(Organizational Process Definition)组织级过程定义。建立和 维护有用的组织过程资产。2、OPF:(Organizational Process Focus) 组织级过程焦点。在理解现有过程强 项和弱项的基础上计划和实施组织过 程改善。 3、OT:(Organizational Training)组织培 训管理。增加开发人员的技能和知识, 使他们能有效地执行他们的任务。 项目管理 4、PP:(Project Plan)项目计划。保证在 正确的时间有正确的资源可用。为每 个人员分配任务。协调人员。根据实 际情况,调整项目。 5、PMC:(Project Monitoring and Control) 项目监督与控制。通过项目的跟踪与 监控活动,及时反映项目的进度、费 用、风险、规模、关键计算机资源及 工作量等情况,通过对跟踪结果的分 析,依据跟踪与监控策略采取有效的 行动,使项目组能在既定的时间、费 用、质量要求等情况下完成项目。 6、SAM:(Supplier Agreement Management)供应商协议管理。旨在 对以正式协定的形式从项目之外的供 方采办的产品和服务实施管理。 7、IPM:(Integrated Project Management) 集成项目管理。根据从组织标准过程 剪裁而来的集成的、定义的过程对项 目和利益相关者的介入进行管理。 8、RSKM:(Risk Management)风险管理。 识别潜在的问题,以便策划应对风险 的活动和必要时在整个项目生存周期 中实施这些活动,缓解不利的影响, 实现目标。 工程管理 9、REQM:(Requirements Management) 需求管理。需求管理的目的是在客户 和软件项目之间就需要满足的需求建 立和维护一致的约定。 10、RD:(Requirement Development) 需求开发。需求开发的目的在于定义 系统的边界和功能、非功能需求,以 便涉众(客户、最终用户)和项目组 对所开发的内容达成一致。 11、TS:(Technical Solution)技术解 决方案。在开发、设计和实现满足需 求的解决方案。解决方案的设计和实 现等都围绕产品、产品组件和与过程 有关的产品。 12、PI:(Product Integration)产品集 成。从产品组件组装产品,确保集成 产品功能正确并交付产品。 13、VER:(Verification)验证。验证 确保选定的工作产品满足需求规格。 14、VAL:(Validation)确认。确认证 明产品或产品部件在实际应用下满足 应用要求。 支持管理: 15、CM:(Configuration Management) 配置管理。建立和维护在项目的整个 软件生存周期中软件项目产品的完整 性。 16、PPQA:(Process and Product Quality Assurance)过程和产品质量保 证。为项目组和管理层提供项目过程 和相关工作产品的客观信息。 17、MA:(Measurement and Analysis) 测量与分析。开发和维持度量的能力, 以便支持对管理信息的需要,作为改 进、了解、控制决策。 18、DAR:(Decision Analysis and Resolution)决策分析与解决。应用正 式的评估过程依据指标评估候选方案, 在此基础上进行决策。 总结CMMI3级的几个重要特点: 1) 明确规定了需求开发、设计、编码、 测试、集成等软件开发各过程的要求。 2) 对项目管理提出了更高的要求,要利 用组织级的数据来管理项目。 3) 出现了专门针对组织级的PA,要求有 专门的组织来负责过程改进的工作。 4) 提供了一个做出最佳决策的指导,而 这个方法可以用于软件工程,也可以用于 组织级过程改进。 注意:本次评估中只包含除SAM(Supplier Agreement Management)供应商协议管理 外的17个过程域。 SG:特定目标 SP:特定实践 立项管理文档立项管理(Project Initialization Management,PIM)的目的是:(1)采纳符合 机构最大利益的立项建议被采纳,避免浪费机构 的人力资源、资金、时间等。 【√设计】TS-技术解决方案 【√设计】DAR-决策分析与解决 【√设计、开发】VER(同行评审)-验证 【√开发】PI-产品集成

实验8 霍尔效应法测量磁场A4

实验八 霍尔效应法测量磁场 【实验目的】 1.了解霍尔器件的工作特性。 2.掌握霍尔器件测量磁场的工作原理。 3.用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1.霍尔器件测量磁场的原理 图1 霍尔效应原理 如图1所示,有-N 型半导体材料制成的霍尔传感器,长为L ,宽为b ,厚为d ,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I ,则电子将沿负I 方向以速度运动,此电子将受到垂直方向磁场B 的洛仑兹力m e F ev B =?作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场H E ,该电场对电子的作用力H H F eE =,与m e F ev B =?反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压H U ,此种效应为霍尔效应,由此而产生的电压叫霍尔电压H U ,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 I

如果半导体中电流I 是稳定而均匀的,可以推导出H U 满足: H H H IB U R K IB d =? =?, 式中,H R 为霍耳系数,通常定义/H H K R d =,H K 称为灵敏度。 由H R 和H K 的定义可知,对于一给定的霍耳传感器,H R 和H K 有唯一确定的值,在电流I 不变的情况下,与B 有一一对应关系。 2.误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种方法可直接消除不等势电势差的影响,不用多次改变B 、I 方向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间连接一可变电阻,其滑动端作为另一引出线2,将线路完全接通后,可以调节滑动触头2,使数字电压表所测 电压为零,这样就消除了1、2两引线间的不等势电势差,而且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍尔电压测量部分就采用了这种电路,使得整个实验过程变得较为容易操作,不过实验前要首先进行霍尔输出电压的调零,以消除霍尔器件的“不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差。 3.载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是一系列园线圈并排起来组成的。如果其半径为R 、总长度为L ,单位长度的匝数为n ,并取螺线管的轴线为x 轴,其中心点O 为坐标原点,则 (1)对于无限长螺线管L →∞或L R >>的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: 00B NI μ= 图2

系统测试全过程

我一直感觉系统测试总像马拉松总是测试不完,什么时候上线,什么时候算终点。虽然提交客户了,可是对于质量仍然心里没底,对于测试的效果没有评价的依据。后来经过高人指点,终于领悟到至关重要的精髓:明确测试目标! 如果要将系统进行全面测试,那么就要有一套完整的测试阶段,每个阶段都以测试目标为标准,科学、有序地进行测试,那么测试效率也就会自然而然跟着提高。 测试阶段分为:测试前准备、需求分析、测试计划、测试设计、测试执行、测试结果。 1.测试前准备阶段 主要是相关业务的学习。业务知识是测试的根本依据,只有业务过关了,以后才能有效的进行测试工作。 了解业务步骤: a、了解业务名词; b、对现有系统的学习:功能点、业务场景等; c、分析现有系统数据库,了解数据的走向。 2.需求分析阶段 需求是项目开发的基础,也是测试的依据。所以需求分析一定要做。但是很多公司是没有详细的需求文档的,那如何进行需求分析呢? 此时分析数据库就是一个非常好的方法: a、每张表的索引和约束条件; b、数据的来源、走向; c、数据的存储、变化; d、数据间的关联; e、表与表间的关系; 这些分析都可以为了解业务场景和之后的测试用例设计打好基础。 3.测试计划阶段 我们总是觉得被测试进度紧逼、计划失控、测试不完全等等状态,其实解决这些情况的最好方法就是:制定测试目标。

在计划初期先明确测试目标,制定不同层次目标的执行标准,指导后期设计不同级别的测试用例,跟踪不同级别的缺陷修改。在测试时间较紧情况下,至少可以先把保证所有功能正常操作的最低目标版本先提交给客户,不会再有手忙脚乱,心里没底的状况。 测试目标分为: 最低目标 基本目标 较高目标 最高目标等级别 可以使用表格形式来规范目标准侧,例如: 测试目标准则表 目标 测试范围 需求覆盖率 最低目标:正常的输入+正常的处理过程,有一个正确的输出 (明确的功能点全部列出来) 1.功能: 正常功能 异常功能 单功能 业务场景 非功能:16种测试类型 2.输入覆盖率: 有效无效 处理过程:基本流 备选流

综合布线测试方案(1)

6.系统测试及验收 6.1 测试标准 ●《建筑与建筑群综合布线系统工程设计规范》GB/T 50311-2007; ●《商业建筑线缆标准》EIA/TIA 568C; ●《用户建筑综合布线》ISO/IEC 11801 综上,6类布线测试标准依据TIA/EIA-568-C.2 6类标准要求执行。6.2 被测线路的定义 目前,6类铜缆UTP测试基本按照永久链路方式测试,如下图所示: 链路定义:“基本链路” ?每端一个连接点链路端点Link 链路端点Link 工作区配线间

6.3 测试项目及参数 6.3.1 六类TIA/EIA-568-C.2 测试说明 ? Cat.6要求测试的参数 ? 接线图 ? 长度 ? 衰减 (Attenuation )/插入损耗(Insertion Loss ) ? 近端串扰 (NEXT ) ? 功率和近端串扰 (PS NEXT ) ? 等电平远端串扰 (ELFEXT ) ? 功率和等电平远端串扰 (PS ELFEXT ) ? 回波损耗 (Return Loss ) ? 传播延时 (Propergation Delay ) 链路定义:“永久链路” 链路端点Link 链路端点Link

?延时偏差(Delay Skew) 6.3.2 TIA/EIA-568-C.3光纤测试说明 光纤测试链路 ?测试项目 ◆连通性测试; ◆全程衰减及LC连接头衰减测试; ?测试光源和测试波长 ◆多模光缆使用LED光源,测量850nm和1300nm两种波长 ◆单模光纤使用激光光源,测量1310nm和1550nm两种波长。 6.4 测试仪器 FLUKE公司(世界三大测试仪器公司之一)生产的FLUKE DSP-4300或FLUKE DTX-1800(康普SYSTIMAX SCS系统指定的 测试仪器)作为本工程的测试仪器。 6.5 测试结果 若测试结果表明所有连接(包括光纤连接和双绞线连接)满足测试标准中的要求,可以确认工程合格。

实验十三 霍尔效应测磁场---注意事项及操作步骤(姜黎霞)

实验十三 霍耳效应测磁场 一、注意事项 1. 双刀双掷开关上的连线已经固定连接好,请不要擅自拆卸。 2. 双刀双掷开关引出的导线红“+”、黑“-”,各表头对应的接线柱也是红“+”、黑“-”,连线时双刀双掷开关引出的导线并联到接线柱上,即“红接红,黑接黑”。导线连好后经老师检查,然后开电源。 3. 双刀双掷开关向上合闸规定为“+”,向下合闸规定为“-”。在整个实验过程中,霍耳电压H U 对应的双刀双掷开关向上合闸,固定不变,只有工作电流H S ()I I 和励磁电流M I 对应的双刀双掷开关会要求上、下换向合闸,其中励磁电流M I 对应的双刀双掷开关在合闸时动作要快,否则会产生电火花。 4. 实验结束后,先断电,后拆线。只拆自己连接的部分,其它线路保留。 5. 本实验有两种型号的仪器,工作电流分别表示为H I 或S I ,灵敏度分别表示为 H K 或H S 。 6. 每套仪器的灵敏度不同,具体数值标在仪器箱内的面板上,注意:有一种型号的仪器灵敏度单位不是国际单位制,要化为国际单位制,具体换算是: 1mV /mA KG 10V /A T ?=?( G :高斯,T :特斯拉) 二、操作步骤 1. 将三个双刀双掷开关引出的导线分别并联到与开关名目相同的接线柱上,经老师检查后,打开电源。 2. 将三个双刀双掷开关全部向上合闸,然后调节工作电流H S () 2.00mA I I =,励磁电流M 0.6A I =。注意:(1)励磁电流调节好后就固定了,直到实验结束都不需再调节。(2)有一种型号的仪器工作电流和励磁电流用同一个表头显示,需要用旁边的红色按钮转换。 3. 调节霍耳元件移动螺杆旋钮,测量霍耳元件在电磁铁两极间隙中5个不同任选位置的霍耳电压H U ,并将数据填入表13-1的草表中。

软件测试过程模型

软件测试过程模型 发布时间: 2010-7-27 11:02 作者: 未知来源: 51Testing软件测试网采编 字体: 小中大| 上一篇下一篇| 打印| 我要投稿| 每周一问,答贴有奖 目前主流的开发模型主要有:瀑布模型、原型模型、螺旋模型、增量模型、渐进模型、快速软件开发(RAD)以及Rational统一过程(RUP)等,这些模型对于软件开发过程具有很好的指导作用,但是,非常遗憾的是,在这些过程方法中,并没有充分强调测试的价值,也没有给测试以足够的重视,利用这些模型无法更好地指导测试实践。软件测试是与软件开发紧密相关的一系列有计划的系统性的活动,显然软件测试也需要测试模型去指导实践。下面对主要的模型做一些简单的介绍。 V模型 V模型是最具有代表意义的测试模型。在传统的开发模型中,比如瀑布模型,人们通常把测试过程作为在需求分析、概要设计、详细设计和编码全部完成后的一个阶段,尽管有时测试工作会占用整个项目周期的一半的时间,但是有人仍然认为测试只是一个收尾工作,而不是主要过程。V模型的推出就是对此种认识的改进。V模型是软件开发瀑布模型的变种,它反映了测试活动与分析与分析和设计的关系,从左到右,描述了基本的开发过程和测试行为,非常明确地标明了测试过程中存在的不同级别,并且清楚地描述了这些测试阶段和开发过程期间各阶段的对应关系,如模型图中所示,图中的箭头代表了时间方向,左边下降的是开发过程各阶段,与此相对应的是右边上升的部分,即各测试过程的各个阶段。 V模型的软件测试策略既包括低层测试又包括了高层测试,低层测试是为了源代码的正确性,高层测试是为了使整个系统满足用户的需求。 V模型指出,单元和集成测试是验证程序设计,开发人员和测试组应检测程序的执行是否满足软件设计的要求;系统测试应当验证系统设计,检测系统功能、性能的质量特性是否达到系统设计的指标;由测试人员和用户进行软件的确认测试和验收测试,追溯软件需求说明书进行测试,以确定软件的实现是否满

综合布线系统测试报告

综合布线系统电缆电气性能测试记录编号:01 中国人民解放军FLUKE 2009 年 4 月 工程名称七一三五二部队测试时间仪表型号NetTool II 23 日 网络建设工程NTS2-Pro 施工单位郑州龙达计算机技术有限公司测试部位师部抽检 长电缆屏蔽 序号地址号缆线号设备号 度层连通性 接线图衰减(DB)近端串扰 1 1 号楼 3 服务器3 2 无屏蔽见下图8.6DB 无 2 1 号楼 5 服务器24 无屏蔽见下图9.8DB 无 3 1 号楼9 交换机49 无屏蔽见下图7.6DB 无 4 1 号楼20 交换机5 5 无屏蔽见下图 4.8DB 无 5 2 号楼8 交换机67 无屏蔽见下图 2.6DB 无 6 2 号楼12 交换机31 无屏蔽见下图 6.8DB 无 7 2 号楼20 交换机69 无屏蔽见下图 5.6DB 无 8 2 号楼34 交换机72 无屏蔽见下图 5.7DB 无 9 3 号楼20 交换机32 无屏蔽见下图 6.6DB 无 10 3 号楼24 交换机28 无屏蔽见下图 4.8DB 无 11 3 号楼29 交换机35 无屏蔽见下图 5.2DB 无 12 3 号楼41 交换机57 无屏蔽见下图8.9DB 无 13 4 号楼21 交换机68 无屏蔽见下图 4.9DB 无

14 4 号楼22 交换机23 无屏蔽见下图7.8DB 无 15 4 号楼15 交换机75 无屏蔽见下图 4.6DB 无 16 4 号楼18 交换机61 无屏蔽见下图 6.1DB 无 17 5 号楼32 交换机31 无屏蔽见下图 6.4DB 无 18 5 号楼50 交换机27 无屏蔽见下图 3.7DB 无 18 5 号楼33 交换机41 无屏蔽见下图 6.2DB 无 20 5 号楼55 交换机48 无屏蔽见下图 3.8DB 无接线图 测试线图 测试结果经过用福禄克测试仪抽检全部合格

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

建筑物综合布线系统检测验收规范

建筑物综合布线系统检测验收规范 1. 范围 本标准规定了建筑物综合布线系统的定义、分类、综合布线系统基本要求、技术指标、检测验收方法以及检测验收结论判定。 本标准对综合布线系统传输性能的检测项目及指标的规定适用于100Ω非屏蔽双绞线电缆以及 62.5/125μm多模光缆和8/125μm单模光缆。屏蔽双绞线电缆或其他线缆的检测参照执行。 本标准适用于建筑物综合布线系统的检测验收。 2. 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 8401-1987 光纤传输特性和光学特性测试方法 GBJ79-1985 工业企业通信接地设计规范 ECSC72:95 建筑物与建筑群综合布线系统工程设计规范 ISO/IEC 11801:1995 信息技术——用户大楼综合布线 ANSI/TIA/EIA-586-A:1995 商用楼通信布线标准 ANSI/TIA/EIA-586-A-1:1997 4对100Ω布线传输延迟及延迟偏离技术要求 ANSI/TIA/EIA-586-A-2:1998 商用楼通信布线标准补充文件 ANSI/TIA/EIA-586-A-3:1998 捆绑和混合线缆的技术要求 ANSI/TIA/EIA-586-A-4:1999 非屏蔽双绞布线系统的模块化快接跳线近端串扰测量方法和要求 ANSI/TIA/EIA-586-A-5:1999 4对100Ω超五楼布线传输补充指南 ANSI/TIA/EIA-589-A:1998 商用楼通信路由和空间标准 ANSI/TIA/EIA-606:1993 商用楼通信设施管理标准 ANSI/TIA/EIA-607:1994 商用楼通信接地和汇联要求 ANSI/TIA/EIA TSB-67:1995 非屏蔽双绞线电缆布线系统现场测试传输性能规范 3. 定义 本标准采用下列定义。 3.1. 综合布线系统 由通信电缆、光缆及各种连接硬件等构成的用以支持语音、数据、图象、视频通信的弱电布线系统。综合布线系统一般可划分为六个子系统(参见CESC72:95):工作区子系统、水平布线子系统、垂直布线子系统(干线子系统)、管理子系统、设备间子系统及建筑群布线子系统。 3.2. 工作区 用户使用终端设备的地方。 3.3. 工作区子系统 由终端设备到信息端口的连线组成。 3.4. 水平布线子系统 由楼层配线架、信息端口以及其间的电缆、光缆等组成的布线系统。 3.5. 垂直布线子系统(干线子系统) 由建筑物配线架以及连接建筑物配线架和各楼层配线架的电缆、光缆等组成的布线系统。 3.6. 管理子系统 由交连、互连与I/O组成。 3.7. 设备间子系统

霍尔效应实验方法

实验: 霍尔效应与应用设计 [教学目标] 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 [实验仪器] 1.TH -H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。 2.TH -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 [教学重点] 1. 霍尔效应基本原理; 2. 测量半导体材料的霍尔系数的实验方法; 3. “对称测量法”消除副效应所产生的系统误差的实验方法。 [教学难点] 1. 霍尔效应基本原理及霍尔电压结论的电磁学解释与推导; 2. 各种副效应来源、性质及消除或减小的实验方法; 3. 用最小二乘法处理相关数据得出结论。 [教学过程] (一)讲授内容: (1)霍尔效应的发现: 1879,霍尔在研究关于载流导体在磁场中的受力性质时发现: “电流通过金属,在磁场作用下产生横向电动势” 。这种效应被称为霍尔效应。 结论:d B I ne V S H ?=1 (2)霍尔效应的解释: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载

流子所受的横电场力H e eE f =与洛仑兹力evB f m =相等时,样品两侧电荷的积累就达到平衡, B e eE H v = (1) bd ne I S v = (2) 由 (1)、(2)两式可得: d B I R d B I ne b E V S H S H H =?= ?=1 (3) 比例系数ne R H 1=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, (3) 霍尔效应在理论研究方面的进展 1、量子霍尔效应(Quantum Hall Effect) 1980年,德国物理学家冯?克利青观察到在超强磁场(18T )和极低 温(1.5K )条件下,霍尔电压 UH 与B 之间的关系不再是线性的,出现一 系列量子化平台。 量子霍尔电阻 获1985年诺贝尔物理学奖! 2、分数量子霍尔效应 1、1982年,美国AT&T 贝尔实验室的崔琦和 斯特默发现:“极纯的半导体材料在超低温(0.5K) 和超强磁场(25T)下,一种以分数形态出现的量子电 阻平台”。 2、1983 年,同实验室的劳克林提出准粒子理 论模型,解释这一现象。 获1998年诺贝尔物理学奖 i e h I U R H H H 1 2?==3,2,1=i

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

霍尔效应测磁场实验报告(完整资料).doc

【最新整理,下载后即可编辑】 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为B 的磁 场中,并让薄片平面与磁场方向(如Y 方向)垂直。如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。 如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即 d B I R U H H = (1) 式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有 B KI U H H = (2) 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。如果霍

耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式 H H KI U B = (3) 算出磁感应强度B 。 图 1 霍 耳 效 应 示 意 图 图2 霍耳效应解释 (二)霍耳效应的解释 现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为 evB f B = 方向沿Z 方向。在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为 H E eE f = 方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为 vbB U H = (4)

消防系统的测试步骤

消防系统的测试步骤 1、气体自动灭火系统如何测试?(10分) 答:第一步、测试前先测量启动瓶的电爆管或电磁阀控制线的电压,拆下所有区域内启动瓶的电爆管或电磁阀上的控制线。再测量控制线的电压,作好记录。在首先测试的区域启动瓶上接上测试灯泡。如有其他外接设备控制线路有必要也一同拆除。 第二步、收到储瓶间人员(已拆除启动瓶)通知后,将气体报警控制器打到“自动”状态。开始测试并用对讲机呼叫现场人员和气体房人员。 第三部、测试烟感报警,气体报警控制主机接到报警信号,此时气体报警控制器和气体灭火区域内发出声光报警信号(通知相关人员离开防护区),此时启动控制线不应有电压信号。用消防电话跟消防中心值班人员联系,看是否有该防火分区的报警信号到消防中心。 第四步、测试一个感温探测器报警,此时气体灭火区域内发出另外一组声光报警信号并输出联动其它相应设备信号(停止通风系统运行和防火阀,关闭常开防火门等)。用消防电话跟消防中心值班人员联系,看是否有该防火分区的报警信号到消防中心。 第五步、当烟、温探测器都报警时,经延时30秒(可选)后,启动瓶控制线端接的测试灯泡应亮,用万用表测量应有直流24V电压。(气体房1人听到开始测试后

准备好秒表和万用表计量所有的数据并做好记录。) 第六步、在储瓶间短接压力开关,相关防护区的放气指示灯应点亮,用消防电话跟消防中心值班人员联系,看是否有该防火分区的放气信号到消防中心。 第七步、对系统进行复位。 第八步、手动测试放气按钮,应与第四步相同(不同在于不经过延时30秒启动就直接启动了)。在同第五步、第六步同样操作。 第九步、所有设备恢复到正常监视状态,监视60分钟后(可以做保养工作及填写检测表),再用万用表测量启动瓶控制线端信号电压是否与测试前一致。应与测试前相同,则被拆各线路复原。 1.喷淋自动灭火系统的如何联动测试?(10分) 答:联动测试前,必须确认不动作的消防设备控制模块已被屏蔽或相关电源已被断开。 测试的工作人员应在未端排水装置、湿式报警阀、水泵房现场。 (一)将水泵手动测试后,水泵房人员将水泵的一次回路电源断开,留下二次回 路进行手动测试控制回路正常后,再恢复主电源。 (二)消防中心收到各位置人员通知可以测试的信号后,消防中心将报警主

CMM介绍与关键过程域说明

CMM它是对于软件组织在定义、实施、度量、控制和改善其软件过程的实践中各个发展阶段的描述。CMM的核心是把软件开发视为一个过程,并根据这一原则对软件开发和维护进行过程监控和研究,以使其更加科学化、标准化、使企业能够更好地实现商业目标。CMM是一种用于评价软件承包能力并帮助其改善软件质量的方法,侧重于软件开发过程的管理及工程能力的提高与评估。CMM分为五个等级:一级为初始级,二级为可重复级,三级为已定义级,四级为已管理级,五级为优化级。 CMM它是目前国际上最流行、最实用的一种软件生产过程标准,已经得到了众多国家以及国际软件产业界的认可,成为当今企业从事规模软件生产不可缺少的一项内容。CMM 有助于组织建立一个有规律的、成熟的软件过程。改进的过程将会生产出质量更好的软件,使更多的软件项目免受时间和费用的超支之苦。 软件过程包括各种活动、技术和用来生产软件的工具。因此,它实际上包括了软件生产的技术方面和管理方面。CMM明确地定义了5个不同的“成熟度”等级,一个组织可按一系列小的改良性步骤向更高的成熟度等级前进。 成熟度等级1:初始级(Initial)。处于这个最低级的组织,基本上没有健全的软件工程管理制度。每件事情都以特殊的方法来做。如果一个特定的工程碰巧由一个有能力的管理员和一个优秀的软件开发组来做,则这个工程可能是成功的。然而通常的情况是,由于缺乏健全的总体管理和详细计划,时间和费用经常超支。结果,大多数的行动只是应付危机,而非事先计划好的任务。处于成熟度等级1的组织,由于软件过程完全取决于当前的人员配备,所以具有不可预测性,人员变化了,过程也跟着变化。结果,要精确地预测产品的开发时间和费用之类重要的项目,是不可能的。 成熟度等级2:可重复级(Repeatable)。在这一级,有些基本的软件项目的管理行为、设计和管理技术是基于相似产品中的经验,故称为“可重复”。在这一级采取了一定措施,这些措施是实现一个完备过程所必不可缺少的第一步。典型的措施包括仔细地跟踪费用和进度。不像在第一级那样,在危机状态下方行动,管理人员在问题出现时便可发现,并立即采取修正行动,以防它们变成危机。关键的一点是,如没有这些措施,要在问题变得无法收拾前发现它们是不可能的。在一个项目中采取的措施也可用来为未来的项目拟定实现的期限和费用计划。 成熟度等级3:已定义级(Defined)。在第3级,已为软件生产的过程编制了完整的文档。软件过程的管理方面和技术方面都明确地做了定义,并按需要不断地改进过程,而且采用评审的办法来保证软件的质量。在这一级,可引用CASE环境来进一步提高质量和产生率。而在第—级过程中,“高技术”只会使这一危机驱动的过程更混乱。 成熟度等级4:已管理级(Managed)。一个处于第4级的公司对每个项目都设定质量和生产目标。这两个量将被不断地测量,当偏离目标太多时,就采取行动来修正。利用统计质量控制,管理部门能区分出随机偏离和有深刻含义的质量或生产目标的偏离(统计质量控制措施的一个简单例子是每千行代码的错误率。相应的目标就是随时间推移减少这个量)。 成熟度等级5:优化级(Optimizing)。—个第5级组织的目标是连续地改进软件过程。这样的组织使用统计质量和过程控制技术作为指导。从各个方面中获得的知识将被运用在以后的项目中,从而使软件过程融入了正反馈循环,使生产率和质量得到稳步的改进。整个企业将会把重点放在对过程进行不断的优化,采取主动的措施去找出过程的弱点与长处,以达到预防缺陷的目标。同时,分析各有关过程的有效性资料,作出对新技术的成本与效益的分析,并提出对过程进行修改的建议。达到该级的公司可自发的不断改进,防止同类缺陷二次出现。 Cmm2的关键过程是:需求管理、软件项目计划、软件项目跟踪和监控、软件转包合同、软件质量保证、软件配置管理。这六个关键过程域主要涉及建立基本项目管理和控制方

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

相关文档
最新文档