CimatronE高速铣削加工策略研究

CimatronE高速铣削加工策略研究
CimatronE高速铣削加工策略研究

CimatronE高速铣削加工策略研究

《制造业自动化》2008版核心期刊学术论文

摘要:除了适合高速加工必备的机床(含数控系统)及刀具处,选择恰当的CAM软件、生成恰当的适合高速加工的数控加工程序是高速加工的关键。CimatronE光滑的进退刀方式及移刀方式、良好的刀路拐角过渡功能、基于智能毛坏残留知识的进给优化处理功能、基于斜率分析的一体化加工技术、领先的微加工技术、灵活的5轴倾角策略、NURBS插补功能及待加工轨迹监控功能、较丰富的高速加工工艺优化策略及丰富的轨迹规划方法、这些决定了cimatronE优秀的高速加工工艺性能。

关键词:螺旋线加工;余摆线加工;斜率分析;微铣削;NURBS插补;残料加工

(一)引言

高速铣削加工以高效率、高精度和高表面质量为基本特征,数控高速加工是正在发展和完善的机械加工方法,它基于数控设备(数控系统)和CAD/CAM软件,而CAD/CAM软件的使用对高速加工效率及零件加工精度有很大的影响;cimatronE其基于知识的智能加工、基于智能毛坏残留知识的进给优化处理功能、一体化加工技术、微加工技术、灵活的5轴刀轴倾角控制功能,NURBS插补输出等这些决定其自动编程所产生的数控程序具有良好的高速加工

工艺性能。使其成为业界认同的当今比较适合高速加工编程的软件之一。

(二)Cimatron E光滑的进退刀方式

高速切削加工时、刀具切入工件的方式、不仅影响加工质量、同时也直接关系到加工的安全。刀具高速切削工件时、工件将对刀具产生一定的作用力。此外、刀具以全切深和满进给速度切入工件将会缩短刀具的寿命。通过较平缓的增加载荷,可以达到保护刀具的目地。刀具切入工件时应尽量沿轮廓切向切入的方式缓缓的增加切削载荷,并保持恒定的载荷,切线式切入和螺旋式切入,以保持刀具轨迹光滑平顺,在Cimatron E系统中,有多种多样的进、退刀方式,如在走轮廓时,有轮廓的法向进、退刀,轮廓的切向进、退刀,以保证刀路轨迹的平滑;有对曲面法向的进、退刀,曲面正向与反向的进、退刀和斜向或螺旋式进、退刀等。在实际加工中,最好采用曲面的切向进刀或螺旋式进刀。

(三)Cimatron E光滑的移刀方式

移刀方式主要是指行切中的行间移刀,环切中的环间移刀,等高加工的层间移刀等。高速加工中,采用的切削用量都很小(侧向切削用量和深度切削用量很小),通常加工在扫描路径之间采用简单的环型刀具路径可以适缓解拐角处进给量的变化。但是,进给速度较高时,这种简单的环型运动仍然太突然。在这种情况下,CimatronE在扫描路径间采用“高尔夫球棒”式移刀则更为有效。在支持高速加工的Cimatron E 支持在加工环境中实体曲面混合造型的功能,通常导入曲面模型质量并不理想,必须在在编程操作之前进行修复。一些小的孔或者缝隙可能导致刀路紊乱或刀路不适宜高速加工。针对这样的问题,Cimatron E的混合建模拥有“为制造而设计”的功能用来

修复几何模型,通过各种曲面功能融合缝隙并变将曲面模型变成实体。

2.高转速高精度(微公差)小刀具加工工艺

为了获得以上要求,微铣削技术需要达到以下支持:100μm或更小的刀具、高速刀具外形比例(L/D)10或高达100,主轴转速高达150,000 r/min或更高,加工公差达0.1μm或更小,模具材料硬度到53 HRC ,微型模具铣削的精度< 5μm 曲面粗糙度<0.2μm Ra 。

3.适应微小刀具对微小型腔粗加工及精加工之丰富的轨迹策略

Cimatron E使用了实体曲面混合建模技术,其ACIS 内核技术提供了高达1nm 的内部精度,为微铣削提供了技术保障。加工过程中通过应用高速切削(HSC)策略获得均匀一致刀路,并使用了毛坯残留知识防止断刀,以对微型型腔进行开粗。为了降低风险防止换刀过程中产生的不连续的微型曲面,Cimatron E 提供了多种加工策略。NC

策略中支持斜线或螺旋下刀保证刀具最大限度的光滑和连续地进入工件。

(四) Cimatron E针对产品形状及结构的复杂性在5轴加工中灵活的刀具倾角控制策略

CimatronE在5轴加工编程中强大的控制刀具倾角的功能及刀具半径补偿的能力确保了CimatronE 5轴数控加工编程性能,具体来说为了适应加工零件形状复杂性刀具倾角的控制方式如下:

1.刀轴沿曲面法向功能:利用刀具端刃加工曲面。

2.相对于切削方向倾斜

作用举例:

加工叶片时,确保刀具是使用前倾角切削,避免刀尖切削(刀尖在主轴中心,理论切削速度为零,刀尖

若在工件上移动相当于在工件上划动,加工效果不理想)。

3.根据角度倾斜:实际加工时刀轴和某一坐标轴成一定角度,可以避免刀尖加工零件上某些曲面。

4.以固定角度倾斜至轴:刀轴将以某一个坐标轴或直线通过设置的角度倾斜至面的法向。

5.绕轴倾斜:刀轴在面的法向基础上绕某一个坐标轴或者直线倾斜一定角度,前倾或者后倾

6.通过点倾斜:刀轴方向始终是从某一个点指向面上的点,点在面的上部。

应用曲例:通过足球外的一个点来控制刀轴,在足球表面挖沿曲线的曲面凹槽。

此外还有7.通过直线倾斜8.通过曲线倾斜9.从点向外倾斜10.从曲线向外倾斜11.对于叶轮切削的

倾斜共11种丰富的刀具倾斜策略。

这些灵活的倾斜策略可以让CimatronE用户根据实际的零件的特点,灵活选择倾角策略以达到理想的加

工效果。

此外CimatronE是将CAM与CAD高度紧密集成的软件,如在编程时还需做一些点、直线、曲线、曲面(用

于控制刀轴及干涉检查等等),CimatronE 5轴CAM环境中内置有CAD功能,可以帮助编程者很好的完成相关

设计工作,

不像其它软件不能把CAD功能集成在CAM环境下,在编程时显得十分麻烦,这也是CimatronE 5轴倾角策略灵

活的一个主要原因。

(五)Cimatron E适应高速加工的NURBS插补选项

1.传统的直线插补和圆弧插补缺点如下:

1)由于用直线逼近曲线本身是用直线代替曲线,逼近后的线是一阶的,导矢不连续,所以加工表面不

光滑。

2)在曲线的加工过程中,如果在直线部分不进行加减速,那么就要求在较低的速度下进行加工,这样

就不能满足高速加工的要求。并且由于直线段的一阶不连续,在加工过程中会造成机床的冲击,不能保证加

工的质量和精度要求。如果在曲线的加工过程中,对直线段部分的每一段直线进行加减速,会造成加工速度

的不平衡,加工的质量差,时间长。

3)大量的直线段或圆弧段将会增加加工速度的变化和曲线的加工时间,这样将会降低曲线的平均加工

速率,降低加工效率。

4)具有复杂曲面形状的零件的加工,需要存储的程序段数非常庞大,而CNC系统的内存容量相对较小,因此需要分段存储和调用,这不仅会降低系统的可靠性,也会降低加工效率。

2.为了克服上述传统插补方式之缺陷,CimatronE增加了NURBS选项

CimatronE支持的NURBS曲线(非均匀有理B样条曲线)是被STEP国际标准规定为CAD/CAM曲线曲面造型、计算机图形学等领域的标准形式,用它描述的曲线、曲面整体十分光滑(连续1阶微分,2阶微分),而且可

以将圆、椭圆、抛物线、双曲线、圆锥曲线等统一表示,另外用NURBS表示的曲线/曲面可以方便地实现曲线

/曲面的局部变更:在修改曲线(或曲面)的一部分时不会对其他部分带来影响。用NURBS曲线表达的NC后置

程序小,产生的加工精度高、加工时间比普通插补方法的时间短,也更适合于高速铣削。

采用NURBS插补时是用一系列曲线运动而不是大量的直线运动来进行精加工,这样极大的减少了过程控制,因而加工速度进一步提高;由于每一段NURBS运动更长,机床控制器在执行程序时就能向前看得更远,

使得路径设计和进给速度设置更加智能化。

3.其次,CimatronE在计算刀位轨迹连接时具有光滑处理的策略。相比直线插补路径NURBS插补路径速

度调整要少很多,产生更适合高速加工的NURBS曲线控制代码。

4.需注意的是不是所有的CNC机床都能接收样条信息及生成样条曲线轮廓,在只有直线插补和圆弧插补

功能的数控系统上实现自由曲线和曲面加工时,只有将自由曲线和曲面用微小的直线段或圆弧段来代替,由

此产生了上述不足。

目前一些先进的数控系统如FANUC/16i/18i/160及SIEMEN等已具备了非均匀有理样条插补功能。

结论:在高速加工日益普及的今天,各CAM系统的高速加工编程功能不断改进;本文是在运用CimatronE

大量实际生产加工的基础上归纳和总结了其相关编程功能,发现该软件相比其它CAM软件在高速加工方面有

一定的独特之处;CimatronE为适应高速加工作了较多设计并在不断改进完善,CimatronE具备为企业提升产

品加工质量及缩短产品制造周期的内在优秀功能。

参考文献:

[1]王卫兵.高速加工数控编程技术[M].机械工业出版社,2008(10):95-100.

[2]赖新建,曾昭孟,何华妹.CimatronE多轴数控加工编程基础[M].人民邮电出版社,2009 (9):69-174

[3]于作功,张建柱.CimatronE8中文版数控加工[M].人民邮电出版社,2009(1):134-169

[4]马方魁,郇极.数控机床曲线插补运动误差分析[J].中国机械工程,2008(10):2446-2

关于高速铣削加工工艺的浅论

高速切削技术论文 机械工程学院 1001011435 张伟

1 关于高速铣削加工工艺的浅论* 张伟 (1. 沈阳理工大学,机械工程学院,机械设计制造及其自动化沈阳201311;) 摘要:传统意义上的高速切削是以切削速度的高低来进行分类的,而削机床则是以转速的高低进行分类。如果从切削变形的机理来看高速切削,则前一种分类比较合适;但是若从切削工艺的角度出发,则后一种更恰当。随着主轴转速的提高,机床的结构,刀具结构,刀具装夹和机床特性都有本质上的改变。高速意味着高离心力,传统的7:24锥柄,弹簧夹头,液压夹头在离心力的作用下,难以提供足够夹持力,同时为避免切削振动要求刀具系统具有更高的动平衡精度。高速切削的最大优势并不在于速度,进给速度提高所导致的效率提高,而由于采用了更高的切削速度和进给速度,允许采用较小的切削用量进行切削加工。由于切削用量的降低,切削力和切削热随之降低,工艺系统变形减小,可以避免铣削振动。利用这一特性可以通过高速铣削工艺加工薄壁结构零件。 关键词:高速铣削加工工艺 中图分类号:TG156 About High Speed Milling Technology Discussion ZHANG Wei (1. Shenyang Li gong University, School of Mechanical Engineering, Mechanical Design, Manufacturing and Automation, Shenyang 201311;) Abstract:Traditional high-speed cutting is to classify the level of cutting , and the cutting speed of the machine is based on the level of classification. If the view of the cutting mechanism of deformation speed cutting, the former is more appropriate classification ; However, if the angle of the cutting process , the latter is more appropriate. As the spindle speed increases , the structure of the machine tool structure , tool clamping and machine characteristics are essentially changed. High speed means high centrifugal force , the traditional 7:24 taper , collet chuck , hydraulic chuck under the effect of centrifugal force , it is difficult to provide sufficient clamping force , as well as to avoid cutting vibration requires balancing tool system has higher precision . The biggest advantage of high-speed cutting is not the speed, feed speed increased efficiency resulting from , but thanks to the higher cutting speed and feed rate, allowing the use of smaller cutting for cutting. Since the reduction cutting , cutting force and cutting heat decreases, reducing deformation process system to avoid vibration milling . Using this feature can speed milling machining thin-walled structural components . Key words:High speed Milling Processing technology 0 前言1 普通铣削加工采用低的进给速度和大的切削参数,而高速铣削加工则采用高的进给速度和小的切削参数,高速铣削加工相对于普通铣削加工具有如下特点: (1)高效高速铣削的主轴转速一般为15000r/min~40000r/min,最高可达100000r/min。 *高速切削技术论文.20131005下载模板.20131101完成初稿.20131127终稿. 在切削钢时,其切削速度约为400m/min,比传统的 铣削加工高5~10倍;在加工模具型腔时与传统的加工方法(传统铣削、电火花成形加工等)相比其效率提高4~5倍。 (2)高精度高速铣削加工精度一般为10μm,有的精度还要高。 (3)高的表面质量由于高速铣削时工件温升小(约为3°C),故表面没有变质层及微裂纹,热变形也小。最好的表面粗糙度Ra小于1μm,减少了后续磨削及抛光工作量。

高速加工技术现状及发展趋势

高速加工技术现状及发展趋势 1引言 对于机械零件而言,高速加工即是以较快的生产节拍进行加工。一个生产节拍:零件送进--定位夹紧--刀具快进--刀具工进(在线检测)--刀具快退--工具松开、卸下--质量检测等七个基本生产环节。而高速切削是指刀具切削刃相对与零件表面的切削运动(或移动)速度超过普通切削5~10倍,主要体现在刀具快进、工进及快退三个环节上,是高速加工系统技术中的一个子系统;对于整条生产自动线而言,高速加工技术表征是以较简捷的工艺流程、较短、较快的生产节拍的生产线进行生产加工。这就要突破机械加工传统观念,在确保产品质量的前提下,改革原有加工工艺(方式):或采用一工位多工序、一刀多刃,或以车、铰、铣削替代磨削,或以拉削、搓、挤、滚压加工工艺(方式)替代滚、插、铣削加工…等工艺(方式),尽可能地缩短整条生产线的工艺流程;对于某一产品而言,高速加工技术也意味着企业要以较短的生产周期,完成研发产品的各类信息采集与处理、设计开发、加工制造、市场营销及反馈信息。这与敏捷制造工程技术理念有相同之处。 高速加工技术产生于近代动态多变的全球化市场经济环境。在激烈的市场竞争中,要求企业产品质量高、成本低、上市快、服务好、环境清洁和产品创新换代及时,由此牵引高速加工技术不断发展。自二十世纪八十年代,高速加工技术基于金属(非金属)传统切削加工技术、自动控制技术、信息技术和现代管理技术,逐步发展成为综合性系统工程技术。现已广泛实用于生产工艺流程型制造企业(如现代轿(汽)车生产企业);随着个性化产品的社会需求增加,其生产条件为多品种、

单件小批制造加工(机械制造业中,这种生产模式将占到总产值的70%),高速加工技术必将在生产工艺离散型或混和型企业中(如模具、能源设备、船舶、航天航空…等制造企业)得到进一步应用和发展。 二十世纪末期,我国变革计划经济体制,改革开放,建成有中国特色社会主义市场经济体制。实用的高速加工技术跟随引进的先进数控自动生产线、刀具(工具)、数控机床(设备),在机械制造业得到广泛应用,相应的管理模式、技术、理念随之融入企业。企业家们对现代信息技术和企业制度、机制在未来可持续发展、市场竞争中的重要地位和作用,认识日益深刻。社会主义市场经济环境,不仅促进企业转制、调整产业、产品结构和技改,还给企业展现出应用和发展高速加工技术良好而广阔的前景。 2我国引进数控轿车自动生产线中的高速加工技术 二十世纪八十年代以来,我国相继从德国、美国、法国、日本…等国引进了多条较先进的轿车数控生产自动线,使我国轿车制造工业得到空前发展。其中较典型的是来自德国的一汽--大众捷达轿车和上海大众桑塔纳轿车自动生产线,其处于国际二十世纪九十年代中期水平。其中应用了较多较实用的高速加工技术。从中可部分了解到世界高速加工技术的现状与发展趋势。本文重点介绍一汽--大众捷达轿车传、发生产线。 引进的捷达数控轿车自动生产线概况 一汽--大众捷达轿车自动生产线由冲压、焊接、涂装、总装、发动机及传动器等高速生产线组成。同步引进德国大众汽车公司并行工程管理模式与管理技术,

高速铣削加工效率的一般计算与分析

高速铣削加工效率的一般计算与分析(转) 随着高速切削技术的发展,高速铣削工艺的应用日益广泛,越来越受到制造企业和科研工作者的关注。信息产业部某研究所自1999年7月从瑞士MIKRON公司购进第一台HSM-700型高速立式铣削中心后,2001年10月又购进三台HSM-700型高速铣床用于生产。笔者通过对这批先进高速铣床的加工效率进行深入、细致的调查研究,对比了不同铣床的加工效率,推导了高速铣削加工效率的计算公式。 1.加工效率的计算 按照传统切削理论,切削加工效率Zw(cm3/min)可通过下列公式计算: Zw=v×f×ap(1) 式中:v——切削速度,f——进给量,ap——切削深度 根据分析与研究,我们认为式(1)不适用于高速铣削加工效率的计算,原因主要有两点: ①高速铣床的主轴转速相当高(如HSM-700型高速铣床最高转速达42000r/min,加工平面时转速也在35000r/min以上),如此高的转速使刀具并非每一转都在切削金属; ②在实际加工中,设定的转速和进给量只是最大转速和最大进给量,实际的刀具转速和进给量时刻都在变化(HSM-700机床的自测功能可以显示整个切削过程中的变化情况),切削过程中的实际转速和进给量总是从较低值迅速达到较高值又很快降到较低值,如此反复变化,这是铣削过程的客观反映,而不像车削过程中可以保持转速和进给量恒定不变。 因此,我们提出用单位时间内的金属去除量Z(cm3/min)表示加工效率,即: Z=W/t(2) 式中:W——切削过程总的金属去除量(cm3),t——切削时间(min)(>0) 式(2)更符

合高速铣削的实际情况,用式(2)很容易实现对高速铣削加工效率的计算,同时也便于不同铣床加工效率的比较。例如,原来在普通铣床上加工某零件,为了缩短生产周期,一部分零件现采用高速铣床加工。这样,可通过该零件的加工来比较两种加工设备的加工效率。由于该零件的表面质量要求不高,高速铣削和普通铣削均能达到要求。事实上,高速铣削加工出的零件表面粗糙度要比普通铣削加工低1~2个等级。 用单位时间内的金属去除量Z=W/t(cm3/min)表示加工效率。试验中取铣削加工过程中的几个时间段,记录加工时间,测量在各个时间段零件加工前后的体积差,通过式(2)计算得到Z值。通过多次测量计算取Z的平均值,该平均值即可视为较准确的Z值。 对于上述零件的高速铣削过程,由式(2)算得的Z值为: Z(高速)=W/t=25.296cm3/min 按照传统切削理论即按式(1)计算得: Zw=πDn/1000×100×vf/n×0.1×ap×0.1=376.8cm3/min 比较Z(高速)和Zw,显然Zw与该零件实际的高速铣削加工效率相差很大。 2.不同铣床加工效率的比较 某研究所目前用于生产的铣床除HSM-700型高速铣床外,还有国产的立式铣床和进口的铣削中心。国产铣床是二十世纪九十年代初购进的北京第一机床厂生产的XK5040-1型立式升降台铣床(以下简称国产普通铣床),目前主要用于零件粗加工及少量铸铁件和钢件的加工;进口铣削中心是美国产VF-0 HAAS型铣削中心(以下简称进口普通铣床),可用于粗加工和精加工。 对于上述零件,在国产普通铣床上加工的切削效率为:

高速加工技术及其应用

高速加工技术及其应用 摘要:高速切削加工作为模具制造中最为重要的一项先进制造技术,与传统加工技术相比 是质的飞越,具有高生产效率、小切削力、高加工精度、低能耗等特点。可以解决在模具常规切削加工中备受困扰的一系列问题,有着强大的生命力和广阔的应用前景…… 关键字:高速加工技术、生产效率、模具、工序、应用、趋势…… 高速加工技术是指采用特殊材料的刀具,通过极大地提高切削速度和进给速度,来提 高被加工件的切除率,同时,加工精度和质量也显著提高的新型加工技术。高速切削加工技术是21世纪的一种先进制造技术,有着强大的生命力和广阔的应用前景。通过高速切削加工技术,可以解决在模具常规切削加工中备受困扰的一系列问题。近几年来,在美国、德国、日本等工业发达国家高速切削加工技术在大部分的模具公司都得到了广泛应用,85%左右的模具电火花成形加工工序已被高速加工所替代。高速加工技术集高效、优质、低耗于一身,已成为国际模具制造工艺中的主流。本文主要介绍高速切削加工技术的特点、优势、应用及发展趋势。 技术特点 一、生产效率有效提高。 高速切削加工允许使用较大的进给率,比常规切削加工提高5~10倍,单位时间材料切除率可提高3~6倍。当加工需要大量切除金属的零件时,可使加工时间大大减少。 二、至少降低30%的切削力。 由于高速切削采用极浅的切削深度和窄的切削宽度,因此切削力较小,与常规切削相比,切削力至少可降低30%,这对于加工刚性较差的零件来说可减少加工变形,使一些薄壁类精细工件的切削加工成为可能。 三、加工质量得到提高。 因为高速旋转时刀具切削的激励频率远离工艺系统的固有频率,不会造成工艺系统的受迫振动,保证了较好的加工状态。由于切削深度、切削宽度和切削力都很小,使得刀具、工件变形小,保持了尺寸的精确性,也使得切削破坏层变薄,残余应力小,实现了高精度、低粗糙度加工。 从动力学角度分析频率的形成可知,切削力的降低将减小由于切削力产生的振动(即强迫振动)的振幅;转速的提高使切削系统的工作频率远离机床的固有频率,避免共振的发生;因此高速切削可大大降低加工表面粗糙度,提高加工质量。 四、降低加工能耗,节省制造资源。 由于单位功率的金属切除率高、能耗低以及工件的在制时间短,从而提高了能源和设备的利用率,降低了切削加工在制造系统资源总量中的比例,符合可持续发展的要求。 五、简化了加工工艺流程。 常规切削加工不能加工淬火后的材料,淬火变形必须进行人工修整或通过放电加工解决。

高速干式切削加工技术及其应用

高速干式切削加工技术及其应用 来源:慧聪网 1.引言 随着“21世纪绿色制造工程”的提出和实施,高速干式切削加工技术日益成为人们关注的焦点和热点。迄今,大多数金属切削加工仍是以使用切削液的湿式加工方式来进行。 切削液具有冷却、润滑、排屑、清洗、防锈等功能,并对延长刀具使用寿命、保证加工表面质量起着重要作用。但是,在切削过程中使用切削液,一方面造成了资源和能源的巨大浪费(据德国公司的统计资料,切削液使用费用占总制造成本的16%,而切削刀具费用仅占总制造成本的3%~4%)。另一方面,切削液会对环境产生较严重的污染,甚至会危害工人健康。随着全球环境保护意识的不断增强和环境保护立法的日益严格,对环境无污染的“绿色制造”被认为是可持续发展的现代制造业模式。为使金属切削加工尽可能达到绿色制造的要求,可减少环境污染、节省资源和能源的高速干式切削技术越来越多地受到人们的关注。 所谓高速干式切削加工,是指在高速机械加工中,为保护环境、降低成本而有意识地减少或完全停止使用切削液。高速切削加工具有以下优越性: (1)随着切削速度的提高,单位时间内的材料切除率(切削速度、进给量和切削深度的乘积,v×f×ap)增加,切削加工时间减少,从而可大幅度提高加工效率,降低加工成本。 (2)在高速切削加工范围内,切削力随着切削速度的提高而减小,根据切削速度的提高幅度,切削力平均可减少30%以上,有利于对刚性较差的零件和薄壁零件的切削加工。 (3)高速切削加工时,切屑以很高的速度排出,可带走大量切削热。切削速度愈高,带走的热量愈多(约90%以上),传给工件的热量大幅度减少,有利于减小加工零件的内应力和热变形,提高加工精度。 (4)从动力学的角度,在高速切削加工过程中,切削力随切削速度的提高而降低,而切削力正是切削过程中产生振动的主要激励源。转速的提高使切削系统的工作频率远离机床的低阶固有频率,而工件的加工表面粗糙度对低阶固有频率最敏感,因此高速切削加工可大大降低加工表面粗糙度。 (5)高速切削可加工硬度45~65HRC的淬硬钢铁件,如采用高速切削加工淬硬后的模具,可减少甚至取代放电加工和磨削加工,满足加工质量的要求。 2.实现高速干式切削加工的关键技术 在高速干式切削加工中,由于切削过程缺少切削液的润滑、冷却、排屑等作用,相应地会出现以下问题: (1)由于缺少切削液的润滑作用,高速干式切削加工中的切削力会大大增加,刀具与工件之间的振动会加剧,从而导致工件加工表面质量变差,刀具磨损加快,刀具使用寿命缩短。 (2)由于缺少切削液的冷却作用,高速干式切削加工会在加工瞬间产生大量热量,这些热量主要集中在切屑中,会影响切屑的成型,过热的高温环境会导致形成带状和缠结状切屑并缠绕在刀具上,影响后续切削,加剧刀具磨损。如不及时将热量从机床的主体结构中排出,同样会使机床产生严重的热变形,影响加工精度和降低工件表面质量。 (3)在高速干式切削加工某些材料(如石墨电极等)时,会产生大量粉尘,如不能及时清除,会严重损害操作工人的身体健康,同时细微颗粒也会侵入丝杠、轴承等机床关键部件,加大机床的磨损,影响机床的加工精度和稳定性。 (4)由于高速干式切削加工与高速湿式切削加工的切削过程有所不同,为使机床能够稳定地完成切削过程,需要对原来高速湿式切削加工选用的切削参数作相应修改和调整,才能应用于高速干式切削加工。 为了解决以上问题,使高速干式切削加工在规定时间内达到与高速湿式切削加工相当(甚至更高)的加工质量和刀具耐用度,就必须对包括机床、刀具、工件以及切削参数在内的整个工艺系统进行全面的考虑权衡,并采取相应的工艺措施,以弥补高速干式切削加工的不足。

高速切削

1. 论述高速切削的特点。 材料去除率高,切削力较小,工件热变形小,工艺系统振动小,可加工各种难加工材料,可实现绿色制造,简化加工工艺流程。高速切削追求高转速、中切深、快进给、多行程的加工工艺,高速切削加工可大大降低加工表面粗糙度,加工表面质量可提高1~2等级。加快产品开发周期,大大降低制造成本。 2.阐述高速切削技术研究体系、关键技术。 数控高速切削加工技术是建立在机床结构与材料、高速主轴系统、高性能CNC控制系统、快速进给系统、高性能刀具材料、数控高速切削加工工艺、高效高精度测试技术等许多相关的软件和硬件技术基础之上的一项复杂的系统工程,是将各单元技术集成的一项综合技术。关键技术:高速切削机理;高速切削刀具技术;高速切削机床技术;高速切削工艺技术;高速加工的测试技术。 3.阐述高速切削发展趋势。 机床结构将会具有更高的刚度和抗振性,使在高转速和高级给情况下刀具具有更长的寿命;将会用完全考虑高速要求的新设计概念来设计机床;在提高机床进给速度的同时保持机床精度;快换主轴;高、低速度的主轴共存;改善轴承技术;改进刀具和主轴的接触条件;更好的动平衡;高速冷却系统。(新一代高速大功率机床的开发和研制;新一代抗热振性好、耐磨性好、寿命长的刀具材料的研制及适宜于高速切削的刀具结构的研究;进一步拓宽高速切削工件材料及其高速切削工艺范围;高速切削机理的深入研究;高速切削动态特性及稳定性的研究;开发适用于高速切削加工状态的监控技术;建立高速切削数据库,开发适于高速切削加工的编程技术以进一步推广高速切削加工技术;基于高速切削工艺,开发推广干式(准干式)切削绿色制造技术;基于高速切削,开发推广高能加工技术) 4结合典型工件材料和加工工艺方法,讨论高速切削的速度范围。 (1)根据工件材料:刚才380m/min以上、铸铁700m/min以上、铜材1000m/min以上、铝材1100m/min以上、塑料1150m/min以上时,认为是合适的速度范围。(2)根据加工工艺方法:车削700~7000m/min,铣削300~6000m/min,钻削200~1100m/min,磨削5000~10000m/min,认为是合适的速度范围。 5讨论高速切削加工的切削力变化规律。 (1)切削用量对切削力的影响:背吃刀量ap增大,切削力成正比增加,背向力和进给力近似成正比增加。进给量f增大,切削力与增大,但切削力的增大与f不成正比(75%)(2)工件材料对切削力的影响:较大的因素主要是工件材料的强度、硬度和塑性。a材料的强度、

高速加工技术论文高速加工论文

高速加工技术论文高速加工论文 高速加工技术在模具加工中的应用初探 摘要:文章在概述高速加工的技术优势的基础上,探讨模具高速加工工艺技术与策略,并论述模具高速加工对加工系统的要求。 关键词:高速加工技术模具加工应用 随着数控加工设备和高性能加工刀具技术的发展而日益成熟,模具加工的速度也大大提高,加工工序也随之减少,缩短甚至消除了耗时的钳工修复工作,从而大大的缩短了模具的生产周期。高速加工技术在模具加工中的使用逐渐成为模具工业技术改造最主要的内容之一。 1 高速加工的技术优势 与传统加工方式相比,在常规切削加工中备受困扰的一系列问题,通过高速切削加工的应用得到了解决。高速加工时间短,产品精度高,可以获得十分光滑的加工表面,能有效地加工高硬度材料和淬硬钢,避免了电极的制造和费时的电加工 (EDM)时间,大幅度减少了钳工的打磨与抛光量。同时,模具表面因电加工 (EDM)产生白硬层消失了,提高了模具的寿命,减少了返修。因为电极的制造工作不需要了,所以模具改型只需通过CAD/CAM,使改型加快。一些市场上越来越需要的薄壁模具工件,高速加工可又快又好地完成。而且在高速铣削CNC加工中心上模具一次装夹可完成多工步加工。

大量生产实践表明,应用高速切削技术可节省模具后续加工中约80%的手工研磨时间,节约加工成本费用近30%,模具表面加工精度可达1μm,刀具切削效率可提高一倍。 2 模具高速加工工艺技术与策略 2.1 粗加工时采用的加工策略 模具粗加工的主要目标是追求单位时间内材料的去除率,并为半精加工准备工件的几何轮廓。在切削过程中因切削层金属面积发生变化,导致刀具承受的载荷发生变化,使切削过程不稳定,刀具磨损速度不均匀,加工表面质量下降。可通过以下措施保持切削条件恒定,从而获得良好的加工质量: (1)通过计算获得恒定的切削层面积和材料去除率,使切削载荷与刀具磨损速率保持均衡,以提高刀具寿命和加工质量。 (2)应避免刀具轨迹中走刀方向的突然变化,以免因局部过切而造成刀具或设备的损坏。 (3)应保持刀具轨迹的平稳,避免突然加速或减速。 (4)下刀或行间过渡部分最好采用斜式下刀或圆弧下刀,避免垂直下刀直接接近工件材料。 (5)采用攀爬式切削可降低切削热,减小刀具受力和加工硬化程度,提高加工质量。 2.2 半精加工采用的加工策略

数控铣削加工工艺范围及铣削方式

页脚内容1 数控铣削加工工艺范围及铣削方式 铣削是铣刀旋转作主运动,工件或铣刀作进给运动的切削加工方法。铣削的主要工作及刀具与工件的运动形式如图所示。 在铣削过程中,根据铣床,铣刀及运动形式的不同可将铣削分为如下几种: (1)根据铣床分类 根据铣床的结构将铣削方式分为 立铣和卧铣。由于数控铣削一个工序中一般要加工多个表面,所以常见的数控铣床多为立式铣床。 (2)根据铣刀分类 根据铣刀切削刃的形式和方位将铣削方式分为周铣和端铣。用分布于铣刀圆柱面上的刀齿铣削工作表面,称为周铣,如图6-2(a )所示;用分布于铣刀端平面上的刀齿进行铣削称为端铣,如图6-2 (b )所示。 图中平行于铣刀轴线测量的切削层参数ap 为背吃刀量。垂直于铣刀轴线测量的切削层参数ac 为切削宽度,fz 是每齿进给

量。单独的周铣和端铣主要用于加工平面类零件,数控铣削中常用周、端铣组合加工曲面和型腔。 (3)根据铣刀和工件的运动形式公类 根据铣刀和工作的相对运动将铣削方式分为顺铣和逆铣。铣削时,铣刀切出工件时的切削速度方向与工件的进给方向相同,称为顺铣如图(6-3)a 所示;铣削时,铣刀切入工件时的切削速度方向 与工件进给方向相反,称为逆铣,如图(6-3)b所示。 顺铣与逆铣比较:顺铣加工可以提高铣刀耐用度2~3倍, 工件表面粗糙度值较小,尤其在铣削难加工材料时,效果更 加明显。铣床工作台的纵向进给运动一般由丝杠和螺母来实 现,采用顺铣法加工时,对普通铣床首先要求铣床有消除进 给丝杠螺母副间隙的装置,避免工作台窜动;其次要求毛坯 表面没有破皮,工艺系统有足够的刚度。如果具备这样的条件,应当优先考虑采用顺铣,否则应采用逆铣。目前生产中采用逆铣加工方式的比较多。数控铣床采用无间隙的滚球丝杠传动,因此数控铣床均可采用顺铣加工。 数控铣削主要特点 (1)生产率高 (2)可选用不同的铣削方式 (3)断续切削 (4)半封闭切削 数控铣削主要加工对象 (1)平面类零件 页脚内容2

高速加工工艺考核试题

高速加工工艺 ()1. 高速切削(HSM或HSC)是二十世纪九十年代迅速走向实际应用的先进加工技术,通常指高主轴转速和高进给速度下的()。 A. 机械加工 B. 数控加工 C .数控车 D .立铣 ()2. 高速切削概念始于()年德国所罗门博士的研究成果。 A. 1931 B .1949 C. 1985 D .1934 ()3. 当以适当高的切削速度, 约为常规速度的( )倍加工时,切削刃上的温度会降低,因此有可能通过高速切削提高加工生产率。 A. 5-8 B.5-10 C.10-20 D. 10-15 ()4. 高速切削是一项系统技术,从刀具材料、刀柄、机床、控制系统、加工工艺技术、CAD/CAM 等,均与常规加工( )。 A.基本相似 B.完全相同 C. 有很大区别 D.毫无关系 ( )5. 由于主轴转速很高,切削液难以注入加工区,通常采用油雾冷却或()方法 A.水雾冷却 B.吹气冷却 C.油气混合冷却 D.干切削 ()6. 高速铣削工艺相对常规加工具有以下一些优点:( ) A. 提高生产率 B. 改善工件的加工精度和表面质量 C.实现整体结构零件加工 D. 以上都是 ()7. 铣削深度较小,而进给较快,加工表面粗糙度很小,铣削铝合金时可达Ra0.4~0.6,铣削钢件时可达( )。 A. Ra0.2~0.3 B. Ra0.2~0.5 C. Ra0.2~0.4 D. Ra0.2~0.6 ( )8. 高速铣削已可加工硬度达( )的零件,因此,高速铣削允许在热处理以后再进行切削加工. A. HRC60 B. HRC40 C. HRC70 D. HRC80 ( )9. 高速切削基础理论与关键技术不包括以下( ): A.高速切削机理; C.高速切削机床技术; B.高速切削刀具技术; D.高速切削模拟技术 ( )10. 阻碍切削速度提高的关键因素是切削刀具是否能承受越来越高的( ). A. 切削力 B. 转速 C. 切削温度 D.进给量 ( )11. 高速主轴一般做成()的结构形式 A.模拟主轴 B. 电主轴 C.伺服主轴 D.变频主轴 ( )12. 高速主轴单元包括动力源、主轴、()和机架四个主要部分,是高速加工机床的核心部件. A.冷却系统 B.润滑系统 C. 轴承 D.检测装置 ( )13. 超高速机床要求其CNC 系统的数据处理时间要快得多,高的进给速率要求CNC 系统有很高的内部数据处理速率,而且还应有( )程序 存储量。 A. 较大的 B.较小的 C.不需要 ( )14. 很多高速机床的床身和立柱材料采用聚合物混凝土(或人造花岗岩),这种材料阻尼特性为铸铁的7~10 倍,比重只有铸铁的( )。 A. 1/5 B. 1/3 C. 1/4 D. 1/10

高速切削加工技术

高速切削加工技术 在现代机械切削加工技术中,高速切削正在越来越多地被人提及,其技术已开始被使用,随之而来的,首先是高速机床,那么,高速切削与传统切削技术究竟有什么不同? 其实现的条件是什么? 实现它有哪些益处? 其适用性怎么样呢? 本文将试图回答这些问题,并且尽可能结合目前在世界上居领先水平的瑞士MIKRON公司的机床的结构、特点来分析,用它同目前国内仍在普遍应用的传统的加工方法和切削理论相比较,促进高新技术在国内的应用和普及。 缩短加工时的切削与非切削时间,对于复杂形状和难加工材料及高硬度材料减少加工工序,最大限度地实现产品的高精度和高质量,是我们提高劳动生产率、实现经济性生产的一个重要的目标。有人认为,一提高速加工,就是主轴转速要几万转;只要主轴转速一达到几万转,就可以实现高速切削,这其实是不全面的。 随着科学技术的发展,现代机床已经具备了下面的条件,也只有具备这些条件,才会使得高速切削成为可能。 1.机电一体化的主轴,即所谓电主轴。现代化的主轴是电机与主轴有机地结合成一体,采用电子传感器来控制温度,自有的水冷或油冷循环系统,使得主轴在高速下成为“恒温”;又由于使用油雾润滑、混合陶瓷轴承等新技术,使得主轴可以免维护、长寿命、高精度。由于采用了机电一体化的主轴,减去了皮带轮、齿轮箱等中间环节,其主轴转速就可以轻而易举地达到0~42000r/min,甚至更高。不仅如此,由于结构简化,造价下降,精度和可*性提高,甚至机床的成本也下降了。噪声、振动源消除,主轴自身的热源也消除了。MIKRON公司便采用了本集团“STEP-TEC”公司生产的电主轴,这种电主轴采用了其特别的、最先进的矢量式闭环控制、高动平衡的主轴结构、油雾润滑的混合陶瓷轴承,可以随室温调整的温度控制系统,确保主轴在全部工作时间内温度衡定。 何为矢量式闭环控制呢?其实就是借助数/模转换,将交流异步电动机的电量值变换为直流电模型,这样,既可实现用无电刷的交流电机来实现直流电机的优点,即在低转速时,保持全额扭矩,功率全额输出,主轴电机快速起动和制动。以UCP710机床切削45#钢为例,用STEP-TEC 的主轴铣削,铣刀直径?63mm, 主轴转速为1770r/min,金切量为540cm3/min;在无底孔钻孔时,钻头直径?50mm, 转速1350r/min,可一次钻出,而无需常用的先打中心孔,而后钻孔再扩孔的方法。 2.机床普遍采用了线性的滚动导轨,代替过去的滑动导轨,其移动速度、摩擦阻力、动态响应,甚至阻尼效果都发生了质的改变。用手一推就可以将几百公斤甚至上千公斤的重工作台推动。其特有的双V型结构,大大提高了机床的抗扭能力;同时,由于磨损近乎为零,导轨的精度寿命较之过去提高几倍。又因为配合使用了数字伺服驱动电机,其进给和快速移动速度已经从过去最高的6m/min,提高到了现在的20~60m/min,MIKRON公司的最新型机床使用线性电机,进给和快移速度可达80m/min。 3.目前最先进的数控系统已经可以同时控制8根以上的轴,实现五轴五联动,甚至六轴五联动,多个CPU,数据块的处理时间不超过0.4ms;同时,均配置功能强大的后置处理软件,运算速度快,仿真能力强且具备程序运行中的“前视”功能,随时干预,随时修改。外接插口,数据传输速度快,甚至可以与以太网直联;加上全闭环的测量系统,配合使用数字伺服驱动技术,机床的线性移动可以实现1~2g的加速和减速运动。 4.机床床身结构进一步优化,现代机床均采用落地式床身,整体铸铁结构,龙门式框架的主轴立柱,尽可能由主轴部件来实现二轴甚至三轴的线性移动,考虑到刀具重量的变化极小,这样,在工件乃至工作台不进行快速线性移动的情况下,机床快速线性移动的部件的重量近乎常量,因此,更容易实现快速加速和减速情况下的运动惯量及实现动态平衡,减少由于动态冲击所带来的

(高速切削技术及其应用)

长春汽车工业高等专科学校 继续教育学院 毕业论文(设计)中文题目:高速切削加工技术及其应用的研究 英文题目:High speed cutting technology and its application 毕业专业:汽车机械制造技术 学生姓名:高越 准考证号:290414100432 指导教师:穆春燕 二零一五年八月 独创性声明

本人声明所呈交的论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得长春汽车工业高等专科学校或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 论文作者签名:签字日期:年月日 学位论文版权使用授权书 本论文作者完全了解长春汽车工业高等专科学校有关保留、使用论文的规定。特授权长春汽车工业高等专科学校可以将论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。 (保密的论文在解密后适用本授权说明) 论文作者签名:导师签名: 签字日期:年月日签字日期:年月日

目录 前言 (05) 1.高速切削概念、内容及特点 (06) 1.1高速切削概念 (06) 1.2高速切削的研究内容 (06) 1.3高速切削特点 (07) 2.高速切削的技术体系 (08) 3.高速切削的技术关键及目前解决方案 (08) 3.1高速切削的技术关键 (08) 3.2高速切削关键技术解决方案 (09) (1)高速切削机床 (09) (2)高速切削刀具 (11) (3)C A D/C A M (11) (4)高速切削的数控编程 (11) 4.高速切削加工技术的应用 (12) 4.1高速切削在航空航天工业中的应用 (12) 4.2 高速切削在纤维增强塑料中的应用 (12) 4.3高速切削在模具制造业中的应用 (12) 4.4 高速切削在汽车制造业中的应用 (12) 5.高速切削加工技术的发展前景与展望 (12) 6.答谢辞 (14) 7.参考文献 (14)

高速铣削加工技术的主要优点及应用介绍

高速铣削加工技术的主要优点及应用介绍由于生产的发展和产品更新换代的速度加快,对模具的生产效率和制造质量提出了越来越高的要求,于是电火花加工存在的问题就暴露出来。所谓高速铣削是指主轴转速可达10000?C80000转/分,快速进给速度可达30-40米/分,加速度可达1g,换刀时间可提高到1-2秒并可获得粗糙度Ra0.6mm以上,还可以加工硬度达60HRC的模块。形成对电火花加工的挑战,它与传统铣削加工相比,具有温升低热变形小等优点。 从物理本质上来说,电火花加工是靠放电烧蚀的“微切削”工艺。对加工过程非常之缓慢表面进行局部高温放电烧蚀过程中,工件表面的物理机械性能会受到一定程度的损伤,常在型腔表面形成微细裂纹,表面粗糙度也达不到模具的要求,因而还有进行费力,费时手工研磨和抛光。因此,生产效率低,质量不稳定,模具已成为新产品开发速度的一关键因素,与电火花加工相比,高速铣削加工的主要优点:1、产品质量好。高速铣削以高于常规切削速度10倍左右的切削速度对零件进行高速加工,毛坯材料的余量还来不及充分变形在瞬间被切离工件、工件表面的残余应力非常小;切削过程的绝大多数热量约95%被切削屑带走,工件热变形小;高速加工过程中,机床主轴高速运转,激振频率远离“机床—刀具—工件”系统的固有频率范围,加工过程平稳无冲击。因此,零件的加工精度高,表面质量好,粗糙度可达0.6mm,型腔表面质量可达到磨削水平。

2、生产效率高。用高速铣削加工的模具,可在一次装夹中完成粗、精加工和模具零件其他部位的机械加工,即所谓“一次过”技术,不需后续的手工研磨与抛光,又容易实现加工过程自动化。它还能加工形状复杂的零件和薄壁零件。由于高速切削时切削力大为减少,尤其是横向(Py)切削力很小,这就有利于加工复杂模具型腔中一些细筋和薄壁,其壁厚甚至小于1mm。 总之高速铣削完全符合现代制造技术“高效率、高精度和高自动化”的发展方向,有广阔的应用前景。而电火花成型加工对一些尖角、窄槽、深小孔和过于复杂的型腔表面和精密加工还是有用的。两者应该扬长避短,相辅相成。建议先在厦门、福州、泉州等地有实力的企业,引进高速铣削机床,然后全省逐渐推广。 台州亚古机床设备有限公司 https://www.360docs.net/doc/2810675460.html,

高速铣削加工颠覆模具生成方式

高速铣削加工颠覆模具生成方式高速铣削加工颠覆了这家汽车零件锻造公司的十几年旧加工习惯,重新使模具制造返回到室内生产。 一位潜在的客户在Trenton锻造公司的参观访问中,看到了一个锻造的零件,非常像他要求该公司报价生产的零件。 位于密西根州的Trenton锻造公司就是在参观的前一星期收到了由这一客户邮寄来的报价材料。然而,该客户得知这并不是类似的零件,正是他所需要的那个零件。在收到客户打印资料的一星期内,Trenton 锻造公司模仿这一工件,加工制造了一套模具,而且试制了一批很好的锻件。 Trenton公司展示了他们的实力。同时,也展示了他们在重点工作方面所具备的新能力。由于在如何加工模具和谁能加工这一模具方面的情况发生了变化,现在这家汽车锻模供货商就能够向客户保证,在非常紧迫的时间内交货。原因是适于这一工作的模具在一星期之内就完工了;Trenton公司可以承诺在两星期之内交付任何模具。然而在一年前的这个时候,该公司根本不敢做出这样的承诺。

2000年10月,Trenton公司安装了两台转速高达18000r/min的模具铣削加工中心。2000年9月,该公司完成了安装这两台机床的厂房建设。建成新的车间和雇佣适当的工作人员以后,该锻模供应商就能发挥自己加工模具的潜力,使公司能承包十几年来未曾想像的加工任务。只通过铣削加工制造模具的能力就足以说明为什么这一工作现在可以在室内完成的原因。 铣削加工的优缺点 Trenton锻造公司的模具制造主要依*EDM放电加工机床。为什么Trenton公司的老板David Moxiow先生决定要购置两台加工中心,来替代EDM放电加工机床呢?快速而精确的加工中心,可以通过快速而轻巧的切削,直接在钢块上铣削加工出复杂的模具,而且成本效益很好。因此,Trenton公司现在可以通过一次调试装卡,就能从硬度42 RC 的钢块上加工完成一个模具。 项目工程师Jason Van Buren先生解释了为什么在室内加工制造模具能如此吸引人的原因。采用EDM机床加工模具需要很多加工工序和步骤,其所需的工作量一般要比锻模供货商制作模具所花费的工时更大。其加工工序一般包括模型的制作、电极铣削加工、通过人工加工准备制作模具的钢块以及EDM机床本身的放电加工。除了只有一个工序以外,其他全部离不开手工作业。也就是说在执行放电加工时,只有一

对高速加工技术及其应用于现代模具制造的探究(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 对高速加工技术及其应用于现 代模具制造的探究(通用版) Safety management is an important part of production management. Safety and production are in the implementation process

对高速加工技术及其应用于现代模具制造 的探究(通用版) 本文对于高速切削的定义、机理以及有点进行了简要阐述,并对高速切削模具的机床、刀具技术以及工艺技术进行了研究。 模具广泛应用于我国的各个领域,是一种非常重要的工艺装备。高速加工作为近些年来迅速发展的一种加工技术,因其高效性以及具有较高的加工精度,已被广泛应用于现代模具的生产制造过程当中,并有着逐渐替代过去的电火花精加工的趋势。 高速切削的定义及机理 高速切削不是指某一个确定的切削速度值,它是一个相对概念,其切削速度会随着加工方法及加工条件等的变化而改变。一般情况下。高速切削的速度是同等条件下普通切削的5~10倍,进给速度大约在2~25米每分以上。应该注意的是,高速不是技术指标而是经济

指标。换句话说,只有可以得到比较大的经济效益的高速切削才是有意义的。 高速切削的机理为:因为切削速度较高,从而产生了高应变率,切削产生的切削热使得温度上升,材料软化,导致切削力减小、剪切角减小,从而达到高速薄切削的效果。 高速切削的优点 2.1切削效率高 高速切屑加工具有较高的主轴转速,进给速度快,因此虽然其切削深度较小,但在单位时间内金属的切除量却增加了,从而使得加工效率得到提高。另外,高速切削具有较高的加工精度,因而加工得到的工件具有较高的表面质量,可以节省加工工序,提高加工效率。 2.2加工质量高 因为高速切削中的横向切削力比较小,因而可以加工一些常规加工中无法加工的薄壁零件等复杂工件。在高速加工中,绝大部分的热量都被切削带走,从而使得工件的温升以及热变形都很小,使

机械毕业设计英文外文翻译330模具高速铣削加工技术

附件: 模具高速铣削加工技术 摘要介绍了高速铣削在模具加工中的应用以及影响,并简要的介绍了高速铣削机床的结构、控制系统和刀具。对高速加工的工艺进行了简单的分析。 关键词高速铣削;模具加工 一、前言 在现代模具生产中,随着对塑件的美观度及功能要求得越来越高,塑件内部结构设计得越来越复杂,模具的外形设计也日趋复杂,自由曲面所占比例不断增加,相应的模具结构也设计得越来越复杂。这些都对模具加工技术提出了更高要求,不仅应保证高的制造精度和表面质量,而且要追求加工表面的美观。随着对高速加工技术研究的不断深入,尤其在加工机床、数控系统、刀具系统、CAD/CAM软件等相关技术不断发展的推动下,高速加工技术已越来越多地应用于模具型腔的加工与制造中。 数控高速切削加工作为模具制造中最为重要的一项先进制造技术,是集高效、优质、低耗于一身的先进制造技术。相对于传统的切削加工,其切削速度、进给速度有了很大的提高,而且切削机理也不相同。高速切削使切削加工发生了本质性的飞跃,其单位功率的金属切除率提高了30%~40%,切削力降低了30%,刀具的切削寿命提高了70%,留于工件的切削热大幅度降低,低阶切削振动几乎消失。随着切削速度的提高,单位时间毛坯材料的去除率增加了,切削时间减少了,加工效率提高了,从而缩短了产品的制造周期,提高了产品的市场竞争力。同时,高速加工的小量快进使切削力减少了,切屑的高速排出减少了工件的切削力和热应力变形,提高了刚性差和薄壁零件切削加工的可能性。

由于切削力的降低,转速的提高使切削系统的工作频率远离机床的低阶固有频率,而工件的表面粗糙度对低阶频率最为敏感,由此降低了表面粗糙度。在模具的高淬硬钢件(HRC45~HRC65)的加工过程中,采用高速切削可以取代电加工和磨削抛光的工序,从而避免了电极的制造和费时的电加工,大幅度减少了钳工的打磨与抛光量。对于一些市场上越来越需要的薄壁模具工件,高速铣削也可顺利完成,而且在高速铣削CNC加工中心上,模具一次装夹可完成多工步加工。 高速加工技术对模具加工工艺产生了巨大影响,改变了传统模具加工采用的“退火→铣削加工→热处理→磨削”或“电火花加工→手工打磨、抛光”等复杂冗长的工艺流程,甚至可用高速切削加工替代原来的全部工序。高速加工技术除可应用于淬硬模具型腔的直接加工(尤其是半精加工和精加工)外,在EDM电极加工、快速样件制造等方面也得到了广泛应用。大量生产实践表明,应用高速切削技术可节省模具后续加工中约80%的手工研磨时间,节约加工成本费用近30%,模具表面加工精度可达1 m,刀具切削效率可提高1倍。 二、高速铣削加工机床 高速切削技术是切削加工技术的主要发展方向之一,它随着CNC技术、微电子技术、新材料和新结构等基础技术的发展而迈上更高的台阶。由于模具加工的特殊性以及高速加工技术的自身特点,对模具高速加工的相关技术及工艺系统(加工机床、数控系统、刀具等)提出了比传统模具加工更高的要求。 1.高稳定性的机床支撑部件 高速切削机床的床身等支撑部件应具有很好的动、静刚度,热刚度和最佳的阻尼特性。大部分机床都采用高质量、高刚性和高抗张性的灰铸铁作为支撑部件材料,有的机床公司还在底座中添加高阻尼特性的聚合物混凝土,以增加其抗振性和热稳定性,这不但可保证机床精度稳定,也可防止切削时刀具振颤。采用封闭式床身设计,整体铸造床身,对称床身结构并配有密布的加强筋等也是提高机床稳定性的重要措施。一些机床公司的研发部门在设计过程中,还采用模态分析和有限元结构计算等,优化了结

相关文档
最新文档