1 、当 为 时,分别用费米分布函数和玻尔兹曼分布函数计算

1 、当 为 时,分别用费米分布函数和玻尔兹曼分布函数计算

1、当F E E ?为00015410.k T ,k T ,k T 时,分别用费米分布函数和玻尔兹曼分布函数计算电子占据各

该能级的几率。

2、利用表3-2中的n p m ,m ??数值,

计算Si ,Ge ,GaAs 在室温下的C V N ,N 以及本征载流子浓度。3、①室温下,Ge 的有效态密度19310510C N .cm ?=×;1835710v N .cm ?=×,求Ge 的载流子有效质

量n p

m ,m ??

。计算77k 时的C N 、V N 。已知300K 时,067g E .eV =,77K 时076g E .eV =。求这两个温度下Ge 的本征载流子浓度。②77K 时,Ge 的电子浓度为17310cm ?,假定受主浓度为零,而001C D E E .eV ?=,求Ge 中施主浓度D N 为多少?

4、计算施主杂质浓度分别为163183193101010cm ,cm ,cm ???的Si 在室温下的费米能级,并假定杂质是全部电离。再用算出的费米能级核对一下上述假定是否在每一种情况下都成立。计算时,取施主能级在导带底下面0.05eV 处。

5、计算含有施主杂质浓度153910D N cm ?=×及受主浓度为1631110A N .cm ?=×的Si 在300T K =时的

电子和空穴浓度以及费米能级的位置。

6、施主浓度为13310D N cm ?=的n 型硅,计算400K 时本征载流子浓度,多子浓度、少子浓度

和费米能级的位置。

7、制造晶体管一般是在高杂质浓度的n 型衬底上外延一层n 型外延层,再在外延层中扩散硼、磷而成。

①设n 形硅单晶衬底是掺锑的,锑的电离能为0.039eV ,300K 时的F E 位于导带底下面0026.eV 处,计算锑的浓度和导带中电子浓度;(衬底)

②设n 型外延层杂质均匀分布,杂质浓度为1534610.cm ?×,计算300K 时F E 的位置及电子和空

穴浓度;(外延层)

③在外延层中扩散硼后,硼的浓度分布随样品深度变化。设扩散层某一深度处硼浓度为

1535210.cm ?×,计算300K 时F E 的位置及电子和空穴的浓度;

(外延层中的扩散区)④如温度升高到500K ,计算③中电子和空穴的浓度(本征载流子浓度数值查图3-7)

8、计算掺磷的硅、锗在室温下开始发生弱简并时的杂质浓度为多少?

9、利用上题的结果,计算掺磷的硅、锗在室温下开始发生弱简并时有多少施主发生电离?导带中电子浓度为多少?

格子Boltzmann

格子Boltzmann 方法模拟C/C 复合材料 颗粒沉积过程 罗思璇 () Particle Deposition Process Simulation in C/C Composites by Lattice-Boltzmann Method Luo Sixuan () Abstract: Lattice Boltzmann method is used here to study the particle deposition process on C/C composites surface. This method considered the boudary condition change during particle deposition. Finally, the deposition pattern is obtained. Keywords: LB Method; flow-particle coupling; C/C composites; deposition 摘要:本文使用格子Boltzmann 方法研究了固体火箭发动机中C/C 复合材料表面上颗粒的沉积模态。该方法考虑了沉积过程中边界形貌的变化对流场的影响,最终得到了颗粒在碳纤维表面的沉积形态。 关键词:LB 方法;流固耦合;C/C 复合材料;沉积 0 引言 C/C 复合材料是目前新材料领域重点研究和开发的一种新型超高温热结构材料,具有密度小,比强度大、热膨胀系数低、热导率高等特点,是理想的航空航天高温材料[1, 2]。 C/C 复合材料在工作过程中其表面流过的工质为高温燃气。高温燃气中通常带有燃烧产生的固体颗粒,如选用较高比冲的含铝推进剂时会产生一定量的凝聚相(Al2O3颗粒)。固体颗粒在C/C 复合材料表面的沉积、冲刷及烧蚀会造成材料内型面的破坏,甚至影响气动性能。 本文使用格子Boltzmann 方法模拟C/C 复合材料中碳纤维上颗粒沉积过程及形态。 1模拟流场的格子Boltzmann 模型 格子Boltzmann 方法是近二十年来刚发展起来的,一种以“半晶格分离法”为处理方式的新型热量逐级传递数值方法,最初是在研究电磁场中的流动现象时被提出的,并且该方法可以确定流体域、固体域和温度场在边界处的连续性,十分适合针对复杂几何形状流固耦合传热问题的数值分析。与传统的经典CFD 方法相比,格子波尔兹曼算法具有很多优点。因而近年来受到国内外学者的广泛关注,并迅速在气固两相流和传热等研究领域得到应用。 格子Boltzmann 方法将流体抽象为微观的虚拟颗粒,通过这些颗粒在规则的网格点上进行碰撞和迁移来达到模拟流场的目的。分布函数f i (x ,t )表示t 时刻,x 网格点上,速度为c i 流体颗粒的概率密度,流场的宏观量通过对分布函数进行统计而得到。本文使用D3Q15模型模拟流场,流体宏观密度ρ和动量ρu 计算如下: 10 Q i i f ρ-==∑,1 Q i i i f ρ-==∑u c (1) 本文使用BGK 碰撞算子[3],流场演化方程为: eq (,)(,)[(,)(,)]i i i i i f x t t t f x t f x t f x t τ+??+?-=-c (2) 其中?t 为时间步长,τ为无量纲松弛时间,eq i f 为平衡态分布函数,在D2Q9模型中如下计算:

§1.4常用的分布及其分位数(精)

§1.4 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的分布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 的 分布称为自由度等于n 的2χ分布,记作Z ~2χ(n),它的分 布密度 p(z )=???????>??? ??Γ--,,00,2212122其他z e x n z n n 式中的??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 的分布称为自由度等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ? ?+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30时,t

统计规律

统计规律 1问题的提出 在统计学中有大数定律如下: 定义11 若L L ,,,,21n ξξξ是随机变量序列,如果存在常数列,使对任意的L L ,,,,21n a a a 0>ε,有 1P lim 1=??? ???????????ε,有 1lim =? ?????

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质就是旧键的断裂与新建的形成,参与成键原子的电子壳层重新组合就是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似与关于分子波函数的方程形成计算量子化学的数学基础。 2、1 SCF-MO 方法的基本原理 分子轨道的自洽场计算方法 (SCF-MO)就是各种计算方法的理论基础与核心部分,因此在介绍本文计算工作所用方法之前,有必要对其关键的部分作一简要阐述。 2、1、1 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献与教材中对这些方程已有系统的推导与阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构与性质,在非相对论近似下,须求解 R AB =R 图2-1分子体系的坐标

定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ (2、1) 其中分子波函数依赖于电子与原子核的坐标,Hamilton 算符包含了电子p 的动能与电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2、2) 以及原子核的动能 ∑?-=A A A N M H 2121? (2、3) 与电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2、4) 式中Z A 与M A 就是原子核A 的电荷与质量,r pq =|r p -r q |,r pA =|r p -R A |与R AB =|R A -R B |分别就是电子p 与q 、核A 与电子p 及核A 与B 间的距离(均以原子单位表示之)。上述分子坐标系如图2、1所示。可以用V(R,r)代表(2、2)-(2、4)式中所有位能项之与 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2、5) 原子单位 上述的Schrodinger 方程与Hamilton 算符就是以原子单位表示的,这样表示的优点在于简化书写型式与避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位就是Bohr 半径

Matlab实现格子玻尔兹曼方法

Matlab实现格子玻尔兹曼方法 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % cylinder.m: Flow around a cyliner, using LBM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or (at your option) any later version. % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % You should have received a copy of the GNU General Public % License along with this program; if not, write to the Free % Software Foundation, Inc., 51 Franklin Street, Fifth Floor, % Boston, MA 02110-1301, USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear % GENERAL FLOW CONSTANTS lx = 250; ly = 51; obst_x = lx/5+1; % position of the cylinder; (exact obst_y = ly/2+1; % y-symmetry is avoided) obst_r = ly/10+1; % radius of the cylinder uMax = 0.02; % maximum velocity of Poiseuille inflow Re = 100; % Reynolds number nu = uMax * 2.*obst_r / Re; % kinematic viscosity omega = 1. / (3*nu+1./2.); % relaxation parameter maxT = 400000; % total number of iterations tPlot = 5; % cycles % D2Q9 LATTICE CONSTANTS t = [4/9, 1/9,1/9,1/9,1/9, 1/36,1/36,1/36,1/36]; cx = [ 0, 1, 0, -1, 0, 1, -1, -1, 1]; cy = [ 0, 0, 1, 0, -1, 1, 1, -1, -1]; opp = [ 1, 4, 5, 2, 3, 8, 9, 6, 7]; col = [2:(ly-1)]; [y,x] = meshgrid(1:ly,1:lx); obst = (x-obst_x).^2 + (y-obst_y).^2 <= obst_r.^2; obst(:,[1,ly]) = 1;

百分位数计算公式上课讲义

精品文档 假设你的数据在A列 在B1输入=PERCENTILE(E1:E10,0.1) 得到的是第10百分位数 在B2输入=PERCENTILE(E1:E10,0.9) 得到的是第90百分位数 追问 我想用函数做,如何进行呢? 回答 不知道你的具体含义。在excel里函数与我们平常说的公式是一个概念。 推测你是要使用宏? 追问 我找到了计算百分位数的函数PERCENTILE(array,k),但是不知如何 使用。 回答 你找到的函数不就是我给出答案里的公式吗 假设你的数据在A列A1~A10 , 在B1输入=PERCENTILE(A1:A10,0.1) 得到的是第10百分位数 在B2输入=PERCENTILE(A1:A10,0.9) 得到的是第90百分位数 提问者评价 我明白了,谢谢。 什么是百分位数 统计学术语,如果将一组数据从大到小排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数。可表示为:一组n个观测值按数值大小排列如,处于p%位置的值称第p百分位数。 中位数是第50百分位数。 第25百分位数又称第一个四分位数(First Quartile),用Q1表示;第50百分位数又称第二个四分位数(Second Quartile),用Q2表示;第75百分位数又称第三个四分位数(Third Quartile),用Q3表示。若求得第p百分位数为小数,可完整为整数。 分位数是用于衡量数据的位置的量度,但它所衡量的,不一定是中心位置。百分位数提供了有关各数据项如何在最小值与最大值之间分布的信息。对于无大量重复的数据,第p百分位数将它分为两个部分。大约有p%的数据项的值比第p 百分位数小;而大约有(100-p)%的数据项的值比第p百分位数大。对第p百分位数,严格的定义如下。 第p百分位数是这样一个值,它使得至少有p%的数据项小于或等于这个值,精品文档

第一性原理计算方法讲义

第一性原理计算方法讲 义 标准化管理部编码-[99968T-6889628-J68568-1689N]

第一性原理计算方法 引言 前面讲述的有限元和有限差分等数值计算方法中,求解的过程中需要知道一些物理参量,如温度场方程中的热传导系数和浓度场方程中的扩散系数等,这些参量随着材料的不同而改变,需要通过实验或经验来确定,所以这些方法也叫做经验或者半经验方法。而第一性原理计算方法只需要知道几个基本的物理参量如电子质量、电子的电量、原子的质量、原子的核电荷数、布朗克常数、波尔半径等,而不需要知道那些经验或半经验的参数。第一性原理计算方法的理论基础是量子力学,即对体系薛定额方程的求解。 量子力学是反映微观粒子运动规律的理论。量子力学的出现,使得人们对于物质微观结构的认识日益深入。原则上,量子力学完全可以解释原子之间是如何相互作用从而构成固体的。量子力学在物理、化学、材料、生物以及许多现代技术中得到了广泛的应用。以量子力学为基础而发展起来的固体物理学,使人们搞清了“为什么物质有半导体、导体、绝缘体的区别”等一系列基本问题,引发了通讯技术和计算机技术的重大变革。目前,结合高速发展的计算机技术建立起来的计算材料科学已经在材料设计、物性研究方面发挥着越来越重要的作用。 但是固体是具有~1023数量级粒子的多粒子系统,具体应用量子理论时会导致物理方程过于复杂以至于无法求解,所以将量子理论应用于固体系统必须采用一些近似和简化。绝热近似(Born-Oppenheimei近似)将电子的运动和原子核的运动分开,从而将多粒子系统简化为多电子系统。Hartree-Fock近似将多电子问题简化为仅与以单电子波函数(分子轨道)为基本变量的单粒子问题。但是其中波函数的行列式表示使得求解需要非常大的计算量;对于研究分子体系,他可以作为一个很好的出发点,但是不适于研究固态体系。1964年,Hohenberg和Kohn提出了严格的密度泛函理论(Density Functional Theory, DFT)。它建立在非均匀电子气理论基础之上,以粒子数密度()r 作为基本变量。1965年,Kohn和Sham提出Kohn-Sham方程将复杂的多电子问题及其对应的薛定谔方程转化为相对简单的单电子问题及单电子Kohn-Sham方程。将精确的密度泛函理论应用到实际,需要对电子间的交换关联作用进行近似。局域密度近似(LDA)、广义梯度近似(GGA)等的提出,以及以密度泛函理论为基础的计算方法(赝

统计学常用分布及其分位数

§1、4 常用得分布及其分位数 1、 卡平方分布 卡平方分布、t 分布及F 分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。 当X 1、X 2、… 、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 得分布称为自由度等于n 得2χ分布,记作Z ~2χ(n),它得分布 密度 p(z )=??? ????>??? ??Γ--,,00,2212122其他z e x n z n n 式中得??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布就是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布得定义以及上述随机变量得相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2、 t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 得分布称为自由度等于n 得t 分布,记作Z ~ t (n ),它得分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布得分布密度也就是偶函数,且当n>30时,t

随机误差统计分布规律.

实验题目:时间测量中的随机误差分布规律 实验目的:用常规仪器(如电子秒表、频率计等)测量时间间隔,通过对时间和频率测量的随机误差分 布,学习用统计方法研究物理现象的过程和研究随机误差分布的规律。 实验原理:1、常用时间测量仪表的简要原理 (1)机械节拍器由齿轮带动摆作周期性运动。 (2)电子节拍器按一定的频率发出有规律的声响和闪光。 (3)电子秒表兼有数种测时功能。电子秒表机芯由CMOS 集成电路组成,用石英晶体振荡器 作时标,一般用六位夜晶数字显示。 (4)V AFN 多用数字测试仪由PMOS 集成元件和100kHz 石英晶体振荡器构成。六档方波脉冲 作为时标信号和闸门时间。 2、统计分布规律和研究 (1)假设在近似消除了系统误差(或系统误差很小,可忽略不计,或系统误差为一恒定值) 的条件下,对时间t 进行N 次等精度测量,当测量次数N 趋于无穷大时,各测量值出现的概率密度分布可用正态分布的概率密度函数表示: 2 22)(21 )(σπ σx x e x f -- = 其中n x x n i i ∑== 1 为测量的算术平均值, 1 )(1 2 --=∑=n x x n i i σ为测量列的标准差, ?-=a a dx x f a P )()( 式中σσσ3,2,=a (2)概率密度分布曲线 求出各小区间中点的正态分布的概率密度值f(x),以f(x)为纵坐标,t 为横坐标,可得概率 密度分布曲线。若此概率密度分布曲线与统计直方图上断相吻合,则可认为测量值是基本符合正态分布的。 实验步骤:1、时间测量 (1)用电子秒表测量机械节拍器的摆动周期(以3个周期为一测量周期)。 (2)将机械节拍器上好发条使其摆动,在等精度条件下重复测量150,记录每次的测量结果。 2、数据进行处理(计算平均值、标准差、作出相应图表、误差分析等)及统计规律研究。 实验器材:电子秒表、机械节拍器

lbm波尔兹曼算法

波尔兹曼方法基本原理 格子Boltzmann 方法是使用简单的微观模型来模拟流体的宏观行为的一种新的方法。格子Boltzmann 方法是建立在微观粒子运动论基础上的数值计算方法。其求解过程一般需要通过编程来实现! 一般来说研究流体的行为有两种方法:一种是从宏观的角度出发,假设流体连续分布于整个流场,注入密度、速度、压力等物理量均是时间可空间的足够光滑的函数。另一种是从微观的角度,从非平衡统计力学的观点出发,假设流体是由大量的微观的例子组成,这些例子遵守力学定律,同时服从统计定律,运用统计的方法来讨论流体的宏观性质。 然而流体是由大量的粒子组成的,当我们从宏观的角度研究流体行为的时候,并没有涉及到单个粒子的行为。通常我们所感兴趣的事代表某个点的宏观量,例如密度、速度、压力。根据连续性假设我们可以推导出N-S 方程,并且利用数学上的微积分知识来求解,然而由于N-S 方程是高度非线性化的偏微分方程,仅仅一些具有简单变界或者比较严格物理闲着的现象才能够得到理论分析界,如果从微观的角度了研究单个粒子的真是行为,对于一个包含大量例子的系统来说粒子的运动方程往往是得不到解的。统计学可以考虑整个系统所有的状态以及处理这个状态的概率来解决这些困难,对于稀薄气体所得到的就是Boltzmann 方程,但是得到的方程还不够,我们还要借助于统计方法得到流体的宏观性质,这就要求解Boltzmann 方程,然而Boltzmann 方程是一非线性微分方程,一般情况下严格求解也是非常困难的。 格子气方法是近年来发展起来的模拟流体力学以及其他系统的比较新的方法,格子气自动机模拟流场,就是将流体及其存在的时间和空间完全离散,给出离散的流体粒子之间相互作用以及迁移的规则。流体只存在于空间网格上,用一系列布尔变量,.....,2,1)(,(b i t x n i =来描述在时刻t 位于x 处节点的每一个速度方向是否有粒子存在,其中b 表示每一个节点的速度方向的数目,粒子在每一个时间步长的演化包括两部分:()a 迁移,粒子沿它的速度方向向距离最近的节点运动;()b 碰撞,当不同的粒子同时到达某个节点时,按照一定的碰撞规则发生碰撞并改变运动的方向,格子气模型具有两重 意义: ()a 尽可能建立一个简单的模型是指能够用来模拟一个有大量粒子组成的系统;()b 反映粒子真实碰撞的本质,这样经过长时间我们可以获得流体的宏观特性。 粒子的演化过程能够用来模拟宏观的流体过程是基于下列事实,即流体的宏观特性是系统内大量粒子整体行为的结果。分子之间的相互作用可以改变流体的传输特性,比如粘度,但是并不改变宏观方程的基本形式。 格子气的HPP 模型与FPH 模型 HPP 模型将流体存在的空间划分为间距为单位长度的正方形网格,将流体想象成许多有质量没有体积的微小粒子组成,在同一时刻同一网格节点上,每一个速度方向最多允许存在一个粒子,每个粒子可以向四个方向的其中之一运动,并且遵守以下碰撞准则:当且仅当只有两个粒子沿相反方向达到某节点时(对头碰撞),它们沿另外的两个方向离开该节点,其他情形则直接穿透,PHP 模型则是将流场划分为间距为单位长度的正三角网格,并且增加了相应的碰撞准则。 格子气的微观方程 为简单起见,以HPP 模型为例,用()x ,t n i 代表在时刻t 位置x 处的节点上第i 个方向的粒子数,则整个布尔场的更新可以写成 ()()()()231312,1++++++-Λ-ΛΛ-Λ-ΛΛ-Λ=++i i i i i i i i i i i n n n n n n n n n e x t n ν

Matlab实现玻尔兹曼晶格模拟

Matlab实现格子玻尔兹曼方法(Lattice Boltzmann Method,LBM)模拟clear % GENERAL FLOW CONSTANTS lx = 250; ly = 51; obst_x = lx/5+1; % position of the cylinder; (exact obst_y = ly/2+1; % y-symmetry is avoided) obst_r = ly/10+1; % radius of the cylinder uMax = 0.02; % maximum velocity of Poiseuille inflow Re = 100; % Reynolds number nu = uMax * 2.*obst_r / Re; % kinematic viscosity omega = 1. / (3*nu+1./2.); % relaxation parameter maxT = 400000; % total number of iterations tPlot = 5; % cycles % D2Q9 LATTICE CONSTANTS t = [4/9, 1/9,1/9,1/9,1/9, 1/36,1/36,1/36,1/36]; cx = [ 0, 1, 0, -1, 0, 1, -1, -1, 1]; cy = [ 0, 0, 1, 0, -1, 1, 1, -1, -1]; opp = [ 1, 4, 5, 2, 3, 8, 9, 6, 7]; col = [2:(ly-1)]; [y,x] = meshgrid(1:ly,1:lx); obst = (x-obst_x).^2 + (y-obst_y).^2 <= obst_r.^2; obst(:,[1,ly]) = 1; bbRegion = find(obst); % INITIAL CONDITION: (rho=0, u=0) ==> fIn(i) = t(i) fIn = reshape( t' * ones(1,lx*ly), 9, lx, ly); % MAIN LOOP (TIME CYCLES) for cycle = 1:maxT % MACROSCOPIC VARIABLES rho = sum(fIn); ux = reshape ( ... (cx * reshape(fIn,9,lx*ly)), 1,lx,ly) ./rho; uy = reshape ( ... (cy * reshape(fIn,9,lx*ly)), 1,lx,ly) ./rho; % MACROSCOPIC (DIRICHLET) BOUNDARY CONDITIONS

利用Excel的NORMSDIST计算正态分布函数表

利用Excel的NORMSDIST函数建立正态 分布表 董大钧,乔莉 理工大学应用技术学院、信息与控制分院,113122 摘要:利用Excel办公软件特有的NORMSDIST函数可以很准确方便的建立正态分布表、查找某分位数点的正态分布概率值,极大的提高了数理统计的效率。该函数可返回指定平均值和标准偏差的正态分布函数,将其引入到统计及数据分析处理过程中,代替原有的手工查找正态分布表,除具有直观、形象、易用等特点外,更增加了动态功能,极大提高了工作效率及准确性。 关键词:Excel;正态分布;函数;统计 引言 正态分布是应用最广泛的连续概率分布,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,某种产品的力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布。从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。在科学研究及数理统计计算过程中,人们往往要通过某本概率统计教材附录中的正态分布表去查找,非常麻烦。若手头有计算机,并安装有Excel软件,就可以利用Excel的NORMSDIST( x )函数进行计算某分位数点的正态分布概率值,或建立一个正态分布表,准确又方便。 1 正态分布及其应用 正态分布(normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为N(μ,σ2 )。则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟

格子玻尔兹曼方法(LBM)及其在微通道绕流中的应用

2019年第19卷第1期 编辑李文波 安全数值模拟专栏 格子玻尔兹曼方法(LBM)及其在 微通道绕流中的应用 冯俊杰,孙冰,姜杰,徐伟,石宁 (中国石化青岛安全工程研究院化学品安全控制国家重点实验室,山东青岛266071 ) 摘要:卜绍了格子玻尔兹曼方法基本理论 与计算方法,并建立了D2Q9计算模型,对宏观尺 度及微通道中的非稳态绕流进行了数值模拟,得 到了绕流过程的速度分布和涡量分布等信息,对 流场结构、固体阻力、尾涡脱落等变化规律进行了 分析。结果表明,格子玻尔兹曼方法以其计算稳 定、效率高等优势能够应用于微反应器领域的数值 模拟;同等液相停留时间条件下,微反应器中的圆柱 绕流湍动程度明显降低,未形成周期性涡流,流动更 加均勾稳定,有助于实现化学反应的精确控制。 关键词:(LBM)微反应器通 0 前言 微反应器在提高反应过程安全性、缩短反应 间、提高转化率、灵活生 面具有独特的优势,实现微通道 的精确测定和控制是微反应器发挥诸多优势的保障和广泛应用的基础[1]。由于微通道内的 具有尺度小、多尺度、相界面与复杂的特点,传统的计 体力学(CFD)方作为宏观模 在着诸多 ,而格子玻尔兹曼方法(lattice Boltzmann method,LBM)突破 了计 的框架, 离散模 发,通群的碰撞和迁移代 的体模型,更接近 的微观本质,在微流控领域具有明 显的优势[—3]。 格子玻尔兹曼 的体离散 为在网格 的介观 ,通过计 的碰 撞和迁移规律得到 布函数,进而统计计算到宏观变量如压力、速度 布规律,创造性地了模 体 的模 离散模型 的转变[]。LBM平 计物理 学的Boltzmann方程,因而能成为联系微观 尺 度与宏观尺度之间的 [5_6]。的C FD方法 宏观的 ,而难以计:些 不符合 者难以用宏观方程描述的 系统,对于这些体系往往 借助微观的 '动 力学 体动理论来进行描述[]。对 力 学来说必须同时跟踪大量 的运动,实际求解 的计算量 大。在这 , 论和概率统计力学的LBM就成为 有 法,其具有更高的计算效率,并且容易 行计 收稿日期=2018-07-16 作者简介:I俊杰,博士,工程师,2016年毕业于 北京化工大学化学工程与技术专业,现于中国 石化青岛安全工程研究院从事本质安全化技 术、反应器工程等方面工作。 SAFETY HEALTH & ENVIRONMENT U7

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

常见统计分布及其特点

【附录一】常见分布汇总 一、二项分布 二项分布(Binomial Distribution),即重复n次的伯努利试验(Bernoulli Experiment),用ξ表示随机试验的结果, 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是。 二、泊松poisson分布 1、概念 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算。 2、特点——期望和方差均为λ。 3、应用(固定速率出现的事物。)——在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布 三、均匀分布uniform 设连续型随机变量X的分布函数F(x)=(x-a)/(b-a),a≤x≤b 则称随机变量X服从[a,b]上的均匀分布,记为X~U[a,b]。 四、指数分布Exponential Distribution 1、概念

2、特点——无记忆性 (1)这种分布表现为均值越小,分布偏斜的越厉害。 (2)无记忆性 当s,t≥0时有P(T>s+t|T>t)=P(T>s) 即,如果T是某一元件的寿命,已知元件使用了t 小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。 3、应用 在电子元器件的可靠性研究中,通常用于描述对发生的缺陷数或系统故障数的测量结果 五、正态分布Normal distribution 1、概念 2、中心极限定理与正态分布(说明了正态分布的广泛存在,是统计分析的基础) 中心极限定理:设从均值为μ、方差为σ^2;(有限)的任意一个总体中抽取样本量为n 的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ^2/n 的正态分布。 3、特点——在总体的随机抽样中广泛存在。 4、应用——正态分布是假设检验以及极大似然估计法ML的理论基础 定理一:设X1,X2,X3.。。Xn是来自正态总体N(μ,δ2)的样本,则有 样本均值X~N(μ,δ2/n)——总体方差常常未知,用t分布较多 六、χ2卡方分布(与方差有关)chi-square distribution 1、概念 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同 分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution),其中参数n 称为自由度 【注意】假设随机干扰项呈正态分布。因此,卡方分布可以和RSS残差平方和联系起来。用RSS/δ2,所得的变量就是标准正态分布,就服从卡方分布。

用格子玻尔兹曼方法研究流动_反应耦合的非线性渗流问题

用格子玻尔兹曼方法研究流动2反应耦合的 非线性渗流问题 3 许友生 1)2)  李华兵 3)4)  方海平3) 黄国翔 1) 1)(华东师范大学物理系,上海 200062)2) (浙江师范大学物理系,金华 321004) 3) (中国科学院上海应用物理研究所,上海 201800) 4) (桂林电子工业学院计算科学与应用物理系,桂林 541004)(2003年10月28日收到;2003年12月1日收到修改稿) 根据格子玻尔兹曼计算技术以及相应渗流理论,对多孔介质内流动2反应(矿物介质的溶解等)耦合这一非线性渗流问题进行了数值研究,计算结果与解析解基本符合.数字图像重构技术反映的结果表明流体流动和反应之间可以发生强烈的耦合和反耦合作用,同时可以形成条带结构这一自组织现象,与实验和其他理论分析结果符合也很好. 关键词:非线性渗流,耦合反应,数值模型 PACC : 4755M ,0340 3 国家自然科学基金(批准号:10372094和10274021)、浙江省自然科学基金(批准号:M103082)及浙江省教育厅科研基金(批准号:20020871)资助的课题. E -mail :XY S.001@https://www.360docs.net/doc/281105982.html, 11引言 流动2反应(矿物介质的溶解等)耦合渗流是伴有化学反应和复杂物理过程的动力学问题,其研究领域涉及多孔介质中流体的对流、扩散、弥散、吸附、浓缩、分离、互溶、传热、传质、相变、离子交换、中和、氧化等过程,应用范围主要包括地下资源开采、地球物理、生物渗流、工程渗流等领域.这类问题具有非平衡性、多尺度性、随机性等非线性特征,可以视为一个复杂的巨系统.研究这类问题通常采用以下两种方法. 1)理想化模型 用一个通过适当简化的模型替代实际的多孔介质,从而对体系中发生的流动2反应耦合现象可以很方便地用数学方法进行精确的理论分析[1] .值得注意的是,尽管这类模型比较简单,却仍然可以把影响流动2反应耦合现象的主要因子考虑在内. 2)微观统计模型 运用统计物理理论,构造出一个孔隙内流体质点可分辨的微观运动统计模型, 对质点的各类运动加以平均后得到流体的宏观描 述 [2] . 用上述两种模型得到的结果正确与否,需要靠 实验来检验,尽管利用数学分析可以将某些问题考虑得更细致一些,但把数据与介质之间的基本性质联系起来,仍然需要实验加以确定.这些传统的方法在计算流体速度、压力等物理量时,一般都在宏观Navier 2Stokes 方程基础上做有限差分离散后,得到代 数方程,从而得到数值结果.这种数值处理方法,由于其表面上的复杂性往往掩盖了渗流问题在微观上的简单性,比如空隙介质中多相流的相互驱替等现象只是大量流体粒子之间以牛顿方程的规则相互作用的动力学集中表现,而统计力学认为流体是由大量的微观粒子组成的,粒子的运动遵守经典力学定律的同时,还服从微观统计定律.近几年逐渐兴起的 格子玻尔兹曼方法(lattice Boltzmann method ,即 LBM )[3,4] 正是这样一种简单化的微观数值分析体 系,通过运用统计物理方法讨论多孔介质内流体的宏观性质.这种方法在流体速度空间中的传播算子(演化步骤)是线性的,配合碰撞算子(弛豫过程)和 第53卷第3期2004年3月100023290Π2004Π53(03)Π0773205 物 理 学 报 ACT A PHY SIC A SI NIC A V ol.53,N o.3,March ,2004 ν2004Chin.Phys.S oc.

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 ...................................................................................................... 1 2. 正态分布(高斯分布) ........................................................................... 2 3. 指数分布 ...................................................................................................... 2 4. Beta 分布(β分布) .............................................................................. 2 5. Gamma 分布 .............................................................................................. 3 6. 倒Gamma 分布 ......................................................................................... 4 7. 威布尔分布(Weibull 分布、韦伯分布、韦布尔分布) ..................... 5 8. Pareto 分布 ................................................................................................. 6 9. Cauchy 分布(柯西分布、柯西-洛伦兹分布) (7) 10. 2χ分布(卡方分布) (7) 11. t 分布 ......................................................................................................... 8 12. F 分布 ........................................................................................................ 9 13. 二项分布 ................................................................................................ 10 14. 泊松分布(Poisson 分布) .............................................................. 10 15. 对数正态分布 ....................................................................................... 11 1. 均匀分布 均匀分布~(,)X U a b 是无信息的,可作为无信息变量的先验分布。 1 ()f x b a =-

相关文档
最新文档