物理带电粒子在复合场中的运动练习题及答案

物理带电粒子在复合场中的运动练习题及答案
物理带电粒子在复合场中的运动练习题及答案

一、带电粒子在复合场中的运动专项训练

1.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02m

T qB

π=

.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.

(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系

【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题

【答案】(1)00x y = ,

()2

02qBy m

(2)见解析

【解析】 【详解】

(1)发射源的位置00x y =, 粒子的初动能:()2

00

2k qBy E

m

=

(2)分下面三种情况讨论: (i )如图1,002k E qU >

由02101mv mv mv

y R R Bq Bq Bq

=

==、、,

221001122mv mv qU =-,222101122

mv mv qU =-, 及()012x y R R =++, 得()

()

2

2

002

224x y yqB mqU yqB mqU qB

qB

=+

++

+;

(ii )如图2,0002k qU E qU <<

由02

0mv mv y d R Bq Bq

--==、, 和

22

0201122

mv mv qU =+, 及()032x y d R =--+,

得()

2

2202

3)2x y d y d q B mqU qB

=-++++(

(iii )如图3,00k E qU <

由02

0mv mv y d R Bq Bq

--==、, 和

22

0201122

mv mv qU =-, 及()04x y d R =--+, 得()

2

2204

2x y d y d q B mqU qB

=--+-

2.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC 边足够长)中存在垂直于纸面的匀强磁场,A 处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA 边且垂直

于磁场的方向射入磁场,运动到GA 边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m 1和m 2(m 1>m 2),电荷量均为q .加速电场的电势差为U ,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.

(1)求质量为m 1的离子进入磁场时的速率v 1;

(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s ;

(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA 边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA 边长为定值L ,狭缝宽度为d ,狭缝右边缘在A 处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场.为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度.

【来源】2011年普通高等学校招生全国统一考试物理卷(北京) 【答案】(1)12qU m (2

)(

)

122

8U

m m qB - (3)d m =

1212

2m m m m --L

【解析】

(1)动能定理 Uq =

1

2

m 1v 12 得:v 1=

1

2qU

m …① (2)由牛顿第二定律和轨道半径有:

qvB =2

mv R

,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):

R 1=1

2

2

mU qB ,R 2

=222 m U qB …② 两种离子在GA 上落点的间距s =2(R 1?R 2)=1228

()U

m m qB

- …③ (3)质量为m 1的离子,在GA 边上的落点都在其入射点左侧2R 1处,由于狭缝的宽度为d ,因此落点区域的宽度也是d (如图二中的粗线所示).同理,质量为m 2的离子在GA 边上落点区域的宽度也是d (如图二中的细线所示).

为保证两种离子能完全分离,两个区域应无交叠,条件为2(R 1-R 2)>d…④ 利用②式,代入④式得:2R 1(1?2

1

m m )>d R 1的最大值满足:2R 1m =L-d 得:(L ?d )(1?2

1

m m )>d 求得最大值:d m =

1212

2m m m m --L

3.在场强为B 的水平匀强磁场中,一质量为m 、带正电q 的小球在O 静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到z 轴距离的2倍,重力加速度为g .求:

(1)小球运动到任意位置P (x ,y)的速率v ; (2)小球在运动过程中第一次下降的最大距离y m ; (3)当在上述磁场中加一竖直向上场强为E (mg

E q

>)的匀强电场时,小球从O 静止释放后获得的最大速率m v 。

【来源】江苏高考物理试题复习

【答案】(1)2v gy =;(2)2222m m g

y q B

= ;(3)()2m v qE mg qB =-。 【解析】 【详解】

⑴洛伦兹力不做功,由动能定理得

2

102

mgy mv =

- ① 解得

2v gy = ②

⑵设在最大距离m y 处的速率为m v ,根据圆周运动有

2m

m v qv B mg m R

-= ③

且由②知

2m m v gy = ④

由③④及2m R y =,得

2222m m g

y q B

= ⑤

⑶小球运动如图所示,

由动能定理得

2

1()2

m m qE mg y mv -= ⑥

由圆周运动得

2m

m v qv B mg qE m R

+-= ⑦

且由⑥⑦及2m R y =,解得:

()2

m v qE mg qB

=

-

4.如图甲所示,在xOy 平面内有足够大的匀强电场E ,在y 轴左侧平面内有足够大的磁场,磁感应强度B 1随时间t 变化的规律如图乙所示,选定磁场垂直纸面向里为正方向。在y 轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r=0.3m 的圆形区域(图中未画出)且圆的左侧与y 轴相切,磁感应强度B 2=0.8T ,t=0时刻,一质量

m=8×10-4kg 、电荷量q=+2×10-4C 的微粒从x 轴上x p =-0.8m 处的P 点以速度v=0.12m/s 向x 轴正方向入射。已知该带电微粒在电磁场区域做匀速圆周运动。(g 取10m/s 2)

(1)求电场强度。

(2)若磁场15πs 后消失,求微粒在第二象限运动过程中离x 轴的最大距离;

(3)若微粒穿过y 轴右侧圆形磁场时速度方向的偏转角最大,求此圆形磁场的圆心坐标(x ,y)。

【来源】陕西榆林市2019届高考模拟第三次测试理科综合物理试题

【答案】(1) 40/E N C =,方向竖直向上 (2) 2.4m (3)(0.302.25),

【解析】 【详解】

(1)因为微粒射入电磁场后做匀速圆周运动受到的电场力和重力大小相等,则:qE mg = 解得:40/E N C =,方向竖直向上

(2)由牛顿第二定律有:2

11

v qvB

m R =

所以11

0.6mv

R m qB =

= 1

210m

T s qB ππ=

= 从图乙可知在05s π~内微粒做匀速圆周运动,在510s ππ~内微粒向左做匀速直线运动.在1015s ππ~内微粒又做匀速圆周运动,在15s π内微粒向右做匀速直线运动,之后穿过y 轴.

离x 轴的最大距离11'224 2.4s R R m =?==

(3)如图,微粒穿过圆形磁场要求偏转角最大,入射点A 与出射点B 的连线必须为磁场圆的直径.

由牛顿第二定律,有2

22

v qvB m R =

所以22

0.62mv

R m

r qB =

== 所以最大偏转角为60° 所以圆心坐标0.30x m =

1

'60 2.40.3 2.252

y s rcos m m =-?=-?=

即磁场的圆心坐标为()0.302.25,.

5.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .

(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v

(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P

(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小

【来源】2019年天津市滨海新区塘沽一中高三三模理综物理试卷

【答案】(1) 222202e B R mc v mh h =+,222

02e B R E m = ;(2) 20e B U m

π ;(3)02sin B R n d

π

【解析】 【详解】

解:(1)正、负电子在回旋加速器中磁场里则有:2

00mv evB R

= 解得正、负电子离开回旋加速器时的速度为:00eB R

v m

=

正、负电子进入对撞机时分别具有的能量:2222

00122e B R E mv m

==

正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=

正、负电子对撞湮灭后产生的光子频率:2222

02e B R mc v mh h

=+

(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:

201

2

neU mv =

解得:22

02eB R n mU

=

正、负电子在磁场中运动的周期为:0

2m

T eB π=

正、负电子在磁场中运动的时间为:2022B R n

t T U

π==

D 型盒间的电场对电子做功的平均功率:20e B U

W E P t t m

π===

(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin

2

d

r n

π

=

解得:

2sin

d r n

π=

根据洛伦磁力提供向心力可得:2

00mv ev B r

=

电磁铁内匀强磁场的磁感应强度B 大小:

02sin

B R n B d

π

=

6.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。现使一个电量大小为q 、质量为m 的带正电粒子从坐标(﹣2a ,a )处以沿+x 方向的初速度v 0出发,该粒子恰好能经原点进入y 轴右侧并在随后经过了点P ,不计粒子的重力。

(1)求粒子经过原点时的速度; (2)求磁感应强度B 的所有可能取值

(3)求粒子从出发直至到达P 点经历时间的所有可能取值。 【来源】2019年东北三省四市高考二模物理试题

【答案】(12v 0,方向:与x 轴正方向夹45°斜向下; (2)磁感应强度B 的所有可能取值:0

nmv B qL

=

n =1、2、3……; (3)粒子从出发直至到达P 点经历时间的所有可能取值:023(1)24a m m t k k v qB qB

ππ=++- k =1、2、3……或02324a m m

t n n v qB qB

ππ=++ n =1、2、3……。 【解析】 【详解】

(1)粒子在电场中做类平抛运动,水平方向:2a =v 0t , 竖直方向:2

y v a t =

解得:v y =v 0,tan θ=

y v v =1,θ=45°,

粒子穿过O 点时的速度:2

2002v v v v =+=;

(2)粒子在第四象限内做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:

2

v qvB m r

= ,

粒子能过P 点,由几何知识得:L =nr cos45° n =1、2、3……, 解得:0

nmv B qL

=

n =1、2、3……; (3)设粒子在第二象限运动时间为t 1,则:t 1=

2a v ; 粒子在第四、第一象限内做圆周运动的周期:12m T qB π=

,2m

T qB

π=, 粒子在下方磁场区域的运动轨迹为1/4圆弧,在上方磁场区域的运动轨迹为3/4圆弧,

若粒子经下方磁场直接到达P点,则粒子在磁场中的运动时间:t2=1

4

T1,

若粒子经过下方磁场与上方磁场到达P点,粒子在磁场中的运动时间:t2=1 4

T1+

3

4

T2,

若粒子两次经过下方磁场一次经过上方磁场到达P点:t2=2×

1

4

T1+

3

4

T2,

若粒子两次经过下方磁场、两次经过上方磁场到达P点:t2=2×

1

4

T1+2×

3

4

T2,

…………

则2

3

(1)

24

m m

t k k

qB qB

ππ

=+-k=1、2、3……

或2

3

24

m m

t n n

qB qB

ππ

=+ n=1、2、3……

粒子从出发到P点经过的时间:t=t1+t2,

解得:

23

(1)

24

a m m

t k k

v qB qB

ππ

=++-k=1、2、3……

23

24

a m m

t n n

v qB qB

ππ

=++ n=1、2、3……;

7.如图,空间某个半径为R的区域内存在磁感应强度为B的匀强磁场,与它相邻的是一对间距为d,足够大的平行金属板,板间电压为U。一群质量为m,带电量为q的带正电的粒子从磁场的左侧以与极板平行的相同速度射入磁场。不计重力,则

(1)离极板AB距离为

2

R

的粒子能从极板上的小孔P射入电场,求粒子的速度?

(2)极板CD上多长的区域上可能会有带电粒子击中?

(3)如果改变极板的极性而不改变板间电压,发现有粒子会再次进入磁场,并离开磁场区域。计算这种粒子在磁场和电场中运动的总时间。

【来源】江苏省苏州新区一中2019届高三一摸模拟物理试题 【答案】(1)入射粒子的速度qBR

v m

=

;(2)带电粒子击中的长度为222222B R d q x mU

=;(3)总时间12

2m dBR t t t qB U π=+=+ 【解析】 【详解】

(1)洛伦兹力提供向心力,2

mv qvB r

=,解得

mv r qB = 根据作图可解得,能从极板上的小孔P 射入电场,r R = 所以,入射粒子的速度qBR

v m

=

(2)所有进入磁场的粒子都能从P 点射入电场,从最上边和最下边进入磁场的粒子将平行极板进入电场,这些粒子在垂直于电场方向做匀加速直线运动,F qU a m md

=

= 212

d at =

解得2

2md t qU

=

沿极板运动的距离2222B R d q

x vt mU ==

有带电粒子击中的长度为222222

B R d q

x mU

= (3)能再次进入磁场的粒子应垂直于极板进入电场,在电场中运动的时间

122

v dBR t a U

== 在磁场中运动的时间为22

T

t =

,22R m T v qB ππ==

所以2m

t qB

π=

总时间122m

dBR

t t t qB

U

π=+=

+

8.如图所示,在竖直平面(纸面)内有长为l 的CD 、EF 两平行带电极板,上方CD 为正极板,下方EF 为负极板,两极板间距为l ,O 点为两极板边缘C 、E 两点连线的中点;两极板右侧为边长为l 的正方形匀强磁场区域磁场方向垂直纸面向外。离子源P 产生的电荷量为q 、质量为m 的带正电粒子飘入电压为U 1的加速电场,其初速度几乎为零,被电场加速后在竖直平面内从O 点斜向上射入两极板间,带电粒子恰好从CD 极板边缘D 点垂直DF 边界进入匀强磁场区域。已知磁感应强度大小B 与带电粒子射入电场O 点时的速度大小v 0的关系为

022B m v ql

=,带电粒子重力不计。求 (1)带电粒子射入电场O 点时的速度大小v 0; (2)两平行极板间的电压U 2; (3)带电粒子在磁场区域运动的时间t 。

【来源】【市级联考】四川省德阳市2019届高三下学期二诊物理试题 【答案】(1)12qU m

2)U 1;(311

4qU m

π

【解析】 【详解】

(1)电荷在电场中加速,由动能定理得:2

1012

qU mv =, 解得:1

02qU v m

(2)粒子进入偏转电场时的速度方向与水平方向间的夹角为θ, 在偏转电场中:0cos l v t θ=,01

sin 22

l v t θ=?,0sin v at θ=, 加速度:2

qU qE a m ml

=

= , 解得:21,4

U U π

θ==

(3)粒子在磁场中做圆周运动,洛伦兹力提供向心力,

由牛顿第二定律得:

2

(cos

)

cos

v

qv B m

R

θ

θ?=,

解得:

2

3

R l

=,

粒子运动轨迹如图所示,粒子转过的圆心角:

2

3

απ

=,

粒子在磁场中的运动时间:

cos

R

t

v

α

θ

=,

解得:1

1

4qU m

t

π

=.

9.磁流体发电的工作原理示意如图.图中的长方体是发电导管,其中空部分的长、高、宽分别为l a b

、、,前后两个侧面是绝缘体,上下两个侧面是电阻可略的导体电极,这两个电极与负载电阻R相连.整个发电导管处于匀强磁场中,磁感应强度为B,方向如图垂直前后侧面.发电导管内有电阻率为ρ的高温高速电离气体沿导管向右流动,并通过专用管道导出.由于运动的电离气体受到磁场作用,产生了电动势.已知气体在磁场中的流速为v,

求:(1)磁流体发电机的电动势E的大小;

(2)磁流体发电机对外供电时克服安培力做功的功率P安多大;

(3)磁流体发电机对外供电时的输出效率η.

【来源】【全国百强校】天津市实验中学2019届高三考前热身训练物理试题

【答案】(1)Bav(2)

222

B a v

a

R

bl

ρ

+

(3)

100%

R

a

R

bl

ρ

?

+

【解析】

【详解】

解:(1)磁流体发电机的电动势:E Bav

=

(2)回路中的电流:

E

I

R r

=

+

发电机内阻:

a

r

bl

ρ

=

受到的安培力:F BIa

=

克服安培力做功的功率:P安v

F

=

克服安培力做功的功率:P安

222

B a v

a

R

bl

ρ

=

+

(3)磁流体发电机对外供电时的输出效率:

UI

EI

η=

外电压:U IR

=

磁流体发电机对外供电时的输出效率:

100%

R

a

R

bl

η

ρ

=?

+

10.如图所示,ABCD与MNPQ均为边长为l的正方形区域,且A点为MN的中点。ABCD 区域中存在有界的垂直纸面方向匀强磁场,在整个MNPQ区域中存在图示方向的匀强电场。质量为m、电荷量为e的电子以大小为的初速度垂直于BC射入正方形ABCD区域,且都从A点进入电场,已知从C点进入磁场的粒子在ABCD区域中运动时始终位于磁场中,不计电子重力,求:

(1)匀强磁场区域中磁感应强度B的大小和方向;

(2)要使所有粒子均能打在PQ边上,电场强度E至少为多大;

(3)ABCD区域中磁场面积的最小值是多少。

【来源】【全国百强校】天津市耀华中学2019届高三高考一模物理试题

【答案】(1) ,方向为垂直纸面向外;(2) ;(3)

【解析】

【详解】

解:(1)由洛伦磁力提供向心力可得:

由题意则有:

解得:,方向为垂直纸面向外

(2)在匀强电场中做内平抛运动,则有:

解得:

(3)图中阴影部分为磁场面积最小范围,由几何关系可知:

11.如图所示,荧光屏MN与x轴垂直放置,荧光屏所在位置的横坐标x0=60cm,在第一

象限y轴和MN之间存在沿y轴负方向的匀强电场,电场强度E=1.6×105N/C,在第二象限

有半径R=5cm的圆形磁场,磁感应强度B=0.8T,方向垂直xOy平面向外.磁场的边界和x 轴相切于P点.在P点有一个粒子源,可以向x轴上方180°范围内的各个方向发射比荷为q

=1.0×108C/kg的带正电的粒子,已知粒子的发射速率v0=4.0×106m/s.不考虑粒子的重m

力、粒子间的相互作用.求:

(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点的最远距离. 【来源】陕西省西安市2019年高三物理三模理综物理试题 【答案】(1)5cm ;(2)0≤y≤10cm ;(3)9cm 【解析】 【详解】

(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:

qvB =m 20

v r

解得:r =

20

510mv Bq

-=?m=5cm (2)由(1)问可知r =R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示:

由几何关系可知四边形PO′FO 1为菱形,所以FO 1∥O′P ,又O′P 垂直于x 轴,粒子出射的速度方向与轨迹半径FO 1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0≤y ≤10cm (3)假设粒子没有射出电场就打到荧光屏上,有:

x 0=v 0t 0 h =

2012at a =qE m

解得:h =18cm >2R =10cm

说明粒子离开电场后才打在荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则:

x =v 0t

y =

212

at 代入数据解得:x

=2y

设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出电场时速度方向与x 轴正方向间的夹角为θ,

000

tan 2y qE x v m v y

v v θ?

===

所以:

H =(x 0﹣x )tan θ=(x 0﹣2y )?2y

由数学知识可知,当(x 0﹣2y )=2y 时,即y =4.5cm 时H 有最大值 所以H max =9cm

12.如图甲所示,间距为d 、垂直于纸面的两平行板P 、Q 间存在匀强磁场.取垂直于纸面向里为磁场的正方向,磁感应强度随时间的变化规律如图乙所示。t =0时刻,一质量为m 、带电荷量为+q 的粒子(不计重力),以初速度0v 由Q 板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区.当0B 和B T 取某些特定值时,可使0t =时刻入射的粒子经t ?时间恰能垂直打在P 板上(不考虑粒子反弹)。上述0m q d v 、、、为已知量。

(1)若B 1

2

t T ?= ,求0B ; (2)若B 3

2

t T ?=,求粒子在磁场中运动时加速度的大小; (3)若0

04mv B qd

=

,为使粒子仍能垂直打在P 板上,求B T 。 【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(山东卷带解析)

【答案】(1)0mv qd (2)20

3v d (3)03d v π 或0

1arcsin 242d v π??+ ??? 【解析】 【分析】 【详解】

(1)设粒子做匀速圆周运动的半径1R ,由牛顿第二定律得

20

001

mv qv B R = ……①

据题意由几何关系得

1R d = ……②

联立①②式得

0mv B qd

=

……③ (2)设粒子做圆周运动的半径为2R ,加速度大小为a ,由圆周运动公式得

202

v a R = ……④

据题意由几何关系得

23R d = ……⑤

联立④⑤式得

20

3v a d

= ……⑥ (3)设粒子做圆周运动的半径为R ,周期为T ,由圆周运动公式得

2R

T v π=

……⑦ 由牛顿第二定律得

20

00mv qv B R

= ……⑧ 由题意知0

04mv B qd

=

,代入⑧式得 4d R = ……⑨

粒子运动轨迹如图所示,1O 、2O 为圆心,1O 、2O 连线与水平方向夹角为θ,在每个B T 内,只有A 、B 两个位置才有可能垂直击中P 板,且均要求02

π

θ<<

,由题意可知

B 222

T T π

θθ+= ……⑩ 设经历完整B T 的个数为n (0n =,1,2,3......) 若在B 点击中P 板,据题意由几何关系得

2(sin )R R R n d θ++= ……?

当n =0时,无解; 当n =1时联立⑨?式得

6

π

θ=

或(1

sin 2

θ=

)……? 联立⑦⑨⑩?式得

B 0

3d

T v π=

……?

当2n ≥时,不满足090θ?<<的要求;

若在B 点击中P 板,据题意由几何关系得

2sin 2(sin )R R R R n d θθ+++=……?

当0n =时无解

当1n =时,联立⑨?式得

1

arcsin 4θ= 或(1sin 4

θ=)……?

联立⑦⑧⑨⑩?式得

B 0

1arcsin 242d T v π

??=+ ??? ……?

当2n ≥时,不满足090θ?<<的要求。 【点睛】

13.如图所示,水平放置的不带电的平行金属板p 和b 相距h ,与图示电路相连,金属板

厚度不计,忽略边缘效应.p 板上表面光滑,涂有绝缘层,其上O 点右侧相距h 处有小孔K ;b 板上有小孔T ,且O 、T 在同一条竖直线上,图示平面为竖直平面.质量为m 、电荷量为- q (q > 0)的静止粒子被发射装置(图中未画出)从O 点发射,沿P 板上表面运动时间t 后到达K 孔,不与板碰撞地进入两板之间.粒子视为质点,在图示平面内运动,电荷量保持不变,不计空气阻力,重力加速度大小为g .

(1)求发射装置对粒子做的功;

(2)电路中的直流电源内阻为r ,开关S 接“1”位置时,进入板间的粒子落在h 板上的A 点,A 点与过K 孔竖直线的距离为l .此后将开关S 接“2”位置,求阻值为R 的电阻中的电流强度;

(3)若选用恰当直流电源,电路中开关S 接“l”位置,使进入板间的粒子受力平衡,此时在板间某区域加上方向垂直于图面的、磁感应强度大小合适的匀强磁场(磁感应强度B 只能在0~B m =

范围内选取),使粒子恰好从b 板的T 孔飞出,求粒子飞出时速度

方向与b 板板面夹角的所有可能值(可用反三角函数表示).

【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(四川卷带解析)

【答案】(1)2

22mh t

(2)

3222()()mh h g q R r l t -+(3)20arcsin 5θ<≤ 【解析】

试题分析: (1)设粒子在P 板上匀速运动的速度为v 0,由于粒子在P 板匀速直线运动,故

0h

v t

=

① 所以,由动能定理知,发射装置对粒子做的功2

1=

2

W mv ② 解得W=2

22mh t

说明:①②各2分,③式1分

(2)设电源的电动势E 0和板间的电压为U ,有0E U =④

板间产生匀强电场为E ,粒子进入板间时有水平方向的初速度v 0,在板间受到竖直方向的重力和电场力作用而做类平抛运动,设运动时间为t 1,加速度为a ,有U Eh =⑤ 当开关S 接“1”时,粒子在电场中做匀变速曲线运动,其加速度为qU

mg ma h

-=⑥ 再由2

112

h at =

,⑦ 1l vt =⑧

物理化学实验思考题解答

实验一燃烧热的测定 1.在本实验中,哪些是系统?哪些是环境?系统和环境间有无热交换?这些热交换对实验 结果有何影响?如何校正? 提示:盛水桶内部物质及空间为系统,除盛水桶内部物质及空间的热量计其余部分为环境,系统和环境之间有热交换,热交换的存在会影响燃烧热测定的准确值,可通过雷诺校正曲线 校正来减小其影响。 2. 固体样品为什么要压成片状?萘和苯甲酸的用量是如何确定的? 提示:压成片状有利于样品充分燃烧;萘和苯甲酸的用量太少测定误差较大,量太多不能充分燃烧,可根据氧弹的体积和内部氧的压力确定来样品的最大用量。 3. 试分析样品燃不着、燃不尽的原因有哪些? 提示:压片太紧、燃烧丝陷入药片内会造成燃不着;压片太松、氧气不足会造成燃不尽。 4. 试分析测量中影响实验结果的主要因素有哪些? 本实验成功的关键因素是什么? 提示:能否保证样品充分燃烧、系统和环境间的热交换是影响本实验结果的主要因素。本实验成功的关键:药品的量合适,压片松紧合适,雷诺温度校正。 5. 使用氧气钢瓶和氧气减压器时要注意哪些事项?提示:阅读《物理化学实验》教材P217-220 实验三纯液体饱和蒸气压的测定 1. 在停止抽气时,若先拔掉电源插头会有什么情况出现? 答:会出现真空泵油倒灌。 2. 能否在加热情况下检查装置是否漏气?漏气对结果有何影响? 答:不能。加热过程中温度不能恒定,气-液两相不能达到平衡,压力也不恒定。 漏气会导致在整个实验过程中体系内部压力的不稳定,气-液两相无法达到平衡,从而造成所测结果不准确。 3. 压力计读数为何在不漏气时也会时常跳动? 答:因为体系未达到气-液平衡。 4. 克-克方程在什么条件下才适用? 答:克-克方程的适用条件:一是液体的摩尔体积V与气体的摩尔体积Vg相比可略而不计;二是忽略温度对摩尔蒸发热△vapHm的影响,在实验温度范围内可视其为常数。三是气体视为理想气体。 5. 本实验所测得的摩尔气化热数据是否与温度有关? 答:有关。 本实验主要误差来源是什么? 答:装置的密闭性是否良好,水本身是否含有杂质等。 实验五二组分金属相图的绘制 1. 对于不同成分混合物的步冷曲线,其水平段有什么不同? 答:纯物质的步冷曲线在其熔点处出现水平段,混合物在共熔温度时出现水平段。而平台长短也不同。 2. 作相图还有哪些方法? 答:作相图的方法还有溶解度法、沸点法等。 3. 通常认为,体系发生相变时的热效应很小,则用热分析法很难测得准确相图,为什么?在含Bi30%和80%的二个样品的步冷曲线中第一个转折点哪个明显?为什么? 答:因为热分析法是通过步冷曲线来绘制相图的,主要是通过步冷曲线上的拐点和水平段(斜率的改变)来判断新相的出现。如果体系发生相变的热效应很小,则用热分析法很难产生拐

大学物理试题及答案

第2章刚体得转动 一、选择题 1、如图所示,A、B为两个相同得绕着轻绳得定滑轮.A滑轮挂一质量为M得物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮得角加速度分别为βA与βB,不计滑轮轴得摩擦,则有 (A) βA=βB。(B)βA>βB. (C)βA<βB.(D)开始时βA=βB,以后βA<βB。 [] 2、有两个半径相同,质量相等得细圆环A与B。A环得质量分布均匀,B环得质量分布不均匀。它们对通过环心并与环面垂直得轴得转动惯量分别为JA与J B,则 (A)JA>J B.(B) JA

大学物理活页作业答案(全套)

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r )(21m j i r )(242m j i r )(3212m j i r r r )/(32s m j i t r v (2))(22SI j t i dt r d v )(2SI j dt v d a )/(422s m j i v )/(222 s m j a 8.解: t A tdt A adt v t o t o sin cos 2 t A tdt A A vdt A x t o t o cos sin

9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5 s m t h dt ds v /1094.1cos 32 (2)当旗杆与投影等长时,4/ t h s t 0.31008.144 10.解: ky y v v t y y v t dv a d d d d d d d -k y v d v / d y C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2 020 2 121ky v C )(22 22y y k v v o o

物理化学习题及答案

物理化学习题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

物理化学期末复习 一、单项选择题 1. 涉及焓的下列说法中正确的是() (A) 单质的焓值均等于零 (B) 在等温过程中焓变为零 (C) 在绝热可逆过程中焓变为零 (D) 化学反应中系统的焓变不一定大于内能变化 2. 下列三种胶体分散系统中,热力不稳定的系统是:() A.大分子溶胶 B.胶体电解质 C.溶胶 3. 热力学第一定律ΔU=Q+W 只适用于() (A) 单纯状态变化 (B) 相变化 (C) 化学变化 (D) 封闭物系的任何变化 4. 第一类永动机不能制造成功的原因是() (A) 能量不能创造也不能消灭 (B) 实际过程中功的损失无法避免 (C) 能量传递的形式只有热和功 (D) 热不能全部转换成功 5. 如图,在绝热盛水容器中,浸入电阻丝,通电一段时间,通电后水及电阻丝的温度均略有升高,今以电阻丝为体系有() (A) W =0,Q <0,U <0 (B). W>0,Q <0,U >0 (C) W <0,Q <0,U >0

(D). W <0,Q =0,U >0 6. 对于化学平衡, 以下说法中不正确的是() (A) 化学平衡态就是化学反应的限度 (B) 化学平衡时系统的热力学性质不随时间变化 (C) 化学平衡时各物质的化学势相等 (D) 任何化学反应都有化学平衡态 7. 封闭系统内的状态变化:() A 如果系统的?S >0,则该变化过程自发 sys B 变化过程只要对环境放热,则该变化过程自发 ,变化过程是否自发无法判断 C 仅从系统的?S sys 8. 固态的NH HS放入一抽空的容器中,并达到化学平衡,其组分数、独立组分 4 数、相数及自由度分别是() A. 1,1,1,2 B. 1,1,3,0 C. 3,1,2,1 D. 3,2,2,2 9. 在定压下,NaCl晶体,蔗糖晶体,与它们的饱和混合水溶液平衡共存时,独立组分数C和条件自由度f':() A C=3,f'=1 B C=3,f'=2 C C=4,f'=2 D C=4,f'=3 10. 正常沸点时,液体蒸发为气体的过程中() (A) ΔS=0 (B) ΔG=0

物理化学实验下思考题答案

磁化率的测定 1.本实验在测定XM做了哪些近似处理 答:(1)忽略了X反(2)X0=0(样品周围介质的体积磁化率)(3)H0=0(样品顶端磁场强度为0。近似认为样品顶端就是试管顶端) 2.为什么可以用莫尔盐来标定磁场强度 答:莫尔盐的XM仅与T有关,物质,物质稳定,组成固定,对磁场反应良好。 3.样品的填充高度和密度以及在磁场中的位置有何要求若样品的填充高度不够,对测量结果有何影响 答:样品管与磁极中心线平齐,不与磁极接触,样品要紧密均匀填实。若样品的填充高度不够,则样品最上端处磁场强度不为零。(样品的填充高度距样品管口处,样品要紧密均匀填实。将样品悬挂在天平上,样品底部处于磁场强度最大区域【H】管顶则位于场强最弱甚至为0的区域,若样品的填充高度不够,对样品处于磁场中的受力产生影响) 三组分体系等温相图 1. 实验为什么根据体系由清变浑的现象即可测定相界 答:各组分彼此互溶时,体系为均相,一旦体系恰好不相容,则分相达到相界。 2.如连接线不通过物系点,其原因可能是什么 答:(1)苯水分层不彻底(2)苯、醋酸乙酸挥发(3)酚酞变色范围为碱性,通过NaOH 滴定醋酸量偏高。 3. 实验根据什么原理求出苯-乙酸-水体系连接线 答:在苯和水含量确定的前提下,互溶曲线上的点与醋酸量一一对应。 电极的制备与原电池电动势的测定 1. 电位差计、标准电池、检流计及工作电池各有什么作用如何保护及正确使用 答:(1)电位差计是按照对消法测量原理设计的一种平衡式电学测量装置,能直接给出

待测电池的电动势值,测定时电位差计按钮按下的时间应尽量短,以防止电流通过而改变电极表面的平衡状态。(2)标准电池是用来校准工作电流以标定补偿电阻上的电位降。(3)检流计用来检验电动势是否对消,在测量过程中,若发现检流计受到冲击,应迅速按下短路按钮,以保护检流计。检流计在搬动过程中,将分流器旋钮置于“短路”。(4)工作电池(稳压电源)电压调至与电位差计对电源的要求始终相一致。 2. 参比电极应具备什么条件它有什么功用 答(1)装置简单、可逆性高、制作方便、电势稳定。 (2)以标准氢电极(其电极电势规定为零)作为标准,与待测电极组成一电池,所测电池电动势就是待测电极的电极电势。由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极,如:甘汞电极。 3. 盐桥有什么作用选用作盐桥的物质应有什么原则 答:(1)盐桥用来减小液体接界电势。(2)作盐桥的物质正负离子的迁移数应接近;在使用温度范围内浓度要大;不能与两端电池溶液发生反应。 4. UJ34A型电位差计测定电动势过程中,有时检流计向一个方向偏转,分析原因。 答:随着反应的进行,导电能力很强的OH-离子逐渐被导电能力弱的CH3COO-离子所取代,致使溶液的电导逐渐减小。电极管中有气泡;电极的正负极接反;线路接触不良;工作电源电压与电位差计对电源的要求数据不一致等。在测量金属电极的电极电势时,金属电极要加以处理,以除去氧化膜。 6. 如何使E测定准确 答:(1)电极管不能漏液。(2)准电池和待测电池极化,“标准/未知选择”旋钮在“标准”或“未知”位置的时间应尽可能的短。对“待测溶液”应将读数盘预置到理论值后再将“标准/未知选择”旋钮旋到,“未知”。(3)甘汞电极不用时浸泡在饱和氯化钾溶液中。(4对新制锌汞齐电极和新镀铜电极应及时测量,避免再度被氧化。

大学物理习题及答案

x L h 书中例题:1.2, 1.6(p.7;p.17)(重点) 直杆AB 两端可以分别在两固定且相互垂直的直导线槽上滑动,已知杆的倾角φ=ωt 随时间变化,其中ω为常量。 求:杆中M 点的运动学方程。 解:运动学方程为: x=a cos(ωt) y=b sin(ωt) 消去时间t 得到轨迹方程: x 2/a 2 + y 2/b 2 = 1 椭圆 运动学方程对时间t 求导数得速度: v x =dx/dt =-a ωsin(ωt) v y =dy/dt =b ωcos(ωt) 速度对时间t 求导数得加速度: a x =d v x /dt =-a ω2cos(ωt) a y =d v y /dt =-b ω2sin(ωt) 加速度的大小: a 2=a x 2+a y 2 习题指导P9. 1.4(重点) 在湖中有一小船,岸边有人用绳子跨过一高处的滑轮拉船靠岸,当绳子以v 通过滑轮时, 求:船速比v 大还是比v 小? 若v 不变,船是否作匀速运动? 如果不是匀速运动,其加速度是多少? 解: l =(h2+x2)1/2 221/2 122()d l x d x v d t h x d t ==+ 221/2()d x h x v d t x += 当x>>h 时,dx/dt =v ,船速=绳速 当x →0时,dx/dt →∞ 加速度: x y M A B a b φ x h

220d x d t =2221/22221/2221/2221/2221/22221/2()1()11()()1112()2()d x d h x v dt dt x d h x v dt x d dx d h x dx h x v v dx x dt x dx dt dx x dx h x v v x dt x h x dt ?? +=??????=?+???? +??=?++ ???=-?+++ 将221/2()d x h x v d t x +=代入得: 2221/2221/2 221/2 22221/21()112()()2()d x h x x h x h xv v v v d t x x x h x x ++=-?+++3222232222)(x v h x v v x x h dt x d -=++-= 分析: 当x ∞, 变力问题的处理方法(重点) 力随时间变化:F =f (t ) 在直角坐标系下,以x 方向为例,由牛顿第二定律: ()x dv m f t dt = 且:t =t 0 时,v x =v 0 ;x =x 0 则: 1 ()x dv f t dt m = 直接积分得: 1 ()()x x v dv f t dt m v t c ===+?? 其中c 由初条件确定。 由速度求积分可得到运动学方程:

物理化学试题及答案

物理化学试题之一 一、选择题(每题2分,共50分,将唯一的答案填进括号内) 1. 下列公式中只适用于理想气体的是1. B A. ΔU=Q V B. W=nRTln(p 2/p 1)(用到了pv=nRT) C. ΔU=dT C m ,V T T 2 1? D. ΔH=ΔU+p ΔV 2. ΔH 是体系的什么 2. C A. 反应热 B. 吸收的热量 C. 焓的变化 D. 生成热 3. 2000K 时反应CO(g)+1/2O 2(g)=CO 2(g)的K p 为 6.443,则在同温度下反应为2CO 2(g)=2CO(g)+O 2(g)的K p 应为3. C A. 1/6.443 B. (6.443)1/2 C. (1/6.443)2 D. 1/(6.443)1/2 4. 固态的NH 4HS 放入一抽空的容器中,并达到化学平衡,其组分数、独立组分数、相数及自由度分别是 A. 1,1,1,2 B. 1,1,3,0 C. 3,1,2,1 D. 3,2,2,2 5. 下列各量称做化学势的是 A. i j n ,V ,S i )n ( ≠?μ? B. i j n ,V ,T i )n p (≠?? C. i j n ,p ,T i )n (≠?μ? D. i j n ,V ,S i )n U (≠?? 6. A 和B 能形成理想溶液。已知在100℃时纯液体A 的饱和蒸汽压为133.3kPa, 纯液体B 的饱和蒸汽压为66.7 kPa, 当A 和B 的二元溶液中A 的摩尔分数为0.5时,与溶液平衡的蒸气中A 的摩尔分数是 A. 1 B. 0.75 C. 0.667 D. 0.5 7. 理想气体的真空自由膨胀,哪个函数不变? A. ΔS=0 B. V=0 C. ΔG=0 D. ΔH=0 7. D ( ) 8. A 、B 两组分的气液平衡T-x 图上,有一最低恒沸点,恒沸物组成为x A =0.7。现有一组成为x A =0.5的AB 液体混合物,将其精馏可得到 A. 纯A 和恒沸混合物 B. 纯B 和恒沸混合物 C. 只得恒沸混合物 D. 得纯A 和纯B 8. B

傅献彩五版物理化学思考题

第二章 热力学第二定律 1. 什么是自发过程?实际过程一定是自发过程? 答:体系不需要外界对其作非体积功就可能发生的过程叫自发性过程,或者体系在理论 上或实际上能向外界做非体积功的过程叫自发过程。实际过程不一定是自发性过程, 如电解水就是不具有自发性的过程。 2. 为什么热力学第二定律也可表达为:“一切实际过程都是热力学不可逆的”? 答:热力学第二定律的经典表述法,实际上涉及的是热与功转化的实际过程的不可逆性。 导使过程的不可逆性都相互关联,如果功与热的转化过程是可逆的,那么所有的实 际过程发生后都不会留下痕迹,那也成为可逆的了,这样便推翻了热力学第二定律, 也否定了热功转化的不可逆性,则“实际过程都是不可逆的”也不成立。因而可用“ 一切实际过程都是不可逆的”来表述热力学第二定律。 3. 可逆过程的热温商与熵变是否相等,为什么? 不可过程的热温商与熵变是否相等? 答:可逆过程的热温商即等于熵变。即ΔS =Q R /T (或ΔS =∫δQ R /T )。不可逆过程热温 商与熵变不等,其原因在于可逆过程的 Q R 大于 Q Ir ,问题实质是不可逆过程熵变 由两部分来源,一个是热温商,另一个是内摩擦等不可逆因素造成的。因此,不可逆 过程熵变大于热温商。由于熵是状态函数,熵变不论过程可逆与否,一旦始终态确定, 则ΔS 值是一定的。 4. 为什么说(2-11)式是过程方向的共同判据? 为什么说它也是过程不可逆程度的判据? 答:(2-11)式为:ΔS A →B -∑A δQ /T ≥0,由于实际过程是不可逆的,该式指出了实 际过程只能沿 ΔS A →B -∑A δQ /T 大于零的方向进行;而 ΔS A →B -∑A B δQ /T 小于零 的过程是不可能发生的。因而(2-11)式可作为过程方向的共同判据。但不是自发过程方 向的判据.(ΔS-∑δQ /T ) 的差值越大则实际过程的不可逆程度越大,因此又是不可逆 程度的判据。 5. 以下这些说法的错误在哪里? 为什么会产生这样的错误?写出正确的说法。 B (1)因为ΔS =| δQ R /T ,所以只有可逆过程才有熵变;而ΔS >∑δQ Ir /T ,所以不可 A 逆过程只有热温商,但是没有熵变。 (2) 因为ΔS >∑δQ Ir /T ,所以体系由初态 A 经不同的不可逆过程到达终态 B ,其熵 的变值各不相同。 B (3) 因为ΔS =|δQ R /T ,所以只要初、终态一定,过程的热温商的值就是一定的, A 因而 ΔS 是一定的。 答:(1) 熵是状态函数,ΔS =S B -S A 即体系由 A 态到 B 态其变化值 ΔS 是一定的,与 过程的可逆与否无关;而热温商是过程量,由A 态到B 态过程的不可逆程度不同,则 其热温商值也不相同。产生上述错误的原因在于对熵的状态函数性质不理解,把熵变与 B 热温商这两个本质不同的概念混为一谈。ΔS =| δQ R /T ,只说明两个物理量值上相 A 等,并不是概念上等同。 (2) 因为熵是状态函数不论过程可逆与否,其ΔS =S B -S A ,只要始终态一定,其值一定, 其改变值与过程无关。错误原因在于没掌握好状态函数的概念。 (3) 错误在于将过程量热温商与状态函数改变量混为一谈,始终态一定,热温商可以是 许多数值。正确的说法是:只要始、终态一定,其ΔS 改变值就一定,热温商的却随 过程的不可逆程度不同而不同,而其中可逆过程的热温商数量等于熵变ΔS 。 6.“对于绝热过程有ΔS ≥0,那末由A 态出发经过可逆与不可逆过程都到达B 态,这样同 一状态B 就有两个不同的熵值,熵就不是状态函数了”。显然,这一结论是错误的, 错在何处?请用理想气体绝热膨胀过程阐述之。 答:绝热可逆过程中ΔS值一定等于零,因此该过程中Q R =0,体系与环境无热交换; 而绝热不可逆过程中,Q Ir =0,而ΔS一定大于零.另外,从同一始态出发经绝热 可逆过程与绝热不可逆过程达到的终态是不同。现以理想气体从同一始态出发,分别 经过绝热可逆膨胀和绝热不可逆膨胀达到相同的压力,绝热可逆膨胀过程向外做的功 的绝对值比绝热不可逆过程膨胀向外做的功的绝对值要大些,内能降低得也多些,故 绝热可逆过程终态温度低于绝热不可逆过程终态温度,相同的终态压力时,终态体积

大学物理试题及答案()

第2章 刚体的转动 一、 选择题 1、 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为?A 和?B ,不计滑轮轴的摩擦,则有 (A) ?A =?B . (B) ?A >?B . (C) ?A <?B . (D) 开始时?A =?B ,以后?A <?B . [ ] 2、 有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B . (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ] 3、 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. [ ] 4、 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ??? ??=R J mR v 2 ω,顺时针. (B) ?? ? ??=R J mR v 2ω,逆时针. (C) ??? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针。 [ ] 5、 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1,则此时棒的角速度应为 (A) ML m v . (B) ML m 23v .

大学物理 习题分析与解答

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。 (A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。正确答案为(B )。 8-2 下列说法正确的是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。正确答案为(B )。 8-3 磁场中的安培环路定理∑?=μ=?n L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场

分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。正确答案为(B )。 8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) B R I 2π (B) B R I 221π (C) B R I 24 1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ?=n IS ,而且对任意形状的平面线圈都是适用的。正确答案为(B )。 8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。(忽略绝缘层厚度,μ0=4π×10-7N/A 2) 分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。正确答安为(T 1014.33-?)。 8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为 _____________ 。 分析与解 根据圆形电流和长直电 流的磁感强度公式,并作矢量叠加,可得圆心O 点的总

大学物理-作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 53 += t r (SI 单位) 求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)= m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 T 1

1、在图示系统中,滑轮可视为半径为R、质量为m0的匀质圆盘。设绳与滑轮之间无滑动, 水平面光滑,并且m1=50kg,m2=200kg,m0=15kg,R=0.10m,求物体的加速度及绳中的张力。 解将体系隔离为 1 m, m, 2 m三个部分,对 1 m和 2 m分别列牛顿方程,有 a m T g m 2 2 2 = - a m T 1 1 = β2 1 22 1 MR R T R T= - 因滑轮与绳子间无滑动,则有运动学条件 R aβ = 联立求解由以上四式,可得 R M m m g m ? ? ? ? ? + + = 2 1 2 1 2 β 由此得物体的加速度和绳中的张力为 2 2 1 262 .7 15 5.0 200 50 81 .9 200 2 1 - ? = ? + + ? = + + = =s m M m m g m R aβ N a m T381 62 .7 50 1 1 = ? = =N a g m T438 ) 62 .7 81 .9( 200 ) ( 2 2 = - ? = - = 第四章静止电荷的电场 1、如图所示:一半径为R的半圆环上均匀分布电 荷Q(>0),求环心处的电场强度。 解:由上述分析,点O的电场强度 由几何关系θd d R l=,统一积分变量后,有 y x O

物理化学实验思考题解答

实验一燃烧热得测定 1、在本实验中,哪些就是系统?哪些就是环境?系统与环境间有无热交换?这些热交换对实验结果有何影响?如何校正?提示:(氧弹中得样品、燃烧丝、棉线与蒸馏水为体系,其它为环境.)盛水桶内部物质及空间为系统,除盛水桶内部物质及空间得热量计其余部分为环境,(实验过程中有热损耗:内桶水温与环境温差过大,内桶盖有缝隙会散热,搅拌时搅拌器摩擦内筒内壁使热容易向外辐射。)系统与环境之间有热交换,热交换得存在会影响燃烧热测定得准确值,可通过雷诺校正曲线校正来减小其影响或(降低热损耗得方法:调节内筒水温比外筒水温低0、5—1℃,内桶盖盖严,避免搅拌器摩擦内筒内壁,实验完毕,将内筒洗净擦干,这样保证内筒表面光亮,从而降低热损耗.)。 2、固体样品为什么要压成片状?萘与苯甲酸得用量就是如何确定得?提示:压成片状有利于样品充分燃烧;萘与苯甲酸得用量太少测定误差较大,量太多不能充分燃烧,可根据氧弹得体积与内部氧得压力确定来样品得最大用量。3、试分析样品燃不着、燃不尽得原因有哪些? 提示:压片太紧、燃烧丝陷入药片内会造成燃不着;压片太松、氧气不足会造成燃不尽。 4、试分析测量中影响实验结果得主要因素有哪些?本实验成功得关键因素就是什么? 提示:能否保证样品充分燃烧、系统与环境间得热交换就是影响本实验结果得主要因素。本实验成功得关键:药品得量合适,压片松紧合适,雷诺温度校正. 5、使用氧气钢瓶与氧气减压器时要注意哪些事项?1、在氧弹里加10mL蒸馏水起什么作用?答:在燃烧过程中,当氧弹内存在微量空气时,N2得氧化会产生热效应。在一般得实验中,可以忽略不计;在精确得实验中,这部分热效应应予校正,方法如下:用0、1mol·dm—3 NaOH 溶液滴定洗涤氧弹内壁得蒸馏水,每毫升0、1 mol·dm—3 NaOH溶液相当于5、983J(放热).2、在环境恒温式量热计中,为什么内筒水温要比外筒得低?低多少合适?在环境恒温式量热计中,点火后,系统燃烧放热,内筒水温度升高1、5-2℃,如果点火前内筒水温比外筒水温低1℃,样品燃烧放热最终内筒水温比外筒水温高1℃,整个燃烧过程得平均温度与外筒温度基本相同,所以内筒水温要比外筒水温低0、5—1℃较合适. 实验二凝固点降低法测定相对分子质量 1、什么原因可能造成过冷太甚?若过冷太甚,所测溶液凝固点偏低还就是偏高?由此所得萘得相对分子质量偏低还就是偏高?说明原因.答:寒剂温度过低会造成过冷太甚。若过冷太甚,则所测溶液凝固点偏低。根据公式与可知由于溶液凝固点偏低,?Tf偏大,由此所得萘得相对分子质量偏低。 2、寒剂温度过高或过低有什么不好?答:寒剂温度过高一方面不会出现过冷现象,也就不能产生大量细小晶体析出得这个实验现象,会导致实验失败,另一方面会使实验得整个时间延长,不利于实验得顺利完成;而寒剂温度过低则会造成过冷太甚,影响萘得相对分子质量得测定,具体见思考题1答案。 3、加入溶剂中得溶质量应如何确定?加入量过多或过少将会有何影响?答:溶质得加入量应该根据它在溶剂中得溶解度来确定,因为凝固点降低就是稀溶液得依数性,所以应当保证溶质得量既能使溶液得凝固点降低值不就是太小,容易测定,又要保证就是稀溶液这个前提。如果加入量过多,一方面会导致凝固点下降过多,不利于溶液凝固点得测定,另一方面有可能超出了稀溶液得范围而不具有依数性。过少则会使凝固点下降不明显,也不易测定并且实验误差增大. 4、估算实验测定结果得误差,说明影响测定结果得主要因素?答:影响测定结果得主要因素有控制过冷得程度与搅拌速度、寒剂得温度等。本实验测定凝固点需要过冷出现,过冷太甚会造成凝固点测定结果偏低,因此需要控制过冷程度,只有固液两相得接触面相当大时,固液才能达到平衡。实验过程中就就是采取突然搅拌得方式与改变搅拌速度

大学物理作业参考答案.docx

电势、导体与 ※ 电介质中的静电场 (参考答案) 班级: 学号: 姓名: 成绩: 一 选择题 1.真空中一半径为 R 的球面均匀带电 Q ,在球心 O 处有一带电量为 q 的点电荷, 如图所示, 设无穷远处为电势零点,则在球内离球心 O 距离为 r 的 P 点处的电势为: (A ) q ; ( B ) 1 ( q Q ) ; 4 0 r O r P 4 0r R Q q R (C ) q Q ; ( D ) 1 ( q Q q ) ; 4 0 r 4 0r R 参考:电势叠加原理。 [ B ] 2.在带电量为 -Q 的点电荷 A 的静电场中,将另一 带电量为 q 的点电荷 B 从 a 点移动到 b , a 、 b 两点距离点电荷 A 的距离分别为 r 和 r ,如 1 2 图,则移动过程中电场力做功为: (A ) Q ( 1 4 0 r 1 qQ ( 1 (C ) 4 0 r 1 1 ) ; ( B ) qQ r 2 4 r 1 ) ; (D ) 4 2 ( 1 1 ) ;(-Q)A r 1 B a 0 r 1 r 2 qQ r 2 ( q ) b r ) 。 0 ( r 2 1 参考:电场力做功=势能的减小量。 A=W-W =q(U -U ) [ C ] ab a b 。 3.某电场的电力线分布情况如图所示,一负电荷从 M 点移到 N 点,有人根据这个图做出以 下几点结论,其中哪点是正确的? (A )电场强度 E <E ; ( B )电势 U < U ; MN M N (C )电势能 W M < W N ; ( D )电场力的功 A > 0。 N M [ C ] 4.一个未带电的空腔导体球壳内半径为 R ,在腔内离球心距离为 d ( d < R )处,固定一电 量为 +q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心 O 处的点势为: (A ) 0; ( B ) 4 q d ; R q q ( 1 1 ) 。 O +q (C ) - ; ( D ) d 4 0R 4 0 d R 参考:如图,先用高斯定理可知导体内表面电荷为 -q ,导体 外表面无电荷(可分析) 。虽然内表面电荷分布不均,但到 O 点的距离相同,故由电势叠加 原理可得。 [ D ] ※ 5.在半径为 R 的球的介质球心处有电荷 +Q ,在球面上均匀分布电荷 -Q ,则在球内外处的电势分别为: Q Q Q (A ) 4 r 内 , 4 r 外 ; ( B ) 4 r 内 , 0; 参考:电势叠加原理。注:原题中ε为ε0 (C ) 4 Q Q r 内 4 R ,0; ( D ) 0, 0 。 [ C ]

物理化学习题与答案

热力学第一定律练习题 一、判断题:1.当系统的状态一定时,所有的状态函数都有一定的数值。当系统的状态发生变化时,所有的状态函数的数值也随之发生变化。4.一定量的理想气体,当热力学能与温度确定之后,则所有的状态函数也完全确定。5.系统温度升高则一定从环境吸热,系统温度不变就不与环境换热。7.因Q P= ΔH,Q V= ΔU,所以Q P与Q V都是状态函数。8.封闭系统在压力恒定的过程中吸收的热等于该系统的焓。10.在101.325kPa下,1mol l00℃的水恒温蒸发为100℃的水蒸气。若水蒸气可视为理想气体,那么由于过程等温,所以该过程ΔU = 0。12.1mol水在l01.325kPa下由25℃升温至120℃,其ΔH= ∑C P,m d T。13.因焓是温度、压力的函数,即H= f(T,p),所以在恒温、恒压下发生相变时,由于d T = 0,d p = 0,故可得ΔH = 0。16.一个系统经历了一个无限小的过程,则此过程是可逆过程。18.若一个过程是可逆过程,则该过程中的每一步都是可逆的。20.气体经绝热自由膨胀后,因Q = 0,W = 0,所以ΔU = 0,气体温度不变。28.对于同一始态出发的理想气体的绝热变化过程,W R= ΔU= n C V,mΔT,W Ir= ΔU= n C V,mΔT,所以W R= W Ir。 1.第一句话对,第二句话错,如理想气体的等温过程ΔU = 0,ΔH= 0。4.错,理想气体的U = f(T),U与T不是独立变量。5.错,绝热压缩温度升高;理想气体恒温可逆膨胀,吸热。7.错,Q V、Q p是状态变化的量、不是由状态决定的量。8.错,(1)未说明该过程的W'是否为零;(2)若W' = 0,该过程的热也只等于系统的焓变。10.错,这不是理想气体的单纯pVT 变化。12.错,在升温过程中有相变化。13.错,H = f(T,p)只对组成不变的均相封闭系统成立。16.错,无限小过程不是可逆过程的充分条件。18.对。 20.错,一般的非理想气体的热力学能不仅只是温度的函数。28.错,两个过程的ΔT不同。 二、单选题:2.体系的下列各组物理量中都是状态函数的是:(A) T,p,V,Q ; (B) m,V m,C p,?V;(C) T,p,V,n; (D) T,p,U,W。 8.下述说法中,哪一种不正确: (A)焓是体系能与环境进行交换的能量;(B) 焓是人为定义的一种具有能量量纲的热力学量;(C) 焓是体系状态函数;(D) 焓只有在某些特定条件下,才与体系吸热相等。 12.下述说法中,哪一种正确:(A)热容C不是状态函数; (B)热容C与途径无关; (C)恒压热容C p不是状态函数; (D) 恒容热容C V不是状态函数。 18.1 mol H2(为理气)由始态298K、p被绝热可逆地压缩5dm3,那么终态温度T2 与内能变化?U分别是:(A)562K,0 kJ ; (B)275K,-5.49 kJ ;(C)275K,5.49kJ ;(D) 562K,5.49 kJ 。 21.理想气体从同一始态(p1,V1,T1)出发分别经恒温可逆压缩(T)、绝热可逆压缩(i)到终态体积为V2时,环境对体系所做功的绝对值比较:(A) W T > W i;(B)W T < W i;(C) W T = W i; (D) 无确定关系。 热力学第二定律练习题 一、判断题:1.自然界发生的过程一定是不可逆过程。4.绝热可逆过程的?S = 0,绝热不可逆膨胀过程的?S > 0。5.为计算绝热不可逆过程的熵变,可在始末态之间设计一条绝热可逆途径来计算。6.由于系统经循环过程后回到始态,?S = 0,所以一定是一个可逆循环过程。8.在任意一可逆过程中?S = 0,不可逆过程中?S > 0。15.自发过程的方向就是系统混乱度增加的方向。16.吉布斯函数减小的过程一定是自发过程。24.指出下列各过程中,物系的?U、?H、?S、?A、?G中何者为零?⑴理想气体自由膨胀过程;⑵实际气体节流膨胀过程;⑶理想气体由(p1,T1)状态绝热可逆变化到(p2,T2)状态;⑷ H2和Cl2在刚性绝热的容器中反应生成HCl;⑸ 0℃、p 时,水结成冰的相变过程;⑹理想气体卡诺循环。1.对。 4 正确。5.错,系统由同一始态出发,经绝热可逆和绝热不可逆过程不可能到达相同的终态。6 错,环境的熵变应加在一起考虑。 8.错。14.错。未计算环境的熵变;15.错,条件 16.错,必须在等温等压,W’= 0的条件下才有此结论。24.(1) ΔU = ΔH = 0;(2) ΔH = 0; (3) ΔS = 0; (4) ΔU = 0;(5) ΔG = 0;6) ΔU、ΔH、ΔS、ΔA、ΔG都为 0。 二、单选题: 2.可逆热机的效率最高,因此由可逆热机带动的火车: (A) 跑的最快;(B)跑的最慢; (C) 夏天跑的快; (D) 冬天跑的快。 12.2mol理想气体B,在300K时等温膨胀,W = 0时体积增加一倍,则其?S(J·K-1)为: (A) -5.76 ; (B) 331 ; (C) 5.76 ; (D) 11.52 。 13.如图,可表示理想气体卡诺循环的示意图是: (A) 图⑴; (B) 图⑵;(C)图⑶; (D) 图⑷。

大学物理试题及答案

《大学物理》试题及答案 一、填空题(每空1分,共22分) 1.基本的自然力分为四种:即强力、、、。 2.有一只电容器,其电容C=50微法,当给它加上200V电压时,这个电容储存的能量是______焦耳。 3.一个人沿半径为R 的圆形轨道跑了半圈,他的位移大小为,路程为。 4.静电场的环路定理公式为:。5.避雷针是利用的原理来防止雷击对建筑物的破坏。 6.无限大平面附近任一点的电场强度E为 7.电力线稀疏的地方,电场强度。稠密的地方,电场强度。 8.无限长均匀带电直导线,带电线密度+λ。距离导线为d处的一点的电场强度为。 9.均匀带电细圆环在圆心处的场强为。 10.一质量为M=10Kg的物体静止地放在光滑的水平面上,今有一质量为m=10g的子弹沿水平方向以速度v=1000m/s射入并停留在其中。求其 后它们的运动速度为________m/s。 11.一质量M=10Kg的物体,正在以速度v=10m/s运动,其具有的动能是_____________焦耳 12.一细杆的质量为m=1Kg,其长度为3m,当它绕通过一端且垂直于细杆 的转轴转动时,它的转动惯量为_____Kgm2。 13.一电偶极子,带电量为q=2×105-库仑,间距L=0.5cm,则它的电距为________库仑米。 14.一个均匀带电球面,半径为10厘米,带电量为2×109-库仑。在距球心 6厘米处的电势为____________V。 15.一载流线圈在稳恒磁场中处于稳定平衡时,线圈平面的法线方向与磁场强度B的夹角等于。此时线圈所受的磁力矩最。 16.一圆形载流导线圆心处的磁感应强度为1B,若保持导线中的电流强度不

相关文档
最新文档