大型齿轮齿轮轴渗碳淬火的变形及控制

大型齿轮齿轮轴渗碳淬火的变形及控制
大型齿轮齿轮轴渗碳淬火的变形及控制

渗碳工艺介绍

渗碳 定义 渗碳是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分. 相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 简介 渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳工艺在中国可以上溯到2000年以前。最早是用固体渗碳介质渗碳。液体和气体渗碳是在20世纪出现并得到广泛应用的。美国在20年代开始采用转筒炉进行气体渗碳。30年代﹐连续式气体渗碳炉开始在工业上应用。60年代高温(960~1100℃)气体渗碳得到发展。至70年代﹐出现了真空渗碳和离子渗碳。 原理渗碳与其他化学热处理一样﹐也包含3个基本过程。 ①分解:渗碳介质的分解产生活性碳原子。 ②吸附:活性碳原子被钢件表面吸收后即溶到表层奥氏体中﹐使奥氏体中含碳量增加。 ③扩散:表面含碳量增加便与心部含碳量出现浓度差﹐表面的碳遂向内部扩散。碳在钢中的扩散速度主要取决于温度﹐同时与工件中被渗元素内外浓度差和钢中合金元素含量有关。 渗碳零件的材料一般选用低碳钢或低碳合金钢(含碳量小於0.25%)。渗碳后必须进行淬火才能充分发挥渗碳的有利作用。工件渗碳淬火后的表层显微组织主要为高硬度的马氏体加上残余奥氏体和少量碳化物﹐心部组织为韧性好的低碳马氏体或含有非马氏体的组织﹐但应避免出现铁素体。一般渗碳层深度范围为0.8~1.2毫米﹐深度渗碳时可达2毫米或更深。表面硬度可达HRC58~63﹐心部硬度为 HRC30~42。渗碳淬火后﹐工件表面产生压缩内应力﹐对提高工件的疲劳强度有利。因此渗碳被广泛用以提高零件强度﹑冲击韧性和耐磨性﹐借以延长零件的使用寿命。 分类 按含碳介质的不同﹐渗碳可分为固体渗碳﹑液体渗碳﹑气体渗碳和碳氮共渗。 渗碳工艺 1、直接淬火低温回火组织及性能特点:不能细化钢的晶粒。工件淬火变形较大,合金钢渗碳件表面残余奥氏体量较多,表面硬度较低 适用范围:操作简单,成本低廉用来处理对变形和承受冲击载荷不大的零件,适用于气体渗碳和液体渗碳工艺。 2 、预冷直接淬火、低温回火,淬火温度800-850℃组织及性能特点:可以减少工件淬火变形,渗层中残余奥氏体量也可稍有降低,表面硬度略有提高,但奥氏体晶粒没有变化。 适用范围:操作简单,工件氧化、脱碳及淬火变形均小,广泛应用于细晶粒钢制造的各种工具。 3、一次加热淬火,低温回火,淬火温度820-850℃或780-810℃组织及性能特点:对心部强度要求较高者,采用820-850℃淬火,心部为低碳M,表面要求硬度高者,采用780-810℃淬火可以细化晶粒。 适用范围:适用于固体渗碳后的碳钢和低合金钢工件、气体、液体渗碳的粗晶粒钢,某些渗碳后不宜直接淬火的工件及渗碳后需机械加工的零件。

动力钳中渗碳淬火齿轮内花键孔的加工工艺

管理制度参考范本 动力钳中渗碳淬火齿轮内花键孔的加工工艺 S a 撰写人:___■_! 门:__111_1111 间:___■__ / 1 / 5

石油钻井和修井动力钳(以下简称动力钳)是我公司的主要产品。 齿轮加工在动力钳的制造过程中占据了很大比例,因此我们在加工过 程中会经常遇到各种齿轮加工方面的问题。其中,渗碳淬火齿轮内花键孔的加工就是比较有代表性的问题。我们公司经过多年实践,摸索了一些比较成熟的加工工艺,取得了良好的效果。 在齿轮加工中,为解决低碳合金钢渗碳齿轮淬火后内花键孔加工 问题,一般采取以下方法。对于花键孔硬度要求不高的齿轮,可在渗碳前。内孔及孔口两端面上留2mn余量,渗碳后车去内孔及端面上的碳渗层余量,使内孔及端面达到最终或工艺尺寸。内孔及端面处的硬度低于刀具硬度,可直接用拉刀拉削内花键。如动力钳上CMf齿轮马达配对齿轮的渐开线内花键就采用了这种加工工艺。这类齿轮也可以在渗碳前,按常规工艺精加工孔。渗碳时,在内孔及孔口两端面上涂上防渗涂料,渗碳后拉削内花键。由于防渗涂料在实际运用时效果不是很好,淬火时还要采用闷头闷内孔,以延缓内孔的冷却速度,降低内孔的淬火硬度,便于淬火后修整键槽。这些方法均是通过降低内花键孔的淬火硬度以便加工,从实际运用上来看,效果不是很理想。 我公司在对动力钳输出齿轮等要求硬齿面花键孔的加工时,通过摸索和借鉴,找出一种比较符合我公司实际情况的加工方法。这就是在渗碳前拉出内花键,渗碳后直接淬火,热处理后在压机上用花键推刀推挤修正内花键。这种加工方法必须控制齿轮内花键孔渗碳淬火后的收缩变形量,以便于下道工序修整内花键。 为了能稳定渗碳淬火后齿轮内花键孔的变形量,我们首先在齿轮材料以及热加工工艺上采取了一些措施。钢材内部组织疏松是导致内孔收缩量大的原因之一。我们严格按照国家标准精选材料,同时加大锻 造比,使组织紧密,以减少内孔收缩量。在锻件中如有魏氏组织与带状组织等缺陷,常温的正火难以消除,组织不均匀使冷加工后残余应 力增加。齿轮渗碳淬火后,内孔变形量增大。因此,严格控制锻造工艺,是减小齿轮内孔变形的重要一环。对于正火温度,我们经过多次试验,将其控制在940-950C,高于渗碳温度,比较符合我们的实际要求。齿坯充分正火后得到均匀的珠光体与铁素体,晶粒度为7-8 级,齿轮内孔变形变小。 动力钳具有花键孔的齿轮形状典型的有图示两种情况。 齿轮形状不同,加热与冷却时,各截面的塑性变形抗力不一。同一材料的齿轮经渗碳淬火后,花键尺寸相同的内径径向收缩量也不同。

齿轮轴加工工艺

重庆电子工程职业学院机械加工工艺与装备课程设计任务书题目:齿轮轴零件加工工艺规程设计所属系部:机电系 专业班级:数控编程1302班 学生姓名:廖浩 指导教师:陈科 2014年12月8日

机械加工工艺与装备课程设计任务书设计者:廖浩班级学号:数控1302班所在系部:机电学院题目:齿轮轴零件机械加工工艺规程设计 任务内容 1绘制齿轮轴零件的二维及三维图形并完整地标注尺寸2张 2齿轮轴零件毛坯-零件合图1张 3齿轮轴零件机械加工工艺规程卡片1张 4齿轮轴零件机械加工工序卡1套 5课程设计说明书1份 技术参数和撰写要求 齿轮轴零件图样附后,技术要求:齿轮轴数量5件,毛坯:锻件;材料为:45钢。(1)φ18外圆的径向圆跳动不大于0.01:;φ15外圆、φ31.5外圆(齿轮分度圆)与φ18外圆同轴度误差分别不超过0.03和0.05。(2)Φ18和φ15外圆的尺寸精度要求较高,且其表面粗糙度为Ra1.6μm。 设计说明书撰写要求:说明书重点要对加工工艺方案进行论证和分析,充分表达在制定过程中考虑各种问题的出发点和最后选择的依据以及有关的计算和说明。具体应有以下几部分内容:目录、设计任务书、零件的分析、工艺路线的制定、加工余量的确定与工序尺寸计算、切削用量与工时定额的确定、指定夹具的定位等的简单说明、附参考书和参考资料目录。 技术手册参考资料

【金属机械加工工艺人员手册】上海科学技术出版社 指导教师签字:陈科2014年12月19日 机电学院 机械加工工艺与装备课程设计 题目:齿轮轴零件机械加工工艺规程 设计 指导书

机电学院机械工程系编制 2014年12月9日一、设计目的 机械加工工艺与装备课程设计是机械类专业教学过程中极为关键的环节。该教学环节的实施,应使学生在机械制图、机械制造工艺、夹具设计等方面进行一次较为全面的系统性训练,使学生掌握各种机床装备应用的基本技能,加强对机械制造技术的认识,熟悉机械零件从毛坯到成品的生产过程,具备在生产第一线从事机械加工技术的中等应用型人才的能力。 二、考核内容与要求 考核内容包括下述部分。 1.编制零件机械加工工艺规程 (1)分析零件三维立体结构,进行工艺分析、确定生产类型。 (2)选择毛坯并确定其总余量,绘制零件-毛坯综合图。 (3)拟定机械加工工艺规程。 (4)计算和填写机械加工工艺卡片。 2.绘制机械加工工序简图 3.选择机床工艺装备 4.填写机械加工工艺卡片 5.撰写机械加工工艺及装备课程设计说明书 6.答辩 三、设计步骤 学生从工艺方法上分析零件,画零件图对进行工艺分析零件包括以下几个内容:1.分析零件图样,明确零件结构形状,计算绘制零件图

浅谈齿轮渗碳淬火有效硬化层及硬度梯度

浅谈齿轮渗碳淬火有效硬化层及硬度梯度 随着机械工业的发展,对齿轮的质量要求日益提高,而齿轮的强度寿命和制造精度与热处理质量有很大关系。为了检验齿轮材料热处理质量,在1987年以前,我国的齿轮渗碳淬火内在质量检验标准多为终态金相检验标准。由于检测仪器的精度、分辨率等因素以及检验人员的经验参差不齐,造成检验结果有很大差异和争议。为了解决金相法内在检验存在的弊端,机械部在1987年借鉴了DIN.ISO等标准中有关内容,修订了我国现行齿轮渗碳淬火内在质量检验标准。此检验标准中,其金相组织检验标准基本与原标准相似,主要是对渗碳层深度及碳浓度梯度的测定作了较大的修改。下面就渗碳层深度和碳浓度梯度分别采用金相法与硬度法测定进行简述。 一、渗碳层深度的检测 1.1、金相法 1.1.1、取本体或与零件材料成分相同,预先热处理状态基本 相似的圆试样或齿形试样进行检测。 1.1.2、送检试样热处理状态为平衡状态,即退火状态。 1.1.3、低碳钢渗层深度为:过共析层+共析层+1/2亚共析层。 1.1.4、低碳合金钢渗层深度为:过共析层+共析层+亚共析层。 1.2、硬度法 1.2.1、取样方法同金相法取样方法一致。 1.2.2、送检试样状态为淬火+回火状态。 1.2.3、渗碳深度用有效硬化层来表示,其极限硬度根据不同要

求进行选择。 1.2.4、有效硬化层深度(DCp):从试样表面测至极限硬度(如 HV550)之间垂直距离。 1.3、两种关于渗碳深度检测的方法存在着一定的对应关系,下面 用图形来描述。 从图中可看出:DCp(芯部)>DCp(HV500)>DCp(HV550) DCp(HV550)对应渗碳层中碳含量约为0.35~0.38%,此界限处即为金相法中1/2亚共析层处。 DCp(HV500)对应渗碳层中碳含量约为0.31~0.33%,此界限处为金相法中1/2亚共析层处。 DCp(芯部)对应渗碳层中碳含量为基体碳含量,一般为0.17~0.23%,此界限处为金相法中基体组织。

金属材料渗碳淬火工艺综述

金属材料渗碳淬火工艺综述 摘要:渗碳与淬火在金属材料热处理中占有很重要的地位,渗碳是目前机械制造工业中应用最广泛的一种化学热处理方法,能提高材料的耐磨性和疲劳强度;淬火是热处理工艺中最重要,也用途最广泛的工序,能显著提高金属材料的强度和硬度。 关键词:渗碳,淬火,耐磨性,强度,硬度 1、渗碳工艺 1.1、渗碳原理 将低碳钢件放入渗碳介质中,在850~950℃加热保温,使活性碳原子渗入钢件表面并获得高渗碳层的工艺方法叫做渗碳。齿轮、凸轮、轴类等许多重要机械零件还有模具经过渗碳及随后的淬火并低温回火后,可以获得很高的表面硬度、耐磨性以及高的接触疲劳强度和弯曲疲劳强度,而心部仍保持低碳,具有良好的塑性和韧性,因此处理后的材料既能承受磨损和较高的表面接触应力及冲击负荷的作用。 渗碳属于化学热处理,过程由分解、吸附和扩散三个基本过程组成,发生的化学反应如下: 2CO→[C]+CO2 Fe+[C]→FeC CH4→[C]+2H2 1.2、渗碳分类 根据渗碳剂的不同,渗碳方法有固体渗碳、气体渗碳和离子渗碳。常用的是前两种,尤其是气体渗碳应用最为广泛。 固体渗碳是将低碳件放入装满固体渗碳剂的渗碳箱中,密封后送入炉中加热至渗碳温度保温,以便活性碳原子渗入工件表层。固体渗碳剂由一定颗粒度的木炭加碳酸盐混合而成。渗碳温度一般为900~930℃,渗碳保温时间视层深要求确定,一般需要十几个小时。固体渗碳加热时间长,生产效率低,劳动条件差,渗碳深度及质量不易控制。 气体渗碳是把零件放入含有气体渗碳介质的密封高温炉中进行碳的渗入过程的渗碳方法。这种渗碳方法通常是将煤油或丙酮等液态碳氢化合物直接滴入高温渗碳炉中,使其热裂分解为活性碳原子并渗入零件表面。气体渗碳温度一般为920~950℃。气体渗碳工艺过程通常可划分为升温排气、渗碳(包括强渗和扩散)、降温冷却三个阶段,如图1所示:

齿轮热处理工艺【详尽版】

齿轮热处理工艺【详细介绍】 内容来源网络,由深圳机械展收集整理! 一、工作条件以及材料与热处理要求 1.条件: 低速、轻载又不受冲击 要求: HT200 HT250 HT300 去应力退火 2.条件: 低速(<1m/s)、轻载,如车床溜板齿轮等 要求: 45 调质,HB200-250 3.条件: 低速、中载,如标准系列减速器齿轮 要求: 45 40Cr 40MnB (5042MnVB) 调质,HB220-250 4.条件: 低速、重载、无冲击,如机床主轴箱齿轮 要求: 40Cr(42MnVB) 淬火中温回火HRC40-45 5.条件: 中速、中载,无猛烈冲击,如机床主轴箱齿轮 要求: 40Cr、40MnB、42MnVB 调质或正火,感应加热表面淬火,低温回火,时效,HRC50-55 6.条件: 中速、中载或低速、重载,如车床变速箱中的次要齿轮 要求: 45 高频淬火,350-370℃回火,HRC40-45(无高频设备时,可采用快速加热齿面淬火) 7.条件: 中速、重载 要求: 40Cr、40MnB(40MnVB、42CrMo、40CrMnMo、40CrMnMoVBA)淬火,中温回火,HRC45-50.

8.条件: 高速、轻载或高速、中载,有冲击的小齿轮 要求: 15、20、20Cr、20MnVB渗碳,淬火,低温回火,HRC56-62.38CrAl 38CrMoAl 渗氮,渗氮深度0.5mm,HV900 9.条件: 高速、中载,无猛烈冲击,如机床主轴轮. 要求: 40Cr、40MnB、(40MnVB)高频淬火,HRC50-55. 10.条件: 高速、中载、有冲击、外形复杂和重要齿轮,如汽车变速箱齿轮 (20CrMnTi淬透性较高,过热敏感性小,渗碳速度快,过渡层均匀,渗碳后直接淬火变形较小,正火后切削加工性良好,低温冲击韧性也较好) 要求: 20Cr、20Mn2B、20MnVB渗碳,淬火,低温回火或渗碳后高频淬 火,HRC56-62.18CrMnTi、20CrMnTi(锻造→正火→加工齿轮→局部镀同→渗碳、 预冷淬火、低温回火→磨齿→喷丸)渗碳层深度1.2-1.6mm,齿轮硬度HRC58-60,心部硬度HRC25-35.表面:回火马氏体+残余奥氏体+碳化物.中心:索氏体+细珠光体 11.条件: 高速、重载、有冲击、模数<5 要求: 20Cr、20Mn2B 渗碳、淬火、低温回火,HRG56-62. 12.条件: 高速、重载、或中载、模数>6,要求高强度、高耐磨性,如立车重要螺旋锥齿轮 要求: 18CrMnTi、20SiMnVB 渗碳、淬火、低温回火,HRC56-62 13.条件: 高速、重载、有冲击、外形复杂的重要齿轮,如高速柴油机、重型载重汽车,航空发动机等设备上的齿轮. 要求: 12Cr2Ni4A、20Cr2Ni4A、18Cr2Ni4WA、20CrMnMoVBA(锻造→退火

渗碳淬火质量缺陷分析

齿轮渗碳后淬火的质量分析 摘要:通过对齿轮渗碳淬火后出现质量问题的分析和处理,论述了齿轮淬火产生缺陷的原因,提出了控制淬火过程和合理选用淬火介质应该注意的一些问题。 1 齿轮渗碳淬火常见质量问题 (1)淬火后硬度不足、硬度分布不均匀、硬化深度不够;(2)淬火后心部硬度过高;(3)淬火变形超差;(4)淬火开裂;(5)油淬后表面光亮度不够。 这类质量问题的出现往往与齿轮的材质、前处理、淬火加热、渗碳碳势和淬火冷却有关。在排除材质、前处理和加热渗碳中的问题后,淬火介质及相关技术的作用就特别突出了。近年来国外对淬火冷却问题的研究证明,它是提高热处理质量最值得注意的问题。 渗碳齿轮淬火常用油作冷却介质。因此,下面将首先分析齿轮淬火产生质量问题与淬火介质特性和用法的关系,并指出了淬火介质冷却速度的特点。最后介绍了常用淬火介质的特点和选用时的注意事项。 1.1 硬度不足与硬化层深度不够 淬火冷却速度偏低是造成齿轮淬火硬度不足、硬度不均和硬化深度不够的原因,冷却偏低又可以分为高温阶段冷速不足、中低温阶段冷速不足以及低温阶段冷速不足等情况。如对于中小齿轮,淬火硬度不足往往是中高温阶段冷速不足所致,而模数大的齿轮要求较深淬硬层时,提高低温冷却速度就非常必要了。 对于淬火用油,一般说,油的蒸气膜阶段短、中温冷速快、低温冷却速度快,往往能获得高而且均匀的淬火硬度和足够的淬硬深度。 工件装挂方式对淬火冷却效果也有明显影响。要使淬火油流动通畅,并配备和使用好搅拌装置,才能得到更好的冷却效果。 提高淬火介质的低温冷却速度,可以增大淬硬层深度。在渗层碳浓度分布相同的情况下,采用低温冷却速度高的淬火油,往往获得更深的淬火硬化层,因此,采用冷却速度快的淬火油,缩短渗碳时间,也能获得要求的淬硬层深度。要求的渗碳淬硬层深度越大,这种方法缩短渗碳时间的效果越明显。 1.2 淬火后心部硬度过高 这类问题主要与原材料淬透性、所选淬火油冷速过快或其低温冷却速度过高有关。解决办法之一是更换淬火油。办法之二是加入适当的添加剂来降低淬火油的中低温冷却速度。办法之三是改用淬透性更低的钢种。 1.3 淬火变形问题 引起变形的原因主要为冷却速度不足和冷却不均匀,比如,齿轮的内花键孔变形,往往是所选的淬火油高温冷速不足,或者说油的蒸气膜阶段过长的缘故。提高油的高温冷速并提高油在整个冷

渗碳淬火热处理工艺

渗碳淬火工艺 1、钢的淬火 钢的淬火与回火是热处理工艺中最重要,也是用途最广泛的工序。淬火可以显著提高钢的强度和硬度。为了消除淬火钢的残余应力,得到不同强度,硬度和韧性配合的性能,需要配以不同温度的回火。所以淬火和回火又是不可分割的、紧密衔接在一起的两种热处理工艺。淬火、回火作为各种机器零件及工、模具的最终热处理是赋予钢件最终性能的关键工序,也是钢件热处理强化的重要手段之一。 1.1 淬火的定义和目的 把钢加热到奥氏体化温度,保温一定时间,然后以大于临界冷却速度进行冷却,这种热处理操作称为淬火。钢件淬火后获得马氏体或下贝氏体组织。图4为渗碳齿轮20CrNi2Mo材料淬火、回火工艺。 温830℃ 度 ℃油 冷200℃ 8 空冷 时间h 图4 渗碳齿轮20CrNi2Mo材料淬火、回火工艺 淬火的目的一般有: 1.1.1 提高工具、渗碳工件和其他高强度耐磨机器零件等的强度、硬度和耐磨性。例如高速工具钢通过淬火回火后,硬度可达63HRC,且具有良好的红硬性。渗碳工件通过淬火回火后,硬度可达58~63HRC。 1.1.2 结构钢通过淬火和高温回火(又称调质)之后获得良好综合力学性能。例如汽车半轴经淬火和高温回火(280~320HB)及外圆中频淬火后,不仅提高了花键耐磨性,而且使汽车半轴承受扭转、弯曲和冲击载荷能力(尤其是疲劳强度和韧性)大为提高。 淬火时,最常用的冷却介质是水、盐水、碱水和油等。通常碳素钢用水冷却,水价廉易得,合金钢用油来冷却,但对要求高硬度的轧辊采用盐水或碱水冷却,辊面经淬火后硬度高而均匀,但对操作要求非常严格,否则容易产生开裂。 1.2 钢的淬透性 2.2.1 淬透性的基本概念 所谓钢材的淬透性是指钢在淬火时获得淬硬层深度大小的能力(即钢材淬透能力),其大小用钢在一定条件下(顶端淬火法)淬火获得的有效淬硬层深度来表示,淬透性是每种钢材所固有的属性,淬硬层愈深,就表明钢的淬透性愈好,例如45、40Cr 、42CrMo钢三种

齿轮热处理

1 齿轮热处理概述众所周知,齿轮是机械设备中关键的零部件,它广泛的 用于汽车、飞机、坦克、齿轮传动是近代机它具有传动准确、结构紧凑使用寿命长等优点。轮船等工业领域。是机械产品重要器中最常见的一种机械振动是传递机械动力和运动的一种重要形式、基础零件。它与带、链、摩擦、液压等机械相比具有功率范围大,传动效率高、圆周速度高、传动比准确、使用寿命长、尺寸结构小等一系列优点。因此它已成为许多机由于齿轮在工业械产品不可缺少的传 动部件,也是机器中所占比例最大的传动形式。得益于近年来汽车、风电、. 发 展中的突出地位,使齿轮被公认为工业化的一种象征据大规格齿轮加工机床的需求增长十分耀眼。核电行业的拉动,汽车齿轮加工机床、近年来涉及齿轮加工机床制造的企业也日益增随着齿轮加工机床需求的增加,了解,多。无论是传统的汽车、船舶、航空航天、军工等行业,还是近年来新兴的高铁、铁对齿轮加工机床制都对机床工具行业的快速发展提出了紧迫需求,路、电子等行业,万吨。但 我国齿轮的质量年将达到200 2012 造商提出了新的要求。据权威部门预测主要 表现在齿轮的平均使用寿与其他发达国家的同类产品相较还是具有一定的差距,本设计是在课堂学习热处理知识后的探索和单位产品能耗、生产率这几方面上。命、并按重点是制定合理的热处理规程,尝试,其内容讨论如何设计齿轮的热处理工艺,此设计齿轮的热处理方法。齿轮是机械工业中应用最广泛的重要零件之一。其主要作用是传递动力,改变运 动速度和方向。是主要零件。其服役条件如下:齿轮工作时,通过齿面的接触来传递动力。两齿轮在相对运动过程中,既有滚动,(1)在齿根部位受因此,齿轮 表面受到很大的接触疲劳应力和摩擦力的作用。又有滑动。到很大的弯曲应力作用;word 编辑版. ⑵高速齿轮在运转过程中的过载产生振动,承受一定的冲击力或过载;⑶在一些特殊环境下,受介质环境的影响而承受其它特殊的力的作用。因此,齿轮的表面有高的硬度和耐磨性,高接触疲劳强度,有较高的齿根抗弯强度,高的心部 抗冲击能力。齿轮常用材料有。20Cr ,20CrMnTi, 18Cr2Ni4WA①20Cr降温直接淬火对渗碳时有晶粒长大倾向,有较高的强度及淬透性,但韧性较差。可切削性良好,冲击韧性影响较大,因而渗碳后进行二次淬火提高零件心部韧性;20Cr 为珠光体,焊接性较好,焊后一般不需热处理。但退火后较差;②20CrMnTi 20CrMnTi是性能良好的渗碳钢,淬透性较高,经渗碳淬火后具有高的强度和 韧性,特别是具有较高的低温冲击韧性,切削加工性良好,加工变形小,抗疲劳性能好。 ③18Cr2Ni4WA

齿轮加工工艺卡汇总

齿轮加工工艺卡 附表1 机械加工工艺卡片 机械加工工艺过程卡片产品型号零(部)件图号 产品名称小伞形齿轮零(部)件名称小伞形齿轮共(3)页第(1)页 材料牌号20CrMnTi 毛坯种类型材毛坯外型尺寸φ14.7mm×54.2mm每毛坯可制件数 1 每台件数 1 备注 工序号工序 名称工序内容车间工段设备工艺装备 工时 准终单件 1 型钢金工 2 下料金工切割机专用切割夹具,游标卡尺 3 粗铣粗铣齿轮轴两端面,金工X51 专用铣夹具,游标卡尺,面铣刀 4 半精 铣 半精铣齿轮轴两端面及钻中心孔金工X51专用铣夹具,游标卡尺,面铣刀 5 粗车在车床上双顶尖装夹工件,粗车台阶轴φ8和φ6金工C6140 专用车夹具,游标卡尺,外圆车刀描图 6 粗车调头,在车床上双顶尖装夹工件,粗车φ12.7外圆金工C6140 专用车夹具,游标卡尺,外圆车刀 7 半精 车在车床上双顶尖装夹工件,半精车台阶轴φ8和φ6,及切4 个槽,倒角 金工C6140 专用车夹具,游标卡尺,外圆车刀 描校8 半精 车 调头,在车床上双顶尖装夹工件,半精铣齿轮锥端面金工C6140 专用车夹具,游标卡尺,外圆车刀 9 精车在车床上双顶尖装夹工件,精车φ6金工C6140 专用铣夹具,深度游标卡尺,卡规, 外圆车刀 底图号10 铣槽金工X51 专用铣夹具,游标卡尺,槽铣刀 11 粗铣粗铣齿轮金工X51 专用铣夹具,游标卡尺 装订号12 半精 铣 半精铣齿轮金工X51 专用铣夹具,游标卡尺 标记处数更改文 件号签字日期标记处数更改文件 号 签字日期

附表1 机械加工工艺卡片(续) 机械加工工艺过程卡片产品型号零(部)件图号 产品名称小伞形齿轮零(部)件名称小伞形齿轮共(3)页第(2)页 材料牌号20CrMnTi 毛坯种类型材毛坯外型尺寸φ14.7mm×54.2mm每毛坯可制件数 1 每台件数 1 备注 工序号工序 名称工序内容车间工段设备工艺装备 工时 准终单件 13 热处 理 渗碳淬火,有效渗层0.3-0.5. 热处理车间淬火机 14 磨削先磨削φ8m6段,再磨削φ8h6 金工外圆磨床专用磨床夹具,游标卡尺 15 清洗金工清洗机 16 终检塞规,百分表,卡尺等 描图 描校 底图号 装订号 设计(日期)审核(日期)标准化(日期)会签(日期) 标记处数更改文 件号签字日期标记处数更改文件 号 签字日期 附表2机械加工工序卡片

表面淬火工艺

淬火.退火.正火工艺 ◆表面淬火 ? 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 ? 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 ? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 ? 感应表面淬火后的性能 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3 个单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ? 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。

常用齿轮材料的选择及其热处理工艺分析

齿轮材料的选择及其热处理工艺 1、齿轮材料的选择原则 齿轮材料的种类很多,在选择时应考虑的因素也很多,下述几点可供选择材料时参考: 1)齿轮材料必须满足工作条件的要求。例如,用于飞行器上的齿轮,要满足质量小、传递功率大和可靠性高的要求,因此必须选择机械性能高的合金银;矿山机械中的齿轮传动,一般功率很大、工作速度较低、周围环境中粉尘含量极高,因此往往选择铸钢或铸铁等材料;家用及办公用机械的功率很小,但要求传动平稳、低噪声或无噪声、以及能在少润滑或无润滑状态下正常工作,因此常选用工程塑料作为齿轮材料。总之,工作条件的要求是选择齿轮材料时首先应考虑的因素。 2)应考虑齿轮尺寸的大小、毛坯成型方法及热处理和制造工艺。大尺寸的齿轮一般采用铸造毛坯,可选用铸钢或铸铁作为齿轮材料。中等或中等以下尺寸要求较高的齿轮常选用锻造毛坯,可选择锻钢制作。尺寸较小而又要求不高时,可选用圆钢作毛坯。 齿轮表面硬化的方法有:渗碳、氨化和表面淬火。采用渗碳上艺时,应选用低碳钢或低碳含金钢作齿轮材料;氨化钢和调质钢能采用氮化工艺;采用表面淬火时,对材料没有特别的要求。 3)正火碳钢,不论毛坯的制作方法如何,只能用于制作在载荷平稳或轻度冲击下工作的齿轮,不能承受大的冲击载荷;调质碳钢可用于制作在中等冲击载荷下工作的齿轮。 4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。 5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的高强度合金钢。 6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30~50HBS或更多。当小齿轮与大齿轮的齿面具有较大的硬度差(如小齿轮齿面为淬火并磨制,大齿轮齿面为常化或调质);且速度又较高时,较硬的小齿轮齿面对较软的大齿轮齿面会起较显著的冷作硬化效应,从而提高了大齿轮齿面的疲劳极限。因此,当配对的两齿轮齿面具有较大的硬度差时,大齿轮的接触疲劳许用应力可提高约20%,但应注意硬度高的齿面,粗糙度值也要相应地减小。 2、齿轮材料的选择 齿轮齿条是现代机械中应用最广泛的一种机械传动零件。齿轮传动通过轮齿互相啮合来传递空间任意两轴间的运动和动力,并可以改变运动的形式和速度。齿轮传动使用范围广,传动比恒定,效率较高,使用寿命。在机械零件产品的设计与制造过程中,不仅要考虑材料的性能能够适应零件的工作条件,使零件经久耐用,而且要求材料有较好的加工工艺性能和经济性,以便提高零件的生产率,降低成本,减少消耗。如果齿轮材料选择不当,则会出现零件的过早损伤,甚至失效。因此如何合理地选择和使用金属材料是一项十分重要的工作。 满足材料的机械性能,材料的机械性能包括强度、硬度、塑性及韧性等,反映材料在使用过程中所表现出来的特性。齿轮在啮合时齿面接触处有接触应力,齿根部有最大弯曲应力,可能产生齿面或齿体强度失效。齿面各点都有相对滑动,会产生磨损。齿轮主要的失效形式有齿面点蚀、齿面胶合、齿面塑性变形和轮齿折断等。因此要求齿轮材料有高的弯曲疲劳强度和接触疲劳强度,齿面要有足够的硬度和耐磨性,芯部要有一定的强度和韧性。 例如,在确定大、小齿轮硬度时应注意使小齿轮的齿面硬度比大齿轮的齿面硬度高30-50HBS,是因为小齿轮受载荷次数比大齿轮多,且小齿轮齿根较薄,强度低于大齿轮。为使两齿轮的轮齿接近等强度,小齿轮的齿面要比大齿轮的齿面硬一些。 另一方面,根据材料的使用性能确定了材料牌号后。要明确材料的机械性能或材料硬度,然后我们可以通过不同的热处理工艺达到所要求的硬度范围,从而赋予材料不同的机械性能。如材料为40Cr合金钢的齿轮,当840-860℃油淬,540-620℃回火时,调质硬度可达28-32HRC,可改善组织、提高综合机械性能;当860-880℃油淬,240—280℃回火时,硬度可达46-51HRC,则钢的表面耐磨性能好,芯部韧性好,变形小;当500-560℃氮化处理,氮化层0.15 -0.6mm时,硬度可达52-54HRC,则钢具有高的表面硬度、高的耐磨性、高的疲劳强度,较高的抗蚀性和抗胶合性能且变形极小;当通过电镀或表面合金化处里后,则可改善齿轮工作表面摩擦性能,提高抗腐蚀性能 3、齿轮常用材料 齿轮常用材料摘要:齿轮依靠结构尺寸材料强度承受载荷要求材料具有强度韧性耐磨性齿轮形状复杂齿轮精度要求要求材料工艺常用材料锻钢铸钢铸铁锻钢硬度分为大类HB称为软齿称为硬度HB工艺过程锻造毛坯正火粗车调质加工常用材料SiMnCr 液体动静压轴承常用轴壳配轴承轴承的密封类型精密轴承工序间防锈新工艺轴承寿命强化

齿轮轴的制造工艺规程设计(2013).

机械制造工艺学 课程设计 设计题目:齿轮轴的制造工艺规程设计 班级:10机械本B班 学号:2010210279 姓名:云大宝 指导教师:支新涛 日期:2013.06.16

机制工艺课程设计任务书 Ⅰ、课程设计名称: 机制工艺课程设计 Ⅱ、课题名称: 齿轮轴的制造工艺规程设计 Ⅲ、课程设计使用的原始资料(数据)及设计技术要求: 1.生产要求:产品的生产纲领为379台/年,每台产品齿轮轴数量 2件;齿轮轴的备品百分率为4%,废品百分率为0.4% 2.生产条件和资源:毛坯为外协件,生产条件可根据需要确定; 设备可以根据需要选择且各设备均达到机床规定的工作精度要求。 3.零件图见下页 4.零件的分析及毛坯的确定。 5.拟定机械加工工艺过程。 6.合理选择各工序的定位基准。 7.确定加工工序的余量和切削用量。 8.确定工序尺寸,正确拟定工序技术要求。 9.编制加工工艺规程。 10.撰写设计说明书。

1齿轮轴的分析 (1) 1.1齿轮轴的作用 (1) 1.2齿轮轴的工艺分析 (1) 2零件的生产类型 (1) 2.1生产纲领 (1) 2.2生产类型及工艺特征 (1) 3工艺规程的设计 (2) 3.1毛坯的确定 (2) 3.2选择定位基 (2) 3.3制定工艺路线 (3) 3.4机械加工余量、工序尺寸及毛坯尺寸的确定 (4) 3.5确定切削用量和基本工时 (5) 4设计总计 (7) 附录:轴的机械加工工艺卡 (8) 参考文献 (17)

课程设计说明书 1、齿轮轴分析 1.1齿轮轴的作用 齿轮轴是传动系配件,作用是指支承转动零件并与之一起回转以传递运动、扭矩或弯矩的机械零件。一般为金属圆杆状,各段可以有不同的直径。机器中作回转运动的零件就装在轴上。 1.2零件工艺分析 1)工序安排热处理调质处理后,再进行精车、磨削加工,以保证加工质量稳定。 2)精车、粗磨、精磨工序均以两中心孔定位装夹工件,其定位基准统一,可以更好保证零件的加工质量。 3)以工件两中心孔为定位基准,在偏摆仪上检查,φ60021 .0002.0++mm 、φ141.780063.0-mm 、φ60021 .0002.0++mm 三处轴径外圆对公共轴心线A —B 的圆跳动0.025mm 。 4)工序14对组合夹具应要求备有键槽对称度检查基准,可供加工对刀及加工后检查使用。 2、零件的生产类型 2.1生产纲领 根据任务书已知: ⑴产品的生产纲领为379台/年,每台产品齿轮轴数量2件 ⑵齿轮轴的备品百分率为%,废品百分率为0.4%。 齿轮轴生产纲领计算如下: N=Qn(1+a)(1+b) =379x2(1+4%)(1+0.4%) =791.47≈792(件/年) 2.2生产类型及工艺特征 查表确定齿轮轴属于大批量生产零件,工艺特征见表(如下): 生产纲领 生产类型 工艺特征

大型齿轮渗碳淬火变形原因及控制

大型齿轮渗碳淬火变形原因及控制 摘要: 本文主要从影响大型齿轮渗碳淬火变形的几个方面入手,分析其产生的原因,并采取相应措施,通过良好的设计及机加工与热处理工序间的相互配合,采用合理的工艺,从而使工件产生变形的应力减少,以减少热处理变形,提高工件的质量。 关键词大型齿轮变形控制渗碳淬火 1 引言 大型齿轮渗碳淬火的变形直接关系到齿轮强度、精度等质量指标。对于渗碳淬火的齿轮,特别是大型齿轮,其变形量很大,且难以控制。较大的变形不仅会使磨齿加工的磨量增加,成本提高,而且影响齿轮制造精度,降低承载能力,最终寿命也会大大下降。大型齿轮渗碳淬火热处理变形主要是由于工件在机加工时产生的残余应力,热处理过程中产生的热应力和组织应力以及工件自重变形等共同作用而产生的。影响齿轮渗碳淬火变形的因素很多,包括齿轮的几何形状、原材料及冶金质量、锻造和机加工的残余应力、装料方式和热处理工艺及设备等诸方面。掌握变形规律,减少齿轮渗碳淬火变形,能够提高齿轮的承载能力和使用寿命,对缩短制造周期,降低生产成本也都具有重要意义。 2 大型齿轮渗碳淬火变形规律 对大型齿轮质量和寿命影响最大的变形来自齿轮外径、公法线长度和螺旋角等。一般说来,变形趋势如下: 2.1 大型齿轮变形规律:大型齿轮渗碳淬火后齿顶圆外径呈明显胀大趋势,且上下不均匀呈锥形;径长比(齿轮外径/齿宽)越大,外径胀大量越大。碳浓度失控偏高时,齿轮外径呈收缩趋势。 2.2 大型齿轮轴变形规律:齿顶圆外径呈明显收缩趋势,但一根齿轴的齿宽方向上,中间呈缩小,两端略有胀大 2.3 齿圈变形规律:大型齿圈经渗碳淬火后,其外径均胀大,齿宽大小不同时,齿宽方向呈锥形或腰鼓形。 3 渗碳淬火齿轮变形原因 3.1 渗碳件变形的实质

常用热处理工艺【详情】

常用的几种热处理方法 内容来源网络,由深圳机械展收集整理! 更多相关表面处理及精密零件加工展示,就在深圳机械展! 1.常用热处理方式 1.1.退火 把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温。 退火有完全退火、球化退火、去应力退火等几种。 a.将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降 低钢的硬度,消除钢中不均匀组织和内应力. b.把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球 化退火。目的是降低钢的硬度,改善切削性能,主要用于高碳钢。 c.去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到 300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力。 1.2.正火 将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。 正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。 1.3.淬火 将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。 淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。

1.4.回火 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。 A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性。 B 中温回火350~500;提高弹性,强度。 C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采用淬火后的高温回火处理。轴类零件应用最多。 淬火+高温回火称为调质处理。 2.Q235热处理工艺 Q235属于碳素结构钢,含碳量大概0.12%-0.2%之间,相当于普通的10、20钢,淬火后硬度改变不大。具有较高的强度,良好的塑性,韧性和焊接性能,综合性能好,能满足一般钢结构和钢筋混凝土结构用钢的要求。 Q235一般买来就用不热处理,一般它都用在工程上大量需要钢材的地方,数量巨大,一般是热轧后就使用,热轧也就是有正火这个热处理,不热处理的原因有几个: 1)这些场合不需要太高的力学要求。 2)这些钢构件的体积太大了,你想热处理也不现实。 3)这些钢很多情况下要被焊接使用的,你热处理了被焊接后也被焊接过程中将焊缝的 热处理给破坏了。 4)材料价格便宜,质量要求比较低,而且是低碳钢,热处理的效果也不太好。 5)如果非要用Q235淬出硬度那只能渗碳,但是一件很不划算的事情。 Q235在理论上是可以淬火得到马氏体的。但是由于马氏体碳过饱和度很低,淬火后的硬度很低,只有170HBS左右。而这种钢的供应状态硬度大概就有144HBS左右(出

金属表面热处理渗碳工艺对比

金属表面热处理渗碳工艺的对比 一、热处理发展历史 在实用生产技术发展上值得回顾的有:①1890年英国首次公布了制备不可燃气氛发生炉的专利,该气氛用于金属的光亮热处理,德国的A.富利1921年申请了在井式炉中通氨渗氮的专利。②P.P.阿诺索夫在1837年就倡导用气体渗碳法,而经过100年后(1935年)前苏联的利哈乔夫汽车厂才有了第一台用煤油裂解气的罐式连续渗碳炉;直到20世纪50年代才逐步取代了固体渗碳和用氰盐的液体渗碳。③前苏联的G.V.沃罗格金在20世纪40年代逐步把感应加热技术应用到炼钢、锻造加热和表面淬火热处理等领域。④20世纪40年代末出现了用LiCl露点仪的碳势可控渗碳。⑤离子渗氮于20世纪30年代在德国就有了专利,而KlÊ;ckner公司是在20世纪50年代末才开发出商品设备,并推向工业应用。⑥20世纪60年代初瑞士的H.魏斯发明了在井式炉中的CARBOMAAG滴注可控渗碳法。⑦20世纪60年代中期,用吸热式气(载气)、甲烷或丙烷(作富化气)并用CO2红外仪测控炉气碳势的可控渗碳在汽车工业中得到推广。与此同时第一代的冷壁式真空加热油中淬火炉和真空渗碳炉问世。⑧20世纪50年代开发,60年代推广的被称作Tenifer或Tufftride商品名称的盐浴氮碳共渗,使渗氮周期由数十小时缩短到1h~2h,可明显提高传动件的抗疲劳、耐磨性和抗咬合能力;由于处理温度低(<580℃),工件畸变小,其缺点是所用氰盐剧毒、废盐废水需妥善处理。⑨为避免使用剧毒的氰盐,20世纪60年代后期开发出了NH3+吸热式气(Nikotrier)和NH3+CO2(Nitroc)在570℃的井式或箱式炉中施行的气体氮碳共渗法,随后在汽车曲轴、低载齿轮等零件上获得广泛应用。⑩20世纪50年代高分子聚合物溶液开始用做淬火剂。最早使用的此类聚合物是聚乙烯醇(PVA),以0.1%~0.3%的浓度用做感应加热件的喷冷淬火,其冷却能力介于水油之间,不易燃、无污染。20世纪60年代美国联碳公司推出UCON(PAG)系列合成淬火剂,可代替油用于铁和非铁合金的淬火及固溶处理的冷却。随后又有一系列其它类别的合成淬火剂商品问世。⑾高、中、工频以及超音频和超高频、超高频脉冲感应加热表面热处理工艺广泛应用。各种静态固体电路高频、大功率电源相继问世,全自动程控多工位淬火机床和自动装卸料机械手或机器人获得工业应用。?⑿20世纪80年代氧探头逐步代替红外仪用于炉气碳势控制的传感器和计算机仿真自适应控制、无损检测技术、机器人装卸结合,使大批量生产的汽车零件的渗碳、淬火、清洗、回火、质检全过程实现自动化和无人作业。?⒀20世纪90年代,欧洲IpsenInternational、ALD和ECM等公司相继推出低压渗碳、低压离子渗碳和高压气淬的周期炉和半连续生产线,为提高效率、改善质量、减少畸变和保护环境作出了贡献,为汽车工业热处理未来提供了前景。近20年来,热处理新技术的大量涌现,为机器制造业的发展、机械产品质量的提高、热处理企业的技术改造积累了大量的技术储备,为热处理生产技术的进步提供了广阔前景。 二、氨气的作用:提高淬透性 渗碳淬火后的齿轮零件正常的组织应该是马氏体与残余奥氏体,但在实际生产中经常发现在渗碳淬火件的表层出现连续、断续的黑色组织或沿晶界分布的黑色氧化物。普遍的理论认为是由于内氧化使合金元素贫化、淬透性下降导致形成屈氏体类组织,这类组织就被称为非马氏体组织。非马氏体组织深度如果超标严重,反映在力学性能上就是出现零件表面硬度低头的现象,影响硬度梯度。在实际使用中会降低齿轮的耐磨性和疲劳寿命,危害比较严重。尽可能选择含Cr、Mo、V、Mn和Ni等高淬透性的低碳合金钢作为齿轮原材料。对渗碳后的零件采取剧烈的冷却方式(比如强力搅拌)可以有效地减少非马氏体组织,但前提是不能使零件

相关文档
最新文档