HP光电鼠标原理图解

HP光电鼠标原理图解
HP光电鼠标原理图解

光电鼠标原理(附图)

首先找来工具和鼠标其实真正就用一把小螺丝刀【如图】:

拆鼠标,当然要从底部拆起,一般的鼠标底部也就一颗螺丝,【也有没有螺丝的,直接卡合的——这样的拆起来反倒不容易】把螺丝拧下来,就可轻松的把鼠标拆开。像我手里这个IBM鼠标,就是尾部的两颗螺丝,取下来后,就能把顶盖拿下,【如图】

至于另一个,就麻烦多了,偶把尾部的螺丝起下来后,仍然打不开,后来仔细琢磨,终于让我找到了关键所在——在商标贴膜的下面还有两颗螺丝,【大部分鼠标没有这样的设计,这是比较特殊的】,想确定商标下面有没有螺丝,只要用小螺丝刀在商标上稍微轻点,有螺丝的地方会凹下去,那么这样就可以撕去商标了。

出来了吧——取下来这两个螺丝后,把上盖稍向后提拉,前面的卡扣就会很轻松的拿下来,这样,上盖也被完美的取下,很容易吧

现在,鼠标的内部结构就基本暴露在我们的面前了,就是这么简单的东西——但这些部件各有什么功用,鼠标的工

作原理是什么,咱们后面详细说,偶先把最基本的部件名介绍下,如下图: 这是正面

然后我们把里面的线路板拿下来,看看反面

我们再接通电源,哇,是不是很漂亮?没见过这样用鼠标的吧,不用担心,里面没有电,直接拿在手里也感觉不到什么……

放上组合透镜

放上滚轮

反面

【其实所有的光电鼠标原理基本都一样的,部件也差不多,只是做工、感光芯片及工艺的高低,还有的就是增加了些功能】,但这个设计还给光源的灯加了一个保护罩,也为了使光线更好的集中,直接抠下来就行【要从反面入手】

差不多了……上个反面的图.

【基本原理】

光电鼠标的工作原理是:在光电鼠标内部有一个发光二极管,通过该发光二极管发出的光线,照亮光电鼠标底部表面(这就是为什么鼠标底部总会发光的原因)。然后将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜

【光学透镜图】

传输到一个光感应器件(微成像器)内成像现在,翻过一只发红光的光学鼠标,您都可以看到一个小凹坑,里面有一个小棱镜和一个透镜。工作时,从棱镜中会发出一束很强的红色光线照射到桌面上,然后通过桌面不同颜色或凹凸点的运动和反射,来判断鼠标的运动。

具体说呢,就是将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专用图像分析芯片(DSP,即数字微处理器)对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。

【图例】

所以,这种光电鼠标不可或缺的三个配件是:光学感应器、光学透镜、发光二极管。这样的技术统称为光眼技术。不需要具有反光的鼠标板。

【原理图】

【模拟图】

光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。下面分别进行介绍:

光学感应器:光学感应器是光电鼠标的核心,负责采集光线和图象。如果仔细看,会从背面看到一个小的光线入口。

【正面】

【反面】

光电鼠标的控制芯片:控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。

这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数就多,定位精度就高.通常情况下,传统机械式鼠标的扫描精度都在200dpi以下,而光电鼠标则能达到400甚至800dpi,这就是为什么光电鼠标在定位精度上能够轻松超过机械式鼠标的主要原因。

光学透镜组件:光学透镜组件被放在光电鼠标的底部位置,从图中可以清楚地看到,光学透镜组件由一个棱光镜和一个圆形透镜组成。其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。通过观看光电鼠标的背面外壳,我们可以看出圆形透镜很像一个摄像头.

通过试验,你就可以得出结论:不管是阻断棱光镜还是圆形透镜的光路,均会立即导致光电鼠标“失明”。其结果就是光电鼠标无法进行定位,由此可见光学透镜组件的重要性。

发光二极管:光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。

通常,光电鼠标采用的发光二极管是红色的(也有部分是蓝色的),且是高亮的(为了获得足够的光照度)。发光二极管发出的红色光线,一部分通过鼠标底部的光学透镜(即其中的棱镜)来照亮鼠标底部;另一部分则直接传到了光学感应器的正面。用一句话概括来说,发光二极管的作用就是产生光电鼠标工作时所需要的光源。

轻触式按键:没有按键的鼠标是不敢想象的,因而再普通的光电鼠标上至少也会有两个轻触式按键。一般光电鼠标的PCB上共焊有三个轻触式按键.

除了左键、右键之外,中键被赋给了翻页滚轮。高级的鼠标通常带有X、Y两个翻页滚轮,而大多数光电鼠标还是像这个光电鼠标一样,仅带了一个翻页滚轮。翻页滚轮上、下滚动时,会使正在观看的“文档”或“网页”上下滚动。而当滚轮按下时,则会使PCB上的“中键”产生作用。注意:“中键”产生的动作,可由用户根据自己的需要进行定义。

当我们卸下翻页滚轮之后,可以看到滚轮托架是一个小轮状物,这是产生翻页的发生器。

为了搞清里面的装置,咱们把它拧下来,然后拆开看看

就这些东西,详细的机理偶也不懂了

鼠标的组成及工作原理

鼠标的组成及工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

鼠标的组成及工作原理 1,分类 鼠标按接口类型可分为串行鼠标、PS/2鼠标、总线鼠标、USB鼠标(多为多为光电鼠标)四种 鼠标按其工作原理及其内部结构的不同可以分为机械式,光机式和光电式 2,组成 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。 3,工作原理

管脚排列 管脚说明

这里主要介绍光电鼠标 光电鼠标器是通过红外线或激光检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的光标箭头的移动的一种硬件设备。光电鼠标的光电传感器取代了传统的滚球。这类传感器需要与特制的、带有条纹或点状图案的电垫板配合使用 光电鼠标器是通过检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的光标箭头的移动。光电鼠标用光电传感器代替了滚球。这类传感器需要特制的、带有条纹或点状图案的垫板配合使用。与光机鼠标发展的同一时代,出现一种完全没有机械结构的数字化光电鼠标。设计这种光电鼠标的初衷是将鼠标的精度提高到一个全新的水平,使之可充分满足专业应用的需求。这种光电鼠标没有传统的滚球、转轴等设计,其主要部件为两个发光二极管、感光芯片、控制芯片和一个带有网格的反射板(相当于专用的鼠标垫)。工作时光电鼠标必须在反射板上移动,X发光二极管和Y发光二极管会分别发射出光线照射在反射板上,接着光线会被反射板反射回去,经过镜头组件传递后照射在感光芯片上。感光芯片将光信号转变为对应的数字信号后将之送到定位芯片中专门处理,进而产生X-Y坐标偏移数据。

鼠标结构及原理

鼠标的定位原理 光电鼠标就是通过红外线或者激光检测鼠标的位移,将位移信号转换为电脉冲信号,通过程序的处理控制屏幕中光标箭头的移动。 一.鼠标的结构 光学鼠标主要由四部分的核心组件构成,分别就是发光二极管、透镜组件、光学引擎以及控制芯片组成。 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送与收取。我们可以将其理解成就是光电鼠标中的“管家婆”,实现与主板USB接口之间的桥接。当然,它也具备了一块控制芯片所应该具备的控制、传输、协调等功能。 这里有一个非常重要的概念大家应该知道,就就是dpi对鼠标定位的影响。dpi就是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi 越大,用来定位点数就多,定位精度就高。 光学感应器 光学感应器就是光电鼠标的核心。 光学感应器主要由CMOS感光块(低档摄像头上采用的感光元件)与DSP组成。CMOS感光块负责采集、接收由鼠标底部光学透镜传递过来的光线(并同步成像),然后CMOS感光块会将一帧帧生成的图像交由其内部的DSP进行运算与比较,通过图像的比较,便可实现鼠标所在位置的定位工作。

光学透镜组件 光学透镜组件被放在光电鼠标的底部位置,从图中可以清楚地瞧到,光学透镜组件由一个棱光镜与一个圆形透镜组成。 其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。通过观瞧光电鼠标的背面外壳,我们可以瞧出圆形透镜很像一个摄像头。 不管就是阻断棱光镜还就是圆形透镜的光路,均会立即导致光电鼠标“失明”。其结果就就是光电鼠标无法进行定位,由此可见光学透镜组件的重要性。 发光二极管 光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将就是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。 通常,光电鼠标采用的发光二极管就是红色的(也有部分就是蓝色的),且就是高亮的(为了获得

光电鼠标常见故障的排除_徐军

I SS N1672-4305CN12-1352/N 实 验 室 科 学LABORAT ORY SC I ENCE 第3期 2009年6月No .3 Jun .2009 仪器、设备、技术 光电鼠标常见故障的排除 徐 军,王春燕,刘瑞斌,李怡文,杨敏霞 (大连理工大学基础化学实验中心,辽宁大连 116023) 摘 要:根据多年的经验,主要对光电鼠标在使用中出现的常见问题及解决方法进行详细介绍,供高校教师和相关科技工作者参考。 关键词:光电鼠标;光敏元件;灵敏度 中图分类号:TP334.2 文献标识码:B 文章编号:1672-4305(2009)03-0155-03 Repairing co mmon malfuncti ons of the optical mouse XU Jun,WANG Chun -yan,L I U Rui -bin,L I Yi -wen,Y ANG M in -xia (Funda mental Che m ical Experi m ental Center,Dalian University of Technol ogy,Dalian 116023,China )Abstract:I n order t o offer a reference f or the university teachers and researchers,the common tr ou 2bles and res oluti ons in the use of op tical mouse are intr oduced in detail based on the authors ’experi 2ences . Key words:op tical mouse;op tical components;sensitivity 自从1999年微软与安捷伦公司合作,推出了第一款光学成像鼠标(I ntelli m ouse Exp l orer )。光电鼠标就因为有着极高的适应能力和无需清洁等优点,在短短的时间里将统治了计算机桌面几十年之久的机械滚轮鼠标赶下台。图1是光电鼠标的内部构造,图2是光电鼠标电路图。因为光电鼠标是使用发光管等光敏元件来定位,所以很容易出现如灵敏度下降、指针飘移等小故障 。 图1 光电鼠标的内部构造 1 光电鼠标的工作原理 光电鼠标与机械式鼠标最大的不同之处在于其定位方式不同。光电鼠标的工作原理 [1] 是:在光电 鼠标内部有一个发光二极管,通过该发光二极管发 出的光线,照亮光电鼠标底部表面( 这就是为什么 图2 光电鼠标的电路图 鼠标底部总会发光的原因)。然后将光电鼠标底部 表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专 用图像分析芯片(DSP,即数字微处理器),对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。 光电鼠标通常由以下部分组成:光学感应器、控制芯片、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或US B 接口、外壳等。

光电鼠标工作原理 物理

光电鼠标基础知识浅解 ——普通物理课外作业 班级:10-生物技术 姓名:李向阳 学号:201006040063

光电鼠标基础知识浅解 互联网的普及空前地打破了空间、时间的界限,小小鼠标,大大世界,点击之间,精彩萦绕你眼前。使用最广泛的鼠标有机械鼠标和光电鼠标,与传统的机械式鼠标相比,光电鼠标具有定位准确、移动流畅且不易脏污等优势,受到越来越多用户的认可。随着光电鼠标价格的不断下跌,取代机械式鼠标而成为市场主流的趋势已不可阻挡。 机械鼠标光电鼠标 光电鼠标的工作原理 光电鼠标定位的工作流程大致为:发光二极管照亮采样表面,对比度强烈的待采样影像通过透镜在CMOS(Complementary Metal Oxide Semiconductor---互补金属氧化物半导体,电压控制的一种放大器件。是组成CMOS数字集成电路的基本单元,CMOS制造工艺也被应用于制作数码影像器材的感光元件)上成像,CMOS将光学影像转化为矩阵电信号传输给DSP(digital singnal processor---数字信号处理器。其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式)。当鼠标移动时,DSP则将此影像信号与存储的上一采样周期的影像进行比较分析,然后发送一个位移距离信号到接口电路。接口电路对由DSP 发来的位移信号进行整合处理,而已传入计算机内部的位移信号再经过驱动程序的进一步处理,最终在系统中形成光标的位移。 光电鼠标的参数 分辨率

光电鼠标的分辨率通常用CPI(Count Per Inch : 每英寸的测量次数)来表示,CPI 越高,越利于反映用户的微小操作。而且在鼠标光标移动相同逻辑距离时,分辨率高的需要移动的物理距离则要短。拿一款800 CPI的光电鼠标来说,当使用者将鼠标移动1英寸时,其光学传感器就会接收到反馈回来的800个不同的坐标点,鼠标箭头同时会在屏幕上移动800个像素点。反过来,鼠标箭头在屏幕上移动一个像素点,就需要鼠标物理移动1/800英寸的距离。所以,CPI高的鼠标更适合在高分辨率的屏幕下使用。光学机械鼠标的分辨率多为200~400 CPI,而光电鼠标的分辨率通常在400~800 CPI之间。 除CPI以外,DPI(Dots Per Inch : 每英寸像素数)也常被人用来形容光电鼠标的分辨率。由于光电鼠标的分辨率反映了一个动态过程,所以用CPI来形容更恰当些。但无论是CPI还是DPI,描述的都是光电鼠标的分辨率,不存在性能差别。 刷新频率 光电鼠标的刷新频率也被称为扫描频率或者帧速率,它反映了光学传感器内部的DSP对CMOS每秒钟可拍摄图像的处理能力。在鼠标移动时,光学传感器中的数字处理器通过对比所“拍摄”相邻照片间的差异,从而确定鼠标的具体位移。但当光电鼠标在高速运动时,可能会出现相邻两次拍摄的图像中没有明显参照物的情况。那么,光电鼠标势必无法完成正确定位,也就会出现我们常说的“跳帧”现象了。而提高光电鼠标的刷新频率就加大了光学传感器的拍摄速度,也就减少了没有相同参考物的几率,达到了减少跳帧的目的。 像素处理能力 虽然分辨率和刷新率都是光电鼠标重要的技术指标,但它们并不能客观反映光电鼠标的性能,所以罗技(罗技是全球著名的电脑周边设备供应商)提出了像素处理能力这个指标,并规定:像素处理能力=CMO晶阵像素数×刷新频率。根据光电鼠标的定位原理我们知道,光学传感器会将CMOS拍摄的图像进行光学放大后再投射到CMOS晶阵上形成帧,所以在光学放大率一定的情况下,增加了CMOS晶阵像素数,也就可增大实际拍摄图像的面积。而拍摄面积越大,每帧图像上的细节也就越清晰,参考物也就越明显,和提高刷新率一样,也可减少跳帧的几率。 不过,需要注意的是,大多数情况下,厂商不会公布鼠标的CMOS尺寸,其大小从15x15到30x30像素(Pixel)不等。 光电鼠标的内部构成 从功能实现角度看,光电鼠标主要由发光二极管、固定夹、光学透镜、光学传感器、接口控制器芯片以及微动开关6部分元器件组成。

光电鼠标电路剖析及简单维修

光电鼠标电路剖析及简单维修 发布者:1770309616发布时间:2012-3-114:18 关键词:光电鼠标,电路剖析,维修 光电鼠标的电路一般都比较简单,大多由二块集成电路组成。一块稍大的是COMS感光IC,另一块一般为鼠标专用IC。感光CMOS芯片通过鼠标移动产生的光线变化而得到位置信号,送到鼠标IC的X、Y输入端。而鼠标IC再收集左、右,滚轮键及滚轮前滚、后滚等信息随着CL K时钟信号一起送到 PS2或USB口中去。 一、USB光电鼠标。图1为使用GL603-USB鼠标IC芯片及安捷伦的H2000(400CPI、 每秒1500次扫描)为光电感应芯片的电路图。 二、PS2接口鼠标 图2为使用PAN101-208(第三代光电IC产品,800CPI光学分辨率,2000次扫描/秒)为光电感应芯片,84510系列芯片为鼠标IC的PS2接口光电鼠标电路。光电鼠标IC一般来说都比较可靠。坏的多是按键开关或是鼠标线。鼠标线四根芯中,如果VCC或GND断线时,会出现光电鼠底面感光处无红光发出,鼠标无法使用的故障。当CL K或DATA断线时,出现鼠标虽然有红光发出,但光标不动及所有按键无反应的故障。如果出现某个按键失灵时,基本是这个按键开关坏了。更换线及开关时,可以从旧的机械鼠上拆下来代用。如果光电鼠标出现某个方向移动时光标变得很慢,很可能是反射的凸镜脏了,清洗即可。

高性能光电鼠标原理及电路图 高精度光学引擎新贵自由豹210关键字:光学引擎无线鼠标

新贵的自由豹210无线鼠标应用了“九九互联,九九过界”技术,在定位和连接方面都有着出色的表现。 新贵自由豹210无线鼠标线条硬朗,设计十分现代,并有亚黑和酒红两种配色可供选择,满足不同用户的需求。这款鼠标内置高精度光学引擎,具有良好的兼容能力,可在木桌、玻璃等多种表面上正常工作,最高分辨率达到了1600dpi,并支持800/1200/1600dpi三档调节,适合不同尺寸的显示器。在安装驱动后,还能对按键功能、移动灵敏度等进行自由设定。 新贵自由豹210无线鼠标采用2.4G无线连接,具有75组频道,支持自动跳频防干扰,有效使用距离可达10米,配备的Mini接收器小巧便携,还能同时连接多个相兼容的无线键鼠,节省了宝贵的USB接口。

鼠标的主要器件

1、分辨率 光电鼠标的分辨率通常用CPI(Count Per Inch : 每英寸的测量次数)来表示,CPI 越高,越利于反映玩家的微小操作。而且在鼠标光标移动相同逻辑距离时,分辨率高的需要移动的物理距离则要短。拿一款800 CPI的光电鼠标来说,当使用者将鼠标移动1英寸时,其光学传感器就会接收到反馈回来的800个不同的坐标点,鼠标箭头同时会在屏幕上移动800个像素点。反过来,鼠标箭头在屏幕上移动一个像素点,就需要鼠标物理移动1/800英寸的距离。所以,CPI高的鼠标更适合在高分辨率的屏幕下使用。光学机械鼠标的分辨率多为200~400 CPI,而光电鼠标的分辨率通常在400~800 CPI之间。 除CPI以外,DPI(Dots Per Inch : 每英寸像素数)也常被人用来形容光电鼠标的分辨率。由于光电鼠标的分辨率反映了一个动态过程,所以用CPI来形容更恰当些。但无论是CPI还是DPI,描述的都是光电鼠标的分辨率,不存在性能差别。 2、刷新频率 光电鼠标的刷新频率也被称为扫描频率或者帧速率,它反映了光学传感器内部的DSP对CMOS每秒钟可拍摄图像的处理能力。在鼠标移动时,光学传感器中的数字处理器通过对比所“拍摄”相邻照片间的差异,从而确定鼠标的具体位移。但当光电鼠标在高速运动时,可能会出现相邻两次拍摄的图像中没有明显参照物的情况。那么,光电鼠标势必无法完成正确定位,也就会出现我们常说的“跳帧”现象了。而提高光电鼠标的刷新频率就加大了光学传感器的拍摄速度,也就减少了没有相同参考物的几率,达到了减少跳帧的目的。 3、像素处理能力 虽然分辨率和刷新率都是光电鼠标重要的技术指标,但它们并不能客观反映光电鼠标的性能,所以罗技提出了像素处理能力这个指标,并规定:像素处理能力=CMO晶阵像素数×刷新频率。根据光电鼠标的定位原理我们知道,光学传感器会将CMOS拍摄的图像进行光学放大后再投射到CMOS晶阵上形成帧,所以在光学放大率一定的情况下,增加了CMOS晶阵像素数,也就可增大实际拍摄图像的面积。而拍摄面积越大,每帧图像上的细节也就越清晰,参考物也就越明显,和提高刷新率一样,也可减少跳帧的几率。 不过,需要注意的是,大多数情况下,厂商不会公布鼠标的CMOS尺寸,其大小从15x15到30x30像素(Pixel)不等。 光电鼠标的工作原理和内部构成 光电鼠标与机械式鼠标最大的不同之处在于其定位方式不同。光电鼠标的工作原理是:在光电鼠标内部有一个发光二极管,通过该发光二极管发出的光线,照亮光电鼠标底部表面(这就是为什么鼠标底部总会发光的原因)。然后将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠

光电鼠标原理与电路图

传统光学鼠标的工作原理 传统光学鼠标工作原理示意图 光学跟踪引擎部分横界面示意图 光学鼠标主要由四部分的核心组件构成,分别是发光二极管、透镜组件、光学引擎(Optical Engine)以及控制芯片组成。 光学鼠标通过底部的LED灯,灯光以30度角射向桌面,照射出粗糙的表面所产生的阴影,然后再通过平面的折射透过另外一块透镜反馈到传感器上。 当鼠标移动的时候,成像传感器录得连续的图案,然后通过“数字信号处理器”(DSP)对每张图片的前后对比分析处理,以判断鼠标移动的方向以及位移,从而得出鼠标x, y方向的移动数值。再通过SPI传给鼠标的微型控制单元(Micro Controller Unit)。鼠标的处理器对这些数值处理之后,传给电脑主机。传统的光电鼠标采样频率约为3000 Frames/sec(帧/秒),也就是说它在一秒钟内只能采集和处理3000张图像。 根据上面所讲述的光学鼠标工作原理,我们可以了解到,影响鼠标性能的主要因素有哪些。 第一,成像传感器。成像的质量高低,直接影响下面的数据的进一步加工处理。 第二,DSP处理器。DSP处理器输出的x,y轴数据流,影响鼠标的移动和定位性能。

第三,SPI于MCU之间的配合。数据的传输具有一定的时间周期性(称为数据回报率),而且它们之间的周期也有所不同,SPI主要有四种工作模式,另外鼠标采用不同的MCU,与电脑之间的传输频率也会有所不同,例如125MHZ、8毫秒;500MHz,2毫秒,我们可以简单的认为MCU可以每8毫秒向电脑发送一次数据,目前已经有三家厂商(罗技、Razer、Laview)使用了2毫秒的MCU,全速USB设计,因此数据从SPI传送到MCU,以及从MCU传输到主机电脑,传输时间上的配合尤为重要。 光电鼠标电路图

鼠标的结构及工作原理

鼠标的结构及工作原理 鼠标器(Mouse)是一种相当普通的、廉价的点输入设备(Pointing Device)。随着Windows 的日益流行,鼠标对于大多数的PC机用户来说已必不可少。较之其他的点设备(如跟踪球、数字化仪、光笔、触摸屏等),它更为便宜和方便,所以鼠标在PC机上的应用相当普及。鼠标器按与电脑连接的方式(即接口)分为:通过串行口与电脑建立连接的串口鼠标,及通过PS/2口与电脑建立连接的过PS/2鼠标。当鼠标器在平面上移动时,随着移动的方向和快慢的变化,会产生两个在高低电平之间不断变化的脉冲信号,主机接收这两个脉冲信号,并对其计数。根据接收到的这两个脉冲信号的个数,来控制电脑屏幕上的鼠标器指针在横(X)轴、纵(Y)轴两个方向上移动距离的大小。按照该方式,即可以控制鼠标器指针在屏幕上随意地移动。 脉冲信号是由鼠标器内的半导体光敏器件产生的。根据结构的不同,鼠标器主要可分为机电式鼠标和光电式鼠标。 机电式鼠标的底部有一个实心的橡胶球,内部有两个互相垂直的滚轴靠在橡胶球上。在两个滚轴的顶端,各装有一个开有径向槽(或开窗格)的光栅轮。光栅轮的两侧分别安装着由发光二极管和光敏三极管构成的光电检测电路。当移动鼠标器,橡胶球滚动时,带动滚轴及其上的光栅轮旋转。因为光栅轮开槽处透光,使得光敏三极管接收到由发光二极管发出的光线时断时续,从而产生不断变化的高低电平,形成脉冲电信号。互相垂直的两个轴对应着屏幕平面上的横(X)轴、纵(Y)轴两个方向。脉冲信号的数量对应着位移的大小。 机电式鼠标一般用摩擦滚动球的方法来进行操作,所以使用极为方便,价格也便宜。但是,这类鼠标则容易因轻微的振动,包括滚动球的跳动及滚动球与X、Y传感滚柱之间的相对位置的变化等因素而影响其精度,而且其重复定位精度也较差。由于有滚动球、传感滚柱、辅助滚柱等机械部件,故机电式鼠标器也容易因机械故障而失灵。 光电式鼠标器没有橡胶球和带光栅的轮的滚轴。这类鼠标器内的两对光电检测器互相垂直,光敏三极管检测发光二极管照射到鼠标器下面垫板上产生的反射光来进行工作,因此,光电式鼠标器工作时需要上面画有黑白相间格子的专用垫板。当发光二极管发出的光线照到黑格上,光线被吸收而无反射光;若光线照到白格上,则有反射光。光敏三极管据此而产生高低电平,形成脉冲信号。光电式鼠标没有机械部件,主要用光电位移传感器取代滚动球,所以不会出现机械故障的可能。这类传感器需要带有特制条纹或点状图案的垫子配合使用,因此光电式鼠标器有一个专用的光电极(反射板)。这类鼠标器的重定位精度较高,将鼠标从一个地点移到另一个地点再返回来,屏幕上的光标也将会精确地回到原来的位置。光电式鼠标的主要缺点是价格较贵,使用要受制于光电板的位置的局限。优点是精度高和故障率低。此外,还有一种称为轨迹球的鼠标器。它的工作原理与机电式鼠标器相同,内部结构也类似。差别是轨迹球鼠标器工作时球在上面,直接用手拨动,而球座固定不动。故轨迹球鼠标器占用的空间小,多用于便携机上。

鼠标的工作原理

鼠标那点事——鼠标工作原理分析 前言 经历了数年的飞速发展,如今的电脑配件以及周边的外设已经越来越好,我们最常用的鼠标从滚轮到光电,从有线到无线,有着惊人的改变。不过在鼠标的工作原理方面,依然延续着昔日的经典,没有太多的改变,只是如今的鼠标在性能上有着不小的突破。 尽管鼠标产品现在已经成为我们每天工作娱乐的必需品,但是对于鼠标的工作原理,相信了解的朋友并不多,毕竟技术这种东西比较枯燥,人们没有太多的兴趣。不过今天小编在这里还是要给大家来温习一下鼠标的工作原理,感兴趣的朋友不妨关注一下哦。

机械鼠标的工作原理 机械鼠标是通过移动鼠标,带动胶球,胶球滚动又磨擦鼠标内分管水平和垂直两个方向的栅轮滚轴,驱动栅轮转动。栅轮轮沿为格栅状。紧靠栅轮格栅两侧,一侧是一红外发光管,另一侧是红外接收组件。红外接收组件为一三端器件,其中包含甲乙两个红外接收管。在水平和垂直栅轮夹角正对方向有一压紧轮,它使胶球无论向何方向滚动都始终压紧在两个栅轮轴上。

通过ps/2 口或串口与主机相连。接口使用四根线,分别为电源,地,时钟和数据。正常工作时,鼠标的移动转换为水平和垂直栅轮不同方向和转速的转动。栅轮转动时,栅轮的轮齿周期性遮挡红外发光管发出的红外线照射到接收组件中的甲管和乙管,从而甲和乙输出端输出电脉冲至鼠标内控制芯片。由于红外接收组件中甲乙两管垂直排列,栅轮轮齿夹在红外发射与接收中间的部分的移动方向为上下方向,而甲乙接收管与红外发射管的夹角不为零,于是甲乙管输出的电脉冲有一个相位差。鼠标内控制芯片通过此脉冲相位差判知水平或垂直栅轮的转动方向,通过此脉冲的频率判知栅轮的转动速度,并不断通过数据线向主机传送鼠标移动信息,主机通过处理使屏幕上的光标同鼠标同步移动。

光电鼠标的原理

光电鼠标的工作原理 摘要本文从结构、工作原理、性能参数以及和传统鼠标的对比等几个方面详细介绍了光电鼠标,并且简单介绍了激光鼠标的相关特性,最后对鼠标的未来发展趋势进行了简单的展望。 关键词光电鼠标光学感应器激光鼠标发展趋势 一、鼠标的概述 鼠标,全称为光电显示系统纵横位置指示器,是计算机系统的一种输入设备,因形似老鼠而得名。按其工作原理及其内部结构的不同可以分为机械式鼠标,光机式鼠标和光电式鼠标。下面将简单介绍机械式鼠标和光机式鼠标的工作原理: 1、机械式鼠标 机械鼠标主要由滚球、辊柱和光栅信号传感器组成。当拖动鼠标时,带动滚球转动,滚球又带动辊柱转动,装在辊柱端部的光栅信号传感器产生的光电脉冲信号反映出鼠标器在垂直和水平方向的位移变化,再通过电脑程序的处理和转换来控制屏幕上光标箭头的移动。这种机械鼠标的底部采用一个可四向滚动的胶质小球。这个小球在滚动时会带动一对转轴转动,分别为X转轴、Y转轴,在转轴的末端都有一个圆形的译码轮,译码轮上附有金属导电片与电刷直接接触。当转轴转动时,这些金属导电片与电刷就会依次接触,出现“接通”或“断开”两种形态,前者对应二进制数“1”、后者对应二进制数“0”。接下来,这些二进制信号被送交鼠标内部的专用芯片作解析处理并产生对应的坐标变化信号。只要鼠标在平面上移动,小球就会带动转轴转动,进而使译码轮的通断情况发生变化,产生一组组不同的坐标偏移量,反应到屏幕上,就是光标可随着鼠标的移动而移动。由于它采用纯机械结构,定位精度难如人意,加上频频接触的电刷和译码轮磨损得较为厉害,直接影响了机械鼠标的使用寿命。在流行一段时间之后,它就被成本同样低廉的“光机鼠标”所取代,后者正是现在市场上还很常见的所谓“机械鼠标”。 2、光机式鼠标 光机式鼠标,顾名思义是一种光电和机械相结合的鼠标。它在机械鼠标的基础上,将磨损最厉害的接触式电刷和译码轮改为非接触式的LED对射光路元件。当小球滚动时,

鼠标那点事鼠标工作原理分析

鼠标那点事——鼠标工作原理分析2010-02-24 00:00:00 王成| 责编: 王成CBSi中国·PChome | 作者: 本文导航?页:前言1第?页:机械鼠标的工作原理2第?页:光电鼠标工作原理3第?)2第4页:光电鼠标工作原理(?页:总结5第1前言 经历了数年的飞速发展,如今的电脑配件以及周边的外设已经越来越好,我们最常用的鼠标从滚轮到光电,从有线到无线,有着惊人的改变。不过在鼠标的工作原理方面,依然延续着昔日的经典,没有太多的改变,只是如今的鼠标在性能上有着不小的突

破。. 尽管鼠标产品现在已经成为我们每天工作娱乐的必需品,但是对于鼠标的工作原理,相信了解的朋友并不多,毕竟技术这种东西比较枯燥,人们没有太多的兴趣。不过今天小编在这里还是要给大家来温习一下鼠标的工作原理,感兴趣的朋友不妨关注一下

哦。. 2机械鼠标的工作原理 机械鼠标是通过移动鼠标,带动胶球,胶球滚动又磨擦鼠标内分管水平和垂直两个方向的栅轮滚轴,驱动栅轮转动。栅轮轮沿为格栅状。紧靠栅轮格栅两侧,一侧是一红外发光管,另一侧是红

外接收组件。红外接收组件为一三端器件,其. 中包含甲乙两个红外接收管。在水平和垂直栅轮夹角正对方向有一压紧轮,它使胶球无论向何方向滚动都始终压紧在两个栅轮轴上。 通过ps/2 口或串口与主机相连。接口使用四根线,分别为电源,地,时钟和数据。正常工作时,鼠标的移动转换为水平和垂直栅轮不同方向和转速的转动。栅轮转动时,栅轮的轮齿周期性遮挡红外发光管发出的红外线照射到接收组件中的甲管和乙管,从而甲和乙输出端输出电脉冲至鼠标内控制芯片。由于红外接收组件中甲乙两管垂直排列,栅轮轮齿夹在红外发射与接收中间的部分的移动方向为上下方向,而甲乙接收管与红外发射管的夹角不为零,于是甲乙管输出的电脉冲有一个相位差。鼠标内控制芯片通过此脉冲相位差判知水平或垂直栅轮的转动方向,通过此脉冲的频率判知栅轮的转动速度,并不断通过数据线向主机传送鼠标移动信息,主机通过处理使屏幕上的光标同鼠标同步移

无线鼠标原理简介

无线鼠标原理 无线鼠标原理简介: 目前的市场上售卖的基本上都是光学鼠标和激光鼠标,更古老的机械鼠标、光电机械鼠标都已经淘汰,无线鼠标也是如此。因此要明白无线鼠标的工作原理,其实并没有太大困难,可以简单理解为:无线鼠标=有线鼠标-数据线+无线模块,这样是不是直白多了呢?

光学鼠标的工作原理如上图,LED或者Laser发出的光通过透镜,照射在鼠标工作表面(比如鼠标垫、或者桌面)上,部分反射光通过透镜进入成像传感器成像,并提供给图像分析芯片(DSP 数字微处理器)进行分析;当鼠标移动时,传感器就会截获一组高速拍摄的连贯图像,经DSP芯片分析处理后,得出鼠标的移动方向和移动量,并将这一信息传输给电脑,于是便有了桌面光标的移动行为。 CMOS成像传感器和DSP两部分合称鼠标的光学引擎,激光引擎和普通光学引擎的差异是,采用了具有相干性、波长单一、功率集中的激光(Laser)取代LED光来照射工作表面,这样可以提高鼠标对不同工作表面的适应能力,目前高端无线鼠标也大都采用激光引擎。

图中NRF字样的小方块就是2.4G无线芯片 其实无线鼠标和传统有线鼠标基本上是一样的,区别主要集中在最后一步的数据传输方式上,有线鼠标通过PS/2或者USB接口的数据线传输信息,而无线鼠标则采用红外、27MHz、2.4GHz和蓝牙等无线传输技术发送数据,摒弃了数据线,使用起来“无牵无挂”,自然更加方便。 无线传输技术介绍: 无线技术根据不同的用途和频段被分为不同的类别,其中包括蓝牙、Wi-Fi (IEEE 802.11)、Infrared (IrDA)、ZigBee (IEEE 802.15.4)等等多个无线技术标准,但市场上产品最多、消费者接触最广的,也仅有27Mhz、2.4G和蓝牙无线鼠标共三类。 27 MHz RF技术

光学鼠标传感器

光学鼠标传感器 光电134 苗书凡2013151415 光学鼠标传感器是生活中常见的传感器。它主要由四部分的核心组件构成,分别是发光二极管、透镜组件、光学引擎以及控制芯片组成。 一.光学传感器的组成及光学特性: 1.光学鼠标控制芯片 光学鼠标控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。 CMOS传感器是一款非接触式芯片,集成有数字信号处理器(DSP)、双通道正交输出端口。芯片底部有感光眼,对物体拍照、传输、处理,得到移动的方向和距离。DSP产生的位移值,转换成双通道正交信号,配合鼠标控制器,将它转换成单片机能够处理的PS/2数据格式。 鼠标中OMO2芯片为CMOS型传感器,因此必须配有与之适应的高强度发光二极管。按标准安装配合之后,在一定范围之内,OMO2芯片可以进行正常的数据接收检验。 2. 光学透镜组件 光学透镜组件被放在光学鼠标的底部位置,光学透镜组件由一个棱光镜和一个圆形透镜组成。其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。 圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。 透镜中的光焦度为正值称为正透镜,因为对光起到汇聚作用,在光学鼠标中两面的透镜都是正透镜。按照形状不同,正透镜又可分为双凸、平凸和月凸三种。 3.发光二极管 光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。 LED有非可见光和可见光两个系列。非可见光系列LED用辐射度来度量起

鼠标的组成及工作原理

鼠标的组成及工作原理 1,分类 鼠标按接口类型可分为串行鼠标、PS/2鼠标、总线鼠标、USB鼠标(多为多为光电鼠标)四种 鼠标按其工作原理及其内部结构的不同可以分为机械式,光机式和光电式2,组成 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。 3,工作原理

管脚排列 管脚说明

这里主要介绍光电鼠标 光电鼠标器是通过红外线或激光检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的光标箭头的移动的一种硬件设备。光电鼠标的光电传感器取代了传统的滚球。这类传感器需要与特制的、带有条纹或点状图案的电垫板配合使用 光电鼠标器是通过检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的光标箭头的移动。光电鼠标用光电传感器代替了滚球。这类传感器需要特制的、带有条纹或点状图案的垫板配合使用。与光机鼠标发展的同一时代,出现一种完全没有机械结构的数字化光电鼠标。设计这种光电鼠标的初衷是将鼠标的精度提高到一个全新的水平,使之可充分满足专业应用的需求。这种光电鼠标没有传统的滚球、转轴等设计,其主要部件为两个发光二极管、感光芯片、控制芯片和一个带有网格的反射板(相当于专用的鼠标垫)。工作时光电鼠标必须在反射板上移动,X发光二极管和Y 发光二极管会分别发射出光线照射在反射板上,接着光线会被反射板反射回去,经过镜头组件传递后照射在感光芯片上。感光芯片将光信号转变为对应的数字信号后将之送到定位芯片中专门处理,进而产生X-Y坐标偏移数据。

鼠标结构

光电鼠标内部结构 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。下面分别进行介绍: 目录 ? 1 光学感应器 ? 2 光电鼠标的控制芯片 ? 3 光学透镜组件 ? 4 发光二极管 ? 5 轻触式按键 光学感应器 光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电鼠标基本上都采用了安捷伦公司的光学感应器。 图1:光电鼠标内部的光学感应器 安捷伦公司的光学感应器主要由CMOS感光块(低档摄像头上采用的感光元件)和DSP组成。CMOS感光块负责采集、接收由鼠标底部光学透镜传递过来的光线(并同步成像),然后CMOS感光块会将一帧帧生成的图像交由其内部的DSP进行运算

和比较,通过图像的比较,便可实现鼠标所在位置的定位工作。 图2:光学感应器内部的组成方式 图1是方正光电鼠内部的光学感应器,它采用的是安捷伦公司的H2000-A0214光学感应元件,其芯片内部的组成方式可参见图2。图3是H2000-A0214光学感应器的背面,从图中我们可以看到,芯片上有一个小孔,这个小孔用来接收由鼠部底部的光学透镜传送过来的图像。 图3光学感应器背面的小孔用来接收由鼠部底部的光学透镜传送过来的图像 [编辑] 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。图4是罗技公司的CP5919AM控制芯片,它可以配合安捷伦的H2000-A0214光学感应元件,实现与主板USB接口之间的桥接。当然,它也具备了一块控制芯片所应该具备的控制、传输、协调等功能。 这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就

鼠标与光电传感器

鼠标 一、引言 1984年,随着Apple Macintosh的推出,鼠标也一同跃上舞台。从此在它们的帮助下,计算机的使用方法得以彻底重新定义。 在您计算机使用生涯的每一天,只要想移动光标或者激活某些内容,您都会伸出手使用鼠标。鼠标感知您的手部移动和单击并将它们发送给计算机,使计算机能够做出相应的响应。所以说鼠标也是一种传感器。 所有鼠标的主要目的都是将手部运动转换为计算机可以读取的信号。 二、鼠标的工作原理 鼠标的工作原理:鼠标按其工作原理的不同可以分为机械鼠标和光电鼠标。 (一)机械鼠标 让我们来看一下机械鼠标的内部结构,从而了解其工作原理: 鼠标的内部部件

机械鼠标主要由滚球、辊柱、光栅信号传感器和处理器芯片组成。当你拖动鼠标时,带动滚球转动,滚球又带动辊柱转动,装在辊柱端部的光栅信号传感器产生的光电脉冲信号反映出鼠标器在垂直和水平方向的位移变化,再通过小型处理器读取来自红外线传感器的脉冲并将它们转换成发送到计算机的字节,最后通过电脑程序的处理和转换来控制屏幕上光标箭头的移动。 1.鼠标内部的滚球接触桌面并在鼠标移动时滚动。 鼠标逻辑板的底面:滚球露出的一部分与桌面接触。 2.鼠标内部的两根辊轴与滚球接触。一根辊轴定向为可检测X方 向的运动,另一根辊轴与第一根辊轴成90度,可以检测Y方向的运动。 当滚球转动时,一根或两根辊轴也会转动。下图显示了此鼠标中的两根 白色的辊轴:

与滚球接触的辊轴检测X方向和Y方向的运动。 3.每根辊轴都与一个轴连接,该轴旋转一个上面有孔的圆盘。当辊轴滚动时,与其连接的轴和圆盘也会旋转。下图显示了圆盘: 典型的光学译码盘:此圆盘的外边缘周围有36个孔。 4.圆盘的一侧有一个红外线LED,另一侧有一个红外线传感器。圆盘中的孔使LED发出的光束中断,因此红外线传感器可以感应到光线脉冲。脉冲频率与鼠标移动的速度和距离直接相关。这就是组成了一个光栅信号传感器。

光电鼠标原理

光电鼠标原理 电脑硬件 2009-08-02 13:17 阅读619 评论0 字号:大中小 传统光学鼠标的工作原理 光电鼠标的工作原理是:在光电鼠标内部有一个发光二极管,通过该发光二极管发出的光线,照亮光电鼠标底部表面(这就是为什么鼠标底部总会发光的原因)。然后将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专用图像分析芯片(DSP,即数字微处理器)对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。下面分别进行介绍: 光学感应器 光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电 鼠标基本上都采用了安捷伦公司的光学感应器。 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。 这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数 就多,定位精度就高。 通常情况下,传统机械式鼠标的扫描精度都在200dpi以下,而光电鼠标则能达到400甚至800dpi,这就是为什么光电鼠标在定位精度上能够轻松超过机械式鼠标的主要原因。 光学透镜组件 光学透镜组件被放在光电鼠标的底部位置,从图5中可以清楚地看到,光学透镜组件由一个棱光镜和一个圆形透镜组成。其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。 圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。通过观看光电鼠标的背面外壳,我们可以看出圆形透镜很像一个摄像头通过试验,笔者得出结论:不管是阻断棱光镜还是圆形透镜的光路,均会立即导致光电鼠标“失明”。其结果就是光电鼠标 无法进行定位,由此可见光学透镜组件的重要性。

光电鼠标原理

光电鼠标器是通过红外线或激光检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的光标箭头的移动的一种硬件设备。光电鼠标的光电传感器取代了传统的滚球。这类传感器需要与特制的、带有条纹或点状图案的垫板配合使用 光电鼠标的工作原理 光电鼠标与机械式鼠标最大的不同之处在于其定位方式不同。 光电鼠标的工作原理是:在光电鼠标内部有一个发光二极管,通过该发光二极管发出的光线,照亮光电鼠标底部表面(这就是为什么鼠标底部总会发光的原因)。然后将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专用图像分析芯片(DSP,即数字微处理器)对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。下面分别进行介绍: 光学感应器 光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电鼠标基本上都采用了安捷伦公司的光学感应器。 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。 这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数就多,定位精度就高。 通常情况下,传统机械式鼠标的扫描精度都在200dpi以下,而光电鼠标则能达到400甚至800dpi,这就是为什么光电鼠标在定位精度上能够轻松超过机械式鼠标的主要原因。 光学透镜组件 光学透镜组件被放在光电鼠标的底部位置,从图5中可以清楚地看到,光学透镜组件由一个棱光镜和一个圆形透镜组成。其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。

光电鼠标内部结构

光学感应器 光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电鼠标基本上都采用了安捷伦公司的光学感应器。 图1:光电鼠标内部的光学感应器 安捷伦公司的光学感应器主要由CMOS感光块(低档摄像头上采用的感光元件)和DSP组成。CMOS感光块负责采集、接收由鼠标底部光学透镜传递过来的光线(并同步成像),然后CMOS感光块会将一帧帧生成的图像交由其内部的DSP进行运算和比较,通过图像的比较,便可实现鼠标所在位置的定位工作。 图2:光学感应器内部的组成方式 图1是方正光电鼠内部的光学感应器,它采用的是安捷伦公司的H2000-A0214光学感应元件,其芯片内部的组成方式可参见图2。图3是H2000-A0214光学感应器的背面,从图中我们可以看到,芯片上有一个小孔,这个小孔用来接收由鼠部底部的光学透镜传送过来的图像。

图3光学感应器背面的小孔用来接收由鼠部底部的光学透镜传送过来的图像 [编辑] 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。图4是罗技公司的CP5919AM控制芯片,它可以配合安捷伦的H2000-A0214光学感应元件,实现与主板USB接口之间的桥接。当然,它也具备了一块控制芯片所应该具备的控制、传输、协调等功能。 这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数就多,定位精度就高。 图4罗技公司的CP5919AM控制芯片 通常情况下,传统机械式鼠标的扫描精度都在200dpi以下,而光电鼠标则能达到400甚至800dpi,这就是为什么光电鼠标在定位精度上能够轻松超过机械式鼠标的主要原因。 [编辑] 光学透镜组件

相关文档
最新文档