综合模块化航电IMA硬件单元

综合模块化航电IMA硬件单元
综合模块化航电IMA硬件单元

综合模块化航电(IMA)硬件单元

1. 目的

本技术标准规定(CTSO)适用于为综合模块化航电(IMA)硬件单元申请技术标准规定项目批准书(CTSOA)的制造人。本CTSO 规定了综合模块化航电硬件单元为获得批准和使用适用的CTSO标记进行标识所必须满足的最低性能标准(MPS)。

2. 适用范围

a. 本CTSO适用于自其生效之日起提交的申请。本CTSO具体针对以下硬件单元:

(1)硬件模块;

(2)装载硬件模块的机柜或机架。

b. 符合本CTSO要求的硬件单元可用来支持功能CTSO设备或按照CCAR-21、23、25、27、29、33或35部批准的系统(例如,作为型号合格证组成部分批准的刹车系统)。功能CTSO的批准和飞机级批准不在本CTSO的范围之内。

c. 附录3给出了硬件单元的相关术语。

d. 按本CTSO批准的综合模块化航电硬件单元,设计大改应获得CAAC的批准。参见CCAR-21R3第21.313条。

3. 要求

在本CTSO生效之日或生效之后制造并欲使用本CTSO标记进行标识的硬件单元,必须满足硬件单元最低性能标准。本CTSO附录1给出了综合模块化航电硬件单元最低性能标准制定准则。

a. 功能:本CTSO适用于预期满足按本CTSO附录1准则制定的最低性能标准的设备。本CTSO不针对预期执行的飞机级功能,而是为支持接收、处理和输出数据等通用功能的硬件提出环境鉴定试验要求。获得本CTSO批准的硬件单元在加载相应软件程序时,也可能需要满足其他CTSO功能要求。对于软件与硬件的组合,应使用适用的CTSO对其进行额外的CTSO功能批准。设备或系统执行的未获得CTSO批准的功能,必须在装机过程中由局方评估和批准。

b. 功能限制:

(1)本CTSO不适用于为目标发射器生成无线电频率信号的设备。

(2)本CTSO针对的软件功能仅限于支持电子件号和/或功能软件加载的软件。

c. 失效状态类别:失效状态类别取决于在特定飞机环境中执行的功能及其用途。失效状态类别划分必须由安装批准过程中的安全性评估来确定,不属本CTSO范围。制造商必须声明每个硬件单元的硬件设计保证等级和软件等级。任何关于飞机安装、软硬件接口、或硬件设计保证等级和软件等级的假设,都应进行声明,并应包含在安装限制或说明中。

d. 功能鉴定:制造商必须为每个硬件单元定义最低性能标准。根据附录1第5节,在最低性能标准中必须详细说明功能鉴定构型。每个硬件单元的预期性能都必须符合制造商依据附录1准则制定的最低性能标准。

注:如果用于软件加载和/或电子件号的软件按照本CTSO进行批准,则在IMA系统安装批准过程中,必须由局方对软件功能进行确认。

e. 环境鉴定:制造商必须按附录1第6节中指定的条件对设备进行试验,参照RTCA/DO-160D(Change 3,2002.12.5)《机载设备环境条件和试验程序》。

注:通常情况下,RTCA/DO-160D(包括Change 1和Change 2)或早期版本不再适用,如果使用该版本则需按照本CTSO第3.i节中的偏离要求进行证明。

f. 软件设计保证:硬件单元可以包含支持软件加载和/或电子件号的软件。本CTSO仅适用于这类软件。如果包含此类软件,则必须根据硬件单元制造商确定的软件等级,按照RTCA/DO-178B《机载系统和设备合格审定中的软件考虑》(1992.12.1)进行研制。

g. 硬件设计保证:如果硬件单元包含无法通过试验和/或分析来评估功能的电子设备,则必须根据硬件单元制造商确定的设计保证等级,按照RTCA/DO-254《机载电子硬件的设计保证指南》(2000.8.19)进行研制。

h. 构型管理:制造商必须使每个硬件单元具有支持强健的自动构

型管理功能的设计特征。该功能在实际安装前可能不会完全运行。制造商必须能够表明,无论通过机械方式还是自动电子监控集成的组件,高层级的组件都只会按照预期设计进行组装,或者错误的组装可以在启动的时候探测到。而且,对于需要与其他系统设备通过机械或电气连接器进行连接的各个硬件单元,制造商必须能够表明每个单元,无论通过机械方式还是自动电子监控更高层级的组装,都可以避免或在派遣前探测到错误的连接。在对每个指定飞机构型中安装的IMA 系统进行安全性评估过程中,制造商必须考虑构型管理设计特征的失效。

i. 质量控制。为符合本CTSO中针对硬件单元的标准,制造商必须能够提供质量控制方面的说明资料,并满足CCAR-21R3第21.143条和第21.310条(三)2要求。此外,每个制造的硬件单元都必须符合批准的型号设计。

j. 偏离。如果采用替代或等效的符合性方法满足本CTSO规定的最低性能要求准则,申请人必须表明硬件单元保持有等效的安全水平。申请人在提交数据资料之前,应按照CCAR-21R3第21.310条(二)条要求申请偏离。

4. 标记

申请人应将CCAR-21R3第21.312(四)中规定有关CTSOA标记的所有信息持久且清晰地标记在按本CTSO制造的每个硬件单元上。此外:

a. 为便于维护,可将硬件单元的件号标记在硬件单元上的多个位

置。

b. 按本CTSO制造的每个单独的硬件单元,也可以通过使用外部方式(例如电子显示)来确定所需的信息。

c. 按本CTSO批准的硬件单元可以包含支持电子件号和/或功能软件加载的软件。

d. 如果硬件单元包含软件(即支持电子件号和/或功能软件加载的软件),可为硬件和软件使用不同的件号。

e. 每个件号必须确定唯一的构型(包括更改状态)。

f. 按本CTSO批准的机架或机柜必须标识“CTSOA机架”或“CTSOA机柜”,并应将该标识放置在CTSO铭牌或靠近铭牌处。

5. 申请资料要求

申请人必须向负责该项目审查的人员提交相关技术资料,以支持设计和生产批准。提交资料包括CCAR-21R3第21.310条(三)3中规定的符合性声明及以下技术资料的副本。

a. 运行说明和设备限制,包括对强健的自动构型管理设计特征的描述。

b. 安装程序和限制。该程序必须确保按照其进行安装后的硬件单元可以持续满足本CTSO的要求。

(1)限制必须确定所有安装问题,必须包括如下声明:“本硬件单元CTSO批准所依据的是最低性能标准中要求的条件和试验。如需要将该硬件单元安装在具体型号或某类型号时,安装人员负责确定安装条件符合本CTSO要求。只有当申请人通过评估提出可接受的安装

方法并获得局方批准时,才可对此硬件单元进行安装。”

(2)如果硬件单元包含支持电子件号和/或功能软件加载的软件,则按本CTSO应用的软件等级必须与安装安全性评估一致,并记录在安装程序和限制中。

c. 安装原理图。

d. 安装布线图。

e. 符合本CTSO的硬件单元的部件清单及件号。

f. 部件维修手册(CMM)。包括对部件周期维护、检查和维修的说明,以保证硬件单元的持续适航,包括建议的检查间隔和使用寿命。该手册应满足CCAR-21R3中第21.50对持续适航文件的要求。

g. 材料和工艺规范清单。

h. 用于对每个硬件单元进行环境鉴定的试验条件的总结。

i. 本CTSO第8节中的制造商数据单。

j. 每个硬件单元的最低性能标准。(参见附录1,最低性能标准制定准则)。

k. 制造商CTSO鉴定试验报告。

l. 铭牌图纸,应包含本CTSO中第4节所要求的信息。

m. 定义硬件单元设计的图纸和工艺清单(包括修订版次)。

n. 按CCAR-21R3第21.143条和第21.310条(三)2的要求提供质量控制系统(QCS)方面的说明资料,其中包括每个硬件单元产品的功能试验规范,以确保符合最低性能标准。

o. 如果硬件单元包括软件,则还应提供软件合格审定计划

(PSAC)、软件构型索引和软件完结综述。

注:局方建议申请人在软件开发过程中尽早提交PSAC。

p. 如果硬件单元包含无法通过试验和/或分析评估功能的电子设备,则还应提交硬件合格审定计划(PHAC)、硬件构型索引和硬件完结综述。

注:局方建议申请人在电子设备开发过程中尽早提交PHAC。

q. 查看CTSO相关电子件号的说明(如适用)。

6. 制造人资料要求

除直接提交给局方的资料外,还应准备如下技术资料供局方评审:

a. 功能鉴定规范,用来鉴定每件设备是否符合本CTSO要求;

b. 设备校准程序;

c. 持续适航文件;

d. 原理图;

e. 材料和工艺规范;

f. 按本CTSO 第3.e节要求的环境鉴定试验的结果;

g. 如果设备包含软件,提供RTCA/DO-178B中规定的所有相关文档,包括所有支持RTCA/DO-178B附录A中相关目标的资料、由软件等级确定的过程目标和输出;

h. 如果硬件单元包含无法通过试验和/或分析评估功能的电子设备,则还应根据硬件设计保证等级,按照RTCA/DO-254提供相关文档。

7. 随设备提交给用户的资料要求

如欲向一个机构(例如运营人或修理站)提供一件或多件按本CTSO制造的硬件单元时,则应随设备提供本CTSO第5.a节到第5.i 节的资料副本,以及所有保证硬件单元正确安装、审定、使用和持续适航所必须的其他资料。

8. 制造人数据单

按本CTSO制造硬件单元的制造商必须向局方和运营方提交一份数据单,总结和交流硬件单元的设计细节。CTSOA获批后局方会附上该数据单。本CTSO附录2包含一份数据单格式及所需包含信息的样例。制造人可以通过其他格式提交数据,但必须包含附录2中列举的所有信息。如果资料表中部分内容不适用,标记“不适用”。

9. 引用文件

a. RTCA 文件可从以下地址订购:

RTCA Inc., 1150 18th Street, N.W., Suite 910, Washington, DC 20036, 也可通过网站订购:https://www.360docs.net/doc/2817718621.html,。

b. FAA咨询通告AC 20-170可通过网站获得:https://www.360docs.net/doc/2817718621.html,。

附录1综合模块化航电硬件单元最低性能标准(MPS)制定准则1. 附录结构

本附录包括如下内容:

a. 第2~3 节对硬件单元最低性能标准进行了说明和概述。

b. 第4~7 节为制定硬件单元最低性能标准和试验条件提供指南。

c. 第8~9 节介绍制定最低性能标准时安装和运营性能方面的考虑因素。

2. 概述

a. 本附录为欲申请CTSO-C153 批准的IMA硬件单元提出了最低性能标准制定准则。附录涉及制造商必须在最低性能标准中考虑并需要说明的硬件性能特征,并在数据单中汇总(见本CTSO第8节)。

b. 对于本CTSO,硬件单元包含如下内容:

(1)模块(可能会包含支持软件加载和/或电子件号的软件)。这些模块只有安装在指定机柜或机架之后,才会运行。模块类型可包括数据处理模块、供电模块、通信和数据总线模块等。

(2)装载IMA模块的机柜或机架。这些机柜或机架可能是简单的机械外壳,或者可能综合主动冷却单元、供电、通信接口、数据和电源底板,或任何这些特征的组合。

c. 传统的航电系统由专用的可更换组件(LRU)构成,这些LRU 执行特定的功能,例如自动飞行、飞行管理和飞行驾驶舱显示器。局方也都是为这些LRU 及其功能制定相应的CTSO。但随着数字技术

的发展,集成度变得越来越高。现在,已经演变成由软件确定功能,而由硬件提供输入、输出、数据存储和软件执行的平台。由于这些基础属性对于不同的应用均是相似的,因此制造商可以通过使用不同类型的通用机载硬件单元来执行功能,从而提高效率。图 1 为典型的综合航电系统框图。根据系统的应用需求不同,所需硬件单元的类型和数量,以及每个单元类型的数量都可能是不同的。如图 1 所示,机柜或机架中装满了不同类型的模块。典型的模块类型包括处理器、供电、数据库和输入/输出模块。除了机柜或机架,一个完整的系统可以由不同的控制器、显示器和传感器构成。任何模拟信号、专用通信总线或系统级双向通信总线的组合均可提供IMA 系统通信。制造商可以将功能分配到一个或多个机柜机架上的模块和其他设备。

图 1 包含多个硬件单元的IMA 系统样例

d. 只有在制造商交付硬件单元,并且用户综合硬件和软件后,才能确定或运行每个硬件单元中驻留的系统应用功能。因此对飞机级功能、失效状态类别,以及失效或故障的影响的描述都不会包含在硬件单元最低性能标准中,而是在相关规章、CTSO、最低性能标准和咨

询通告中提及。然而,制造商的最低性能标准必须声明每个研制硬件单元的硬件设计保证等级和软件等级。制造商也必须将所有硬件和软件接口限制包含在最低性能标准和数据单中,以保存所声明的硬件设计保证等级和软件等级。

e. 硬件单元可以包含支持软件加载和/或电子件号的软件。只有此类软件可以用本CTSO 进行批准。如果存在这类软件,则必须根据硬件单元制造商确定的软件等级,按照RTCA/DO-178B《机载系统和设备合格审定中的软件考虑》(1992.12.1 发布)进行研制。

3. 最低性能标准概述

为硬件单元制定的最低性能标准必须包含以下内容:

a. 预期功能。制造商必须根据环境中相关性能要求详细说明硬件单元的预期功能。

b. 假设

(1)每个硬件单元自身无法实现飞机上的任何功能。只有在综合多个硬件单元,并加载功能软件后,才能实现飞机功能。各硬件单元分别进行制造和运输,并仅包含支持软件加载和/或电子件号的软件。

(2)各个硬件单元应独立于飞机功能进行试验和鉴定。每个单元都需要单独的试验程序,以验证硬件单元在不同的环境条件下执行其预期功能。本CTSO不涉及对硬件单元正确执行功能软件的保证,但在TC、STC过程中,或获取功能CTSOA 时,必须给予说明。

c. 试验程序

(1)硬件单元性能试验。硬件单元制造商必须制定试验程序,用来表明每个适用的硬件单元都符合本附录第5 节中介绍的最低性能标准。该试验程序可以在实验室环境下进行,表明硬件单元满足最低性能标准。

(2)环境试验。硬件单元制造商必须制定试验程序,以表明在本附录第6节中规定的每个适用环境下,硬件单元符合其最低性能标准。对于不同的环境试验,可能需要多项试验程序。硬件单元制造商的设备规范或试验报告必须详细说明环境试验中的试验程序,也必须为使用简化功能试验来覆盖运营范围内性能要求提供证据。

(3)硬件单元安装试验。硬件单元制造商可以制定试验程序,用于地面或飞行试验期间在飞机上安装硬件单元。硬件单元中驻留的具体飞机系统功能不属于本附录范围,需参考相关MPS,获取功能CTSO试验要求,并参考制造商对任何其他飞机系统功能的试验要求。

(4)运行试验。硬件单元必须包含支持运行试验的设计特征,以确定安装在飞机上时,其功能正常。

4. 通用最低性能标准要求

硬件单元最低性能标准必须包含如下要求:

a. 适航。当与其他硬件单元和功能软件在指定飞机上综合时,每个硬件单元的设计和制造都必须提供不会破坏或降低飞机适航能力的安装方法。

b. 预期功能。每个硬件单元安装在飞机或发动机上时,都必须按

照制造商的定义,执行其预期功能。

c. 航空无线电管理法规。如适用,所有设备都必须符合中国民用航空无线电管理的相关法规。

d. 防火。除了不会引起火势快速扩散的小部件(例如旋钮、紧固件、密封件、扣眼,和小电子部件),其他所有使用的材料都必须是耐火的。

e. 试验影响。硬件单元及其试验程序的设计都必须使得该程序的应用绝不能导致任何明显危害硬件单元性能和可靠性的情况。

f. 设计保证。硬件单元必须按照与驻留功能的失效状态类别相适应的设计保证等级和系统架构来进行研制。SAE ARP4754《高度综合复杂机载系统的适航审定考虑》为系统和设计活动提出了一种可接受的确定研制保证等级的方法。如果硬件单元包含无法通过试验或分析来评估功能的电子设备,则硬件单元必须符合RTCA/DO-254《机载电子硬件的设计保证指南》。如果硬件单元包含软件加载和/或电子件号的软件,则该软件必须根据RTCA/DO-178B《机载系统和设备合格审定中的软件考虑》中相应软件等级的要求进行研制。

注:CTSO制造商所选择的设计保证等级必须与初步系统安全性评估(PSSA)过程分配给硬件单元软件和硬件的等级一致。

g. 未使用的机柜或机架位置。制造商必须定义相应的方法和部件,为未使用的机柜或机架提供适合的覆盖或位置填充物。如需要,这些部件必须作为机柜或机架CTSO 批准的一部分。

5. 设备性能——标准条件

a. 制造商应在最低性能标准中详细说明硬件单元性能要求。但通常只有在多个硬件单元综合、功能软件加载,并且系统综合完成后,才能实现飞机功能。飞机级的附加性能也必须在飞机合格审定过程中进行说明和验证。需要在飞机级评估对CTSO 要求的符合性。该层级的性能标准超出了本CTSO 的范围,此处提及只是出于完整性考虑。硬件单元制造商必须为每类按本CTSO 申请的硬件单元准备最低性能标准。最低性能标准中必须包含硬件单元的所有最低性能要求。这些要求必须以量化的形式提出。如适用,最低性能标准中必须包含容差,以便可以更好地制定试验程序。

b. 用于设备性能试验的设备构型。

(1)针对机柜和机架性能试验的试验构型必须至少包含综合了冷却和供电装置的机柜或机架,适用的供电模块(如果没有综合在机柜或机架中),适用的处理模块,和适用的数据通信模块(如果没有综合在机柜或机架中)。针对模块的试验构型必须至少包含为该模块设计的机柜或机架,适用的供电模块(如果模块为完成功能,需要具有该部分),和适当的数据通信和处理模块(如果模块为完成功能,要求具有该内容)。机柜或机架中所有未使用的模块位置都要安装适用的覆盖或位置填充物。

(2)机柜或机架和模块构型必须包含为其服务的适当的电气和机械连机器接口。

(3)如果按本CTSO 制造的硬件单元可以加载软件,执行飞机功能,则制造商应使用指定的目标试验软件或功能软件来表明硬件单

元功能的运行。制造商必须验证、确认和控制软件的构型,以确保试验有效。

c. 设备性能要求。最低性能标准必须至少涉及表1 中相关的硬件特征。任何硬件单元的功能组成部分都会规定相应的特征项和硬件单元最低性能标准的实际内容。

表1 按性能分类的硬件特征

设备性能类别特征

对于所有单元的通用信息?底板接口

?电源要求

?电源损耗

?热要求

?冷却要求

?尺寸和重量

?输入/输出连接器

?连接器

?外形和安装

?机械接口

针对模拟输入信号的模拟输入规范?范围

?精度

?分辨率

?空位和补偿

?过滤

?输入阻抗

?模数转换速度

?数模转换速度

?稳态电压等级

?瞬态电压等级

?电路保护技术

?复用

针对模拟输出信号的模拟输出规范?范围

?精度

?空位

?线性

?最大电流

?输出阻抗

?模/数转换速度

?稳态电压等级

?瞬态电压等级

?电路保护技术

?复用

针对离散输入信号的离散输入规范?触发点

?滞后

?过滤

?输入阻抗

?逻辑意义

?最大逻辑高电平

?最大逻辑低电平

?最低逻辑高电平

?最低逻辑低电平

?稳态电压等级

?瞬态电压等级

?电流保护技术

?复用

针对离散输出信号的离散输出规范?电压等级

?供电电流容量

?电流接收容量

?输出阻抗

?电流保护技术

?复用

针对处理硬件的处理规范?包含的软件功能

?软件/硬件接口机制和协议

?综合要求

?软件限制

?CPU 总线和时钟频率

?存储器大小和类型

?中断

?复位结构

?存储器管理,如缓存和MMU

?监控器

?底板接口

?CPU 类型

?CPU 吞吐量

?时序规范

供电?规则

?输入电压和电流

?最大启动电流等级

?输出电流范围

?续航

?重启

?瞬态感应

?电压输出和容差

?电源监控和状态输出

?短路管理

?电源复位和恢复

?电路保护技术

针对输入和输出的数字通信?数据速率

?完好性检查

?信号等级

?电流接收和供电电流

?输入阻抗

?输出阻抗

?信号的上升和下降时间

?过滤

?插针长度限制

?输入和输出容量

?隔离

?最大误码率

?电路保护技术

?复位

?监控器

?复用

机柜或机架?安装结构

?间隙要求

?空气流动要求

?模块安装方案

?单元间接口

?单元间连接

?接地和屏蔽措施

?分区或隔离措施

?模块安装和拆卸方法

6. 设备性能——环境条件

a. 硬件单元制造商必须详细说明可以代表实际安装环境的RTCA/DO-160环境条件和试验程序中相应环境试验类别。制造商必须说明针对适用的标准环境条件和试验程序中每个适用试验程序的硬件单元性能要求。如适用,制造商可以在环境极限条件下选择不同的合格判据或容差。一旦确定了适用的环境试验条件和类别,硬件单

元制造商必须制定鉴定试验大纲,以指导试验。必要时,需要在试验阶段实现单元连接来代表实际运行情况。

b. 如果制造商想通过多个类别的环境试验来鉴定硬件单元,则必须执行每一类别所对应的各项试验。

c. 硬件单元制造商和型号合格证(TC)、补充型号合格证(STC)申请人必须共同负责确保飞机合格审定中的安装设计与设备审定中的环境条件一致,也必须确定只要飞行环境保持在包线范围内,可以确保足够的飞机性能和安全性。

d. 制造商可以在任何环境试验程序中使用X类,表明电子硬件最低性能标准并未按照该节的环境条件进行试验。

e. 环境试验的设备构型

(1)针对机柜和机架性能试验的试验构型必须至少包含综合了冷却和供电装置的机柜或机架,适用的供电模块(如果没有综合在机柜或机架中),适用的处理模块,和适用的数据通信模块(如果未综合在机柜或机架中)。针对模块的试验构型必须至少包括为该模块设计的机柜或机架,适用的供电模块(如需要该部分模块完成功能),和适用的数据通信和处理模块(如需要该部分模块完成功能)。机柜或机架中所有未使用的模块位置都要安装适用的覆盖或位置填充物。

(2)机柜或机架和模块构型必须包含为其服务的适当的电气和机械连机器接口,包括屏蔽、后壳和应力释放等。设备构型必须包含适用的标准环境条件和试验程序中安装程序所指定的接口线路和线缆。

(3)如果按本CTSO制造的硬件单元可以加载软件来执行飞机功能,则制造商应适用具体的目标试验软件或功能软件来表明硬件单元功能的运行。制造商必须验证、确认和控制软件的构型,以确保试验的有效性。

f. 环境鉴定试验。下表2汇总了环境鉴定试验的指南。

表2 环境鉴定试验的指南

环境试验RTCA/DO-

160 D章节

指南

温度 4.5 ?该试验不作为本CTSO的组成部分执行。

?为本节填写CTSO环境鉴定表X类(未试验)。

?将这些试验作为功能CTSO应用或型号合格审

定的组成部分执行。

高度 4.6 为本节填写CTSO 环境鉴定表格:

?将设备在这些试验条件下进行试验。

?制造商必须确定进行这些试验时,设备需要满

足的相关最低性能标准。

温度变化 5.0 ?该试验不作为本CTSO的组成部分执行。

?为本节填写CTSO环境鉴定表X类(未试验)。

?将这些试验作为功能CTSO应用或型号合格审

定的组成部分执行。

湿度 6.0 为本节填写CTSO 环境鉴定表格:

?将设备在这些试验条件下进行试验。

?制造商必须确定进行这些试验时,设备需要满

足的相关最低性能标准。

冲击(运行)7.0 ?该试验不作为本CTSO的组成部分执行。

?为本节填写CTSO环境鉴定表X类(未试验)。

?将这些试验作为功能CTSO应用或型号合格审

环境试验

160 D章节

指南

定的组成部分执行。

冲击(坠撞安全)7.3 为该节填写CTSO环境鉴定表:

?制造商必须在所有模块位置中安装实际模块

或相同重量的填充物。

?由于坠撞安全试验可能会损坏设备,因此该试

验可以最后执行。

振动8.0 ?该试验不作为本CTSO的组成部分执行。

?为本节填写CTSO 环境鉴定表X类(未试验)。

?将这些试验作为功能CTSO应用或型号合格审

定的组成部分执行。

爆炸性9.0 为该节填写CTSO环境鉴定表:

?对于环境1,爆炸绝不能扩散到设备以外。

?对于环境2,设备绝不能在试验间中引爆易燃

混合物。

防水10.0 为本节填写CTSO环境鉴定表格:

?将设备在这些试验条件下进行试验。

?制造商必须确定进行这些试验时,设备需要满

足的相关最低性能标准。

流体敏感性11.0 为本节填写CTSO环境鉴定表格:

?将设备在这些试验条件下进行试验。

?制造商必须确定进行这些试验时,设备需要满

足的相关最低性能标准。

沙尘12.0 为本节填写CTSO环境鉴定表格:

?将设备在这些试验条件下进行试验。

?制造商必须确定进行这些试验时,设备需要满

足的相关最低性能标准。

霉菌13.0 为本节填写CTSO环境鉴定表格:

航电系统发展概述

一航空电子系统的组成:1,各种机载信息采集设备 2,信息处理设备 3,信息管理和显示控制设备 4,相关的软件 二航电系统的发展大致可以分为四个阶段 1,分立式航空电子系统,代表机型为F-100,F-101, 2,联合式航空电子系统,代表机型为F-16C/D 3,综合航空电子系统,代表机型为F-22,F-35 综合航电系统的结构特点如下: 系统按功能区划分 采用高度模块化设计 采用高速数据总线 采用高度综合的座舱显示系统 采用大规模软件技术 采用先进的传感器并进行多传感器的信息融合 实现了系统容错和重构功能 4先进综合航空电子系统 三航空电子系统的发展方向 1智能化 电子计算机已成为现代化机载电子设备的核心, 电子计算机的发展已经并将继续不断地改变着机载电子系统的面貌。当前计算机的发展正面临着重大突破—人工智能计算机的出现。目前人工智能研究主要集中在专家系统、模式识别系统、机器人等三方面 2综合化 采用高级复杂软件增扩最佳控制技术以保证容错, 采用标准化部件, 以减少备件、简化维修、

降低全寿命费用。系统的综合能力依赖于先进的技术支援, 其中包括高速数据总线、超高速集成电路(VHSIC)和人工智能等。 3全频谱化 现代局部战争表明, 电子战已越演越烈,而电子战的实质就是对电磁频谱的激烈争夺。由于无线电频段和微波频段已拥挤不堪因此航空电子设备的工作频率正逐渐向毫米波、红外、激光、可见光等领域扩展, 从而使航空电子系统趋于全频谱化。 4隐蔽化 在导航系统中采用惯导—全球定位系统组合,惯导—天文导航组合等方案, 构成载机不辐射电磁波的“隐蔽导航系统”。采取这种组合方式。”既能保持惯导的近距导航较高的精度又可校正远距飞行中惯导的累积定位误差。 当前正在研制的全地形航空电子系统(T2A)就具有隐蔽导航功能,其核心部件为一个存贮地形三维数据的数据库, 数据库内存有航线中的所有地形的数据,如一些基本点的海拔高度参数、森林、河流、道路、障碍物的信息数据等。利用该数据库在飞行中能够获得一个不断变化的地形轮廓图。从而, 在其它设备的配合下, 实现“隐蔽导航”。 四航空电子系统的安全技术 随着航空电子系统的综合化程度的不断提高,不同级别的任务共享硬件、软件和数据资源,各个模块之间进行相互资源调度和访问,给综合化航空电子系统的安全性和可靠性带来了重大的隐患,主要表现为信息窃听、病毒攻击、非授权访问、非法篡改、故障等。一下为业界为解决安全问题所提出的部分技术研究。 个人总结:近年来的安全技术应该是基于分区管理、分层防御等技术,主要是在高度综合的航电系统中,由于是分区管理,所以安全性主要集中在不同的安全级别构件间数据传输的安全性。这应该也是我们软件安全的切入口。(完全是个人看论文之后的总结,可能错的离谱,别笑话哈)1,Trustable Computing in Next-Generation Avionic Architectures(1992)未来的智能武器中,在更加主张敏感信息的安全性、关键数据的完整性以及系统运行和其他一

新能源汽车驱动电机发展趋势干货

新能源汽车驱动电机发展趋势 容来源网络,由“机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在机械展. 随着全球汽车电动化渗透率的不断提高,驱动电机行业将会迎来整体规模的迅速扩。在这一过程当中,具备规模效应和技术优势的第三方电机制造商将有机会迅速扩大市场份额,收获业绩的大幅增长。 全球驱动电机市场趋势 根据估测,随着全球汽车电动化快速推进,新能源汽车电机系统市场将随之快速扩,市场规模有望从2015年的$23亿增长到2030年的$318亿。 新能源汽车电机系统主要包括电动机和逆变器两部分,虽然同其他大部分汽车零部件一样,这两部分部件长期都面临降价压力,但是由于新能源汽车总量的上升,行业总体还是具备较大上升空间。我们预期到2030年市场规模年均增速将在18%-20%左右。 系统单价方面,电机系统整体往高功率方向发展的同时也带来了装配价格的提升。

根据估测,在中性假设条件下,2030年电动车销量将达到2000万台,约占当年乘用车总销量的16%-18%。然而,如果放到乐观情景下,即电池价格大幅下滑,且环保政策更加严厉的条件下,电动车销量增长的速度有可能大幅上升,我们预期在乐观情况下新能源汽车年销总量有可能达到3000万台的水平,约占当年汽车销量的25%-27%。 预计单电机混动车的功率需求大约在30kw左右(平均价格约$200-$300),双电机插电混功率约为50-100kw(平均价格$800-$1000),纯电动车的电机功率约为200kw(平均价格$1000-$1500)。 电动机市场情况 我们预计到2030年电动机(不包括逆变器)的销量年均增速将达到18%,到2030年行业整体销量达到$195亿,相较2015年$12亿的水平扩展近17倍。

中航机电系统有限公司简介

中航机电系统有限公司简介中航机电系统有限公司(以下简称中航工业机电系统)是中国航空工业集团公司(以下简称中航工业)所属全资子公司,全面负责中航工业航空机电系统经营和发展。主营军用航空、民用航空、非航空防务、非航空民品以及生产服务业五大业务。拥有26家成员单位,3家上市公司,总资产近450亿元,员工6.5万余人,已发展成为我国研制生产航空机电系统及设备的国有大型军工企业。新中国成立后,自主生产的每一架飞机上都装备了公司生产的产品。公司核心产业包括:航空机电产业、电气装备产业、制冷产业、特种装备及关键零部件产业。 航空机电产业以满足国防现代化建设为己任,不断提升自主创新能力,形成了以航空液压系统、燃油系统、环控系统、电力系统、武器悬挂发射系统、防务救生系统、飞机高升力系统等十二个分系统和三个子系统为主体,配套齐全,功能完备的航空机电系统科研体系、生产体系及服务保障体系,并积极开拓民机市场,与美国联合技术集团、派克公司、穆格公司等国际知名企业建立合资合作关系,成为中国商飞C919项目的重要配套商,为我国的国防建设和国民经济发展做出了重大贡献。我国自主生产的每一架飞机上都装备了公司研制的产品。公司以航空机电系统核心技术为支撑,积极向航天、兵器、船舶等军工行业拓展,成为国家武器装备研

制的重要配套商和系统集成商。 电气装备产业依托航空机载技术优势,以高品质、高可靠性、节能环保为价值理念,向车载电机、继电器、接触器、应力传感器、机车电源、新能源汽车电机及控制系统等电气装备领域拓展,覆盖汽车、轨道交通、工程机械、通讯电源、建筑工程等市场。拥有1家上市公司、4大研发生产基地,其中电测业务国内第一,继电器、接触器生产能力、技术水平处行业前列,拥有“中航电测”、“天义”等行业知名品牌。 制冷产业涉及特种空调、舰船空调、汽车空调、家用空调、制冷压缩机、制冷配件等业务,服务于国内外工业企业、交通装备制造企业、部队、建筑、家居等各个行业,为其提供优质装备及整体解决方案。公司拥有3大制造基地,1家国家级技术中心,3家省级技术中心,数家国际级重点实验室,旗下有合肥天鹅、庆安制冷、豫新空调等行业知名品牌。年销售收入超过30亿元。 特种装备及关键零部件产业发挥航空产业的技术优势资源,将机、电、液一体化、结构设计、新材料等航空技术向特种装备及零部件产业延伸运用。拥有包括1家上市公司、1个研发中心、3个7S广场、8个生产基地的完整产业体系,产品涵盖运输类、工程类、市政类、军警防务类等系列的数百种产品,其中军用方舱、粉罐运输车、冷藏保温车销量居全国前列。

战斗机综合航电

战斗机航空电子革命――F-35综合航空电子系统综述 通常认为美国F-15和F-16是典型的高低搭配的第三代战斗机,而F-22和F-35则分别是它们的后继机,因此从辈分上讲F-22和F-35 当属第四代战斗机。但从开发时间和进入服役时间看,F-35要远远晚于F-22。经过了近20年的努力,F-22最近才刚刚进入初始作战状态(IOC),而F-35 要到2010年以后才能进入现役。由于电子技术发展迅速,更新换代周期远远短于飞机本身,这就注定了在F-35战斗机上的电子系统要比F-22更先进和具有更高的性价比。 F-35 联合攻击战斗机(JSF)是一种多用途、并能服务于空军、海军和海军陆战队的多兵种作战飞机。他最具特点的进步是开发和采用了高度综合化的航空电子系统,因而,使战斗机具有全新的作战模式。 为了满足21世纪作战需要,战斗机所最需要性能特征是什么?简而言之,就是大量采集飞机内部和飞机外部的各种数据、并对其进行融合处理,形成对战场环境的正确感知,以及实现对飞机和武器系统的智能化控制。

研制F-35的目标是取代F-16、A-10、F/A-18A/B/C/D、F-14和AV-8B,以及英国的GR-7和"海鹞"等现役战斗机。美国空军计划采购1763架、海军和海军陆战队680架、英国皇家空军90架和皇家海军60架。F-35 共分三种型别:常规起降型(CTOL)、短距离起飞/垂直降落型(STOVL)和舰载型。这三种型别的航空电子设备的90%以上是通用的。 虽然JSF飞机是由多国开发,但是高水平的探测传感器和电子信息的综合处理则由美国掌控。在任务系统软件控制下的有源相控阵(AESA)将能执行电子战(EW)功能,同时,还将执行部分通信、导航和识别(CNI)的功能。JSF的红外传感器将采用通用设计的红外探测和冷却组件。所有关键电子系统,其中包括综合核心处理机(ICP)大量采用通用模块和商用货架产品(COTS)。在ICP和每个传感器、CNI系统和各显示器之间的通信采用速度为2Gigabit/s的光纤总线。 在对飞机的作战环境和态势的显示方面,F-35已经取得了突破性的发展。从雷达、光电系统、电子战系统和CNI系统以及从外部信息源(预警机和卫星等)的各种信息通过任务系统软件进行融合,最终通过直觉的大屏幕座舱显示器向飞行员显示。同时,在飞行员的头盔显示器(HMDS)上显示各种投影信息,其中包括红外图像、紧急的战况、飞行和安全信息。 共有6个分布式孔径系统(DAS)传感器用来实现围绕飞机360o的红外探测保护,为飞行员提供更高的视觉灵敏度,并能实现夜间飞机近距编队飞行。还可在夜间和烟尘覆盖情况下为飞行员在头盔显示器上显示飞机下方目标图像。飞机内部安装的光电目标定位系统(EOTS)对DAS的导弹来袭告警能力进行了增强。EOTS提供窄视场,但距离较远的目标探测能力。根据任务软件的指令,EOTS可以在雷达不开机的情况下提供目标信息。 1.更为先进的机载AESA多功能雷达 比较典型的例子是美国最新一代战斗机F-35的多功能综合射频系统(MIRFS)。它是建立在APG-81 AESA雷达的基础上的一个功能广泛的系统。它不仅能够提供雷达的各种工作方式,它还能提供有源干扰、无源接收、电子通信等能力。MIRFS 频带较一般机载AESA要宽得多,同时能够以各种不同的脉冲波形工作,保证了雷达信号的低截获概率(LPI)。同F-22的APG-77 AESA

综合模块化航空电子系统软件体系结构综述

第30卷 第10期航 空 学 报 Vol 130No 110 2009年 10月ACTA A ERONAU TICA ET ASTRONAU TICA SIN ICA Oct. 2009 收稿日期:2008208228;修订日期:2008211218 基金项目:总装备部预研基金(9140A17020307JB3201);空军工程 大学工程学院优秀博士论文创新基金(BC07003) 通讯作者:褚文奎E 2mail :chuwenkui @1261com 文章编号:100026893(2009)1021912206 综合模块化航空电子系统软件体系结构综述 褚文奎,张凤鸣,樊晓光 (空军工程大学工程学院,陕西西安 710038) Overvie w on Soft w are Architecture of Integrated Modular Avionic Systems Chu Wenkui ,Zhang Fengming ,Fan Xiaoguang (Institute of Engineering ,Air Force Engineering University ,Xi ’an 710038,China ) 摘 要:作为降低系统生命周期费用(L CC )、控制软件复杂性、提高软件复用程度的重要手段之一,软件体系结构已成为航空计算领域的一个主要研究方向。阐述了综合模块化航空电子(IMA )的理念,分析了推动 IMA 产生和发展的主要因素。总结了ARINC 653,ASAAC ,GOA 以及F 222通用综合处理机(CIP )上的软件 体系结构研究成果,并讨论了IMA 软件体系结构需要解决的若干问题及其发展趋势。在此基础上,对中国综合航电软件体系结构研究提出了一些见解。 关键词:综合模块化航空电子;软件体系结构;开放式系统;软件工程;军事工程中图分类号:V247;TP31115 文献标识码:A Abstract :As an important means to decrease system life cycle cost (L CC ),control software complexity ,and improve the extent of software reuse ,software architecture has been a mainstream research direction in the aeronautical computer field.This article expatiates the concept of integrated modular avionics (IMA ).Three major factors are analyzed which promote the development of IMA architecture.IMA software architectures presented by ARINC specifications 653,ASAAC ,GOA ,and F 222common integrated processor (CIP )are summarized.Discussion about some problems to be solved and the development trend is made for IMA soft 2ware architecture.Finally ,some views are presented about IMA software architecture research in China.K ey w ords :integrated modular avionics (IMA );software architecture ;open systems ;software engineering ;military engineering 军用航空电子系统(以下简称:航电)是现代 战机的“中枢神经”,承载了战机的绝大部分任务,比如电子战、通信导航识别(CN I )系统等,是决定战机作战效能的重要因素。 F 222的航电综合了硬件资源,重新划分了任务功能,标志着战机的航电结构正式演变为综合式。在此基础上,F 235将航电硬件综合推进到传感器一级,并用统一航电网络取代F 222中的多种数据总线,航电综合化程度进一步提高[1]。 与此同时,航电软件化的概念逐渐凸现。F 222上由软件实现的航电功能高达80%,软件代码达到170万行,但在F 235中,这一数字刷新为800多万行。这表明,软件已经成为航电开发和实现现代化的重要手段[2] 。 航电综合化和软件化引申的一个重要问题是如何合理组织航电上的软件,使之既能够减少生 命周期费用(Life Cycle Co st ,L CC )和系统复杂度,同时又能在既定的约束条件下增强航电软件的复用性和经济可负担性。此即是航电软件体系结构研究的主要内容。 1 综合模块化航空电子 111 综合模块化航空电子理念 综合模块化航空电子(Integrated Modular Avi 2onics ,IMA )(注:该结构在国内一般称为综合航 电)是目前航电结构发展的最高层次,旨在降低飞机LCC 、提高航电功能和性能以及解决软件升级、硬件老化等问题。与联合式航电“各子系统软硬件专用、功能独立”的理念不同,IMA 本质上是一个高度开放的分布式实时计算系统,致力于支持不同关键级别的航电任务程序[3]。其理念概括如下: (1)系统综合化。IMA 最大限度地推进系 统综合,形成硬件核心处理平台、射频传感器共享;高度融合各种传感器信息,结果为多个应用程

电机驱动技术的发展现状与前景展望

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程学术报告 课程名称:电机与电器学科最新发展动态设计题目:电机驱动技术的发展现状及前 景展望 姓名:王胤燊 学号:11S006014 指导教师:梁维燕院士邹继斌教授 杨贵杰教授翟国富教授时间:2012.7.10 哈尔滨工业大学

电机驱动技术的发展现状及前景展望 王胤燊 (哈尔滨工业大学电气工程系,黑龙江哈尔滨150001) 摘要:一个多世纪以前电动机的发明使其成为工业革命以后的主要驱动力之一。它在各种机械运动中的广泛应用使生活变得简单并最终推动了人类的进步。逆变器的出现推动了交流电机速度和转矩控制的发展,这使得电机在仅仅30年就应用到了不可思议的领域。功率半导体元件和数字控制技术的进步使得电机驱动具有了鲁棒性并且能够实现高精度的位置和速度控制。交流驱动技术的应用也带来了能源节约和系统效率的提高。这篇文章回顾了交流电机逆变技术的发展和应用中所起的作用,并介绍了电机驱动技术的发展前景。未来更有效更强劲的电机驱动技术的发展对于实现不污染电网系统和提高生产力这样的节能环保型驱动很重要。 PRESENT STATE AND A FUTURISTIC VISION OF MOTOR DRIVE TECHNOLOGY W ANG Yinshen, (Dept of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China) Abstract:One of the main driving force behind the industrial revolution was the invention of the electric motor more than a century ago. Its widespread use for all kinds of mechanical motion has made life simple and has ultimately aided the advancement of human kind. The advent of the inverter that facilitated speed and torque control of AC motors has propelled the use of electric motor to new realms that was inconceivable just a mere 30years ago. Advances in power semiconductors along with digital controls have enabled realization of motor drives that are robust and can control position and speed to a high degree of precision. Use of AC motor drives has also resulted in energy savings and improved system efficiency. This paper introduces some futuristic vision for the motor drive technology. The development of more efficient, more powerful electric motor drives to power the demands of the future is important for achieving energy savings, environmentally harmonious drives that do not pollute the electrical power system, and improving productivity. 1引言 电机本体及其控制技术在近几年取得相当大的进步。这要归功于半导体技术的空前发展带来的电力电子学领域的显著进步。电机驱动产业发展的利处已经触及各种各样的设备,从大型工业设备像钢铁制造厂、造纸厂的轧钢机等,到机床和半导体制造机中使用的机电一体化设备。交流电机控制器包括异步电机控制器和永磁电机控制器,这两者在电机驱动业的全过程中起着关键性作用。图1所示为电流逆变器(异步电机控制器)和交

航空电子系统技术发展趋势

航空电子系统技术发展趋势 众所周知,作战飞机需要三大技术做为支柱,那就是机载武器系统、飞行系统与航空电子系统。这三大系统之中,航空电子系统是操纵另外两大系统核心组成部分,没有航空电子系统的操纵指挥,另外两大系统也就形同虚设了。笔者以服务军方多年的实践经验浅淡我国的航空事业中的电子系统的技术发展趋势,以供有关技术部门用以参考。 标签:航空电子;航电;系统技术 引言 无论是做战飞机还是民用飞机,其航空电子系统的成本都已经占到了总成本的百分之三十至百分之四十,并且还有逐年扩大的趋势,由此可见,航空电子系统对于一架飞机的重要性。更为重要的是航空电子系统的先进与否已经成为衡量现代飞机的先进性的极为重要的标志之一。西方发达国家不惜巨资投入大规模开展航空电子系统的研发,就是要进一步加强航空电子系统的先进性。做为具有国际视野的航空电子系统工作人员,我们应该看到目前航空电子系统正朝着综合化、模块化、智能化的方向不断地向前飞速发展。 1 电子系统PHM的支撑技术 PHM(aircraft systems diagnostics,Prognostics and Health Managem,即电子系统的预测与健康管理技术)也就是说PHM就是航空电子系统的综合故障管理系统,其主要功能也是其重要性就是故障的早期预测、预警。 1.1 故障诊断技术 提到故障诊断技术,熟悉电脑的人恐怕首先会想起微软的故障诊断技术,微软的故障诊断技术在电脑出现异常时就会时常自动出现,但是却基本上帮不了用户什么忙。但是,与一无是处的微软的所谓的“故障诊断技术”截然不同的是,在航空电子系统中,PHM则是一项非常有效的保障飞行安全的技术。故障诊断技术在显示屏显示、语音提示、体感提示等多种提示提醒技术支撑下通过安装于机电设备不同部位的传感器对整个系统的状态进行实时监测,并与其他相关信息参照,比如某一部件的平均故障时间信息、某一部件的更换维修时间与频率信息等。在实时参照与状态实时监测的基础上进行科学评估,并将评估结果反馈到显示屏、头盔、体感装置上以提醒飞行员对这些信息加以注意。故障诊断技术通常使用解析模型等数学方法融合经验知识法与基于信号的综合处理法对设备的状态进行分析,并抽象出诸出频率、幅值、离散系统、相关曲线、方差等分析结果。对飞行器的早期可能故障加以诊断。 1.2 故障预测技术

未来十年综合航电系统的发展趋向

文章编号:1001-893X(2002)06-0023-04 未来十年综合航电系统的发展趋向Ξ 汪桂华 (中国西南电子技术研究所,四川成都610036) 摘 要:本文主要阐述未来十年国外综合航电系统的总的发展趋向,重点介绍了在开放式系统结构的研究与应用、采用C OTS技术、模块化、多传感器综合技术等方面的发展趋向。 关键词:综合航电系统;开放式系统结构;C OTS技术;模块化;多传感器综合;发展 中图分类号:V243 文献标识码:A The Developing T rend of I ntegrated Avionics System in Future T en Years WANG Gui-hua (S outhwest China Institute of E lectronic T echnology,Chengdu610036,China) Abstract:The developing trend of integrated avionics system in foreign countries in future10years is presented, with em phasis on such aspects as the research application of open system architecture,C OTS technology, m odularization and multi-sens or integration(MSI)technology. K ey w ords:Integrated avionics system;Open system architecture;C OTS technology;M odularization;Multi-sens or integration(MSI);Development 综合航空电子系统(下称综合航电系统)是现代化战斗机的一个重要组成部分,战斗机的作战性能与航空电子系统密切相关。可以说,没有高性能的航电系统,就不可能有高效能作战的战斗机。 综合航电系统在需求牵引和技术推动下已有几十年的发展历史,特别是近十来年,取得了引人注目的进展,促进了飞机作战效能的进一步提高。 然而,目前综合航电系统在使用过程中暴露出不少不足之处,亟待加以改进和完善;同时,21世纪的作战策略和方式的发展也对综合航电系统提出了更具挑战性的要求。因此,未来的十年,在解决经济上可承受性问题的同时,综合航电系统仍将向着更加综合化、信息化、技术化、模块化及智能化的方向发展,并且综合航电系统的功能、性能以及可靠性、维修性、保障性、测试性和综合效能也将出现突破性的飞跃。可以预见,航空电子综合化水平将得到不断提高,航空电子综合技术将向深度和广度发展,得到不断完善。 一、航空电子综合化技术 向深度和广度发展 航空电子系统的发展历程业已证明,综合化是航空电子发展的灵魂和核心。综合化能压缩航空电子系统的体积和重量,减轻飞行员的工作负担,提高系统可靠性,降低全寿命周期费用等。 将于本世纪初服役的美国第四代战机F-22按常规需要60多根天线,工作波段不同的多种接收机、发射机都处于各自分立状态,现在已经综合成十几根天线,下一步还要继续综合。正在执行的综合传感器系统(I S S)计划,天线孔径、射频、信号处理、数字处理等都将采用共用概念。“综合孔径传感器 Ξ收稿日期:2002-09-25

电气工程的发展现状与发展趋势

电气工程的发展现状与发展 趋势 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

电气工程的发展现状与发展趋势 班级:电气1302 学号:08 姓名:储厚成 一.电气工程的发展现状: 概论:我国电力工业正以“大机组,大电网,高电压,高参数,高度自动化”等“三大三高”的现代电力系统的模式超长规模的建设与发展,因此对工程技术员的素质和能力提出了更新和更高的要求。未来的几十年,我国电力系统和电气工程会依然保持较快发展趋势,核能和其他可再生资源将得到快速发展新的电力电子技术,电工材料,计算机及网络技术,控制与管理手段具有巨大影响潜力。 1.电机的驱动及控制: 一个多世纪以前电动机的发明使其成为工业革命以后的主要驱动力之一。它在各种机械运动中的广泛应用使生活变得简单并最终推动了人类的进步。逆变器的出现推动了交流电机速度和转矩控制的发展,这使得电机在仅仅30年就应用到了不可思议的领域。功率半导体元件和数字控制技术的进步使得电机驱动具有了鲁棒性并且能够实现高精度的位置和速度控制。交流驱动技术的应用也带来了能源节约和系统效率的提高。 电机本体及其控制技术在近几年取得相当大的进步。这要归功于半导体技术的空前发展带来的电力电子学领域的显著进步。电机驱动产业发展的利处已经触及各种各样的设备,从大型工业设备像钢铁制造厂、造纸厂的轧钢机等,到机床和半导体制造机中使用的机电一体化设备。交流电机控制器包括异步电机控制器和永磁电机控制器,这两者在电机驱动业的全过程中起着关键性作用。:目前,异步电动机矢量控制技术、直接转矩控制技术乃至无传感器的直接转矩控制技术已实用化,人工神经网络、自适应控制状态观测器等方法已得到广泛采用。 2.电力电子技术的应用: 半导体的出现成为20世纪现代物理学的一项最重大的突破,标志着电子技术的诞生。而由于不同领域的实际需要,促使半导体器件自此分别向两个分支快速发展,其中一个分支即是以集成电路为代表的微电子器件,而另一类就

大飞机航电系统总线研究(DOC)

大飞机航电系统总线研究 夏志飞 (凌云科技集团,武汉,430040) 摘要:本文先介绍了大飞机航电系统采用的总线构型,再分层介绍了ARINC 429总线和AFDX总线的原理、特点和相关技术,在此基础上提出了相应的实现方案,为航电系统及其检测设备的研制提供了一定的参考。 关键词:航电系统;检测设备;ARINC 429;AFDX 1 引言 大飞机是我国的一个战略性工程,对未来社会、经济与国防,特别是科学技术的整体推进都将有非常重大的意义。航电系统关系到飞机的可用性、先进性、飞行安全性和可扩展性,是重要的机载系统,而总线则是航电系统综合的核心,同样也是其检测设备不可或缺的一个组成部分。 国外大飞机如A400M、波音787、空客A380的航电系统主干连接采用AFDX总线,成熟的、低数据流量的设备采用ARINC 429总线传输数据。图1.1是一种航电系统的构型,以AFDX交换机为中心,通过无线电接口单元、远程数据集中器完成AFDX总线数据与ARINC 429总线数据的转换。 图1.1 一种航电系统的构型图 2 ARINC 429总线 美国ARINC 公司为了解决航电设备信息共享、系统集成、降低维护费用等问题而制定了《MARK 33数字式信息传输系统》标准,即ARINC 429标准,我国航空工业部也推出了类似的HB-6096《SZ-01数字信息传输系统》航标[1],该标准已得到广泛应用。 2.1 系统结构 ARINC 429总线系统由发射器和接收器组成,如图2.1,每条总线上信息只能单向传输,但可一发多收,接收器不超过20个,通过两条ARINC 429总线可以同时双向传输信息。 图2.1 ARINC 429总线传输结构图图2.2 ARINC 429总线分层模型图ARINC 429总线不涉及也无需路由等功能,参考OSI模型,通过链路层、物理层模型可清晰描述其关系。参考图2.2,链路层负责消息编码、检错等,物理层负责电器编码、传输等。 2.2 链路层 ARINC 429总线中,链路层将航电系统设备或检测所用总线监控设备的数据编码后转交物理层传输,该层中,数据字是最基本的信息单元,分为5类:二进制(BNR)码、BCD码、离散、维护和AIM数据字。

电气工程的发展现状与发展趋势

电气工程的发展现状与发展趋势 一.电气工程的发展现状: 概论:我国电力工业正以“大机组,大电网,高电压,高参数,高度自动化”等“三大三高”的现代电力系统的模式超长规模的建设与发展,因此对工程技术设计人员的素质和能力提出了更新和更高的要求。未来的几十年,我国电力系统和电气工程会依然保持较快发展趋势,光伏发电和其他可再生资源将得到快速发展,新的电力电子技术,电工材料,计算机及网络技术,控制与管理手段具有巨大影响潜力。 1.电机的驱动及控制: 逆变器的出现推动了交流电机速度和转矩控制的发展,这使得电机在仅仅30年就应用到了不可思议的领域。功率半导体元件和数字控制技术的进步使得电机驱动能够实现高精度的位置和速度控制。交流驱动技术的应用也带来了能源节约和系统效率的提高。 电机本体及其控制技术在近几年取得相当大的进步。这要归功于半导体技术的空前发展带来的电力电子学领域的显着进步。电机驱动产业发展的利处已经触及各种各样的设备,从大型工业设备像钢铁制造厂、造纸厂的轧钢机等,到机床和半导体制造机中使用的机电一体化设备。交流电机控制器包括异步电机控制器和永磁电机控制器,这两者在电机驱动业的全过程中起着关键性作用。:目前,异步电动机矢量控制技术、直接转矩控制技术乃至无传感器的直接转矩控制技术已实用化。 2.电力电子技术的应用: 半导体的出现成为20世纪现代物理学的一项最重大的突破,标志着电子技术的诞生。而由于不同领域的实际需要,促使半导体器件自此分别向两个分支快速发

展,其中一个分支即是以集成电路为代表的微电子器件,而另一类就是电力电子器件,特点是功率大、快速化。自20世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。 电子电力技术包括电力电子器件、变流电路和控制电路3部分,是以电力为处理对象并集电力、电子、控制三大电气工程技术领域之间的综合性学科。电力技术涉及发电、输电、配电及电力应用,电子技术涉及电子器件和由各种电子电路所组成的电子设备和系统,控制技术是指利用外加的设备或装置使机器设备或生产过程的某个工作状态或参数按照预定的规律运行。电力电子器件是电力电子技术的基础,电力电子器件对电能进行控制和转换就是电子电力技术的利用。在21世纪已经成为一种高新技术,影响着人们生活的各种领域,因此对对电子电力技术的研究具有时代意义。 传统电力电子技术是以低频技术处理的,现代电力电子的发展向着高频技术处理发展。以功率MOS-FET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件的出现,表明已经进入现代电子电力技术发展时代。 20世纪以来,电力电子作为自动化、节材、节能、机电一体化、智能化的基础,正朝着应用技术高频化、产品性能绿色化、硬件结构模块化的现代化方向发展。3.电力系统及其自动化控制: 电力系统自动化即对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),

机载娱乐系统发展概述

2012年第07期,第45卷 通 信 技 术 Vol.45,No.07,2012 总第247期 Communications Technology No.247,Totally ·业务与系统· 机载娱乐系统发展概述 吴 康 (中电科航空电子有限公司,四川 成都 611731) 【摘要】机载娱乐系统是民用航电系统中的重要组成部分,直接面向乘客,其性能是旅客判断航空公司服务质量好坏的重要标准之一。该系统通过与客舱通信系统以及不同媒体服务的结合,实现机上通信、机上广告、购物等各种应用,在未来民用航空领域的地位将愈加凸显。这里概述了国内外机载娱乐系统的发展现状与趋势,在此基础上提出了机载娱乐系统的未来发展趋势。 【关键词】民用航电系统;机载娱乐系统;发展 【中图分类号】V243;TN914.3【文献标识码】A 【文章编号】1002-0802(2012)07-0103-03 Overview on Development of In-flight Entertainment System WU Kang (CETC Avionics Co., Ltd., Chengdu Sichuan 611731, China) 【Abstract】In-flight Entertainment(IFE) system, as an important component of the civil avionics system, and directly oriented to the passenger, is always the critical criterion for determining the service performance of a passenger airline. This system combines, in combination of in-flight communications system and different media service, implements in-flight communication, advertisement, shopping, and other applications, and would become even more prominent in the future civil aviation. This paper gives an overview on the development status of in-flight entertainment system both at home and abroad, and based on this proposes some development ideas for future IFE system. 【Key words】civil avionics system;in-flight entertainment system;development 0 引言 机载娱乐(IFE,In-flight Entertainment)系统是指航空旅行中在机舱內为旅客提供任何可能的娱乐实现手段,是民用航空飞机客舱系统的重要组成部分,其性能是旅客判断航空公司服务质量好坏的重要标准之一,世界各航空公司为此花费巨额资金进行机载娱乐设备的采购、修理、维护及升级等。传统的IFE系统主要为旅客提供机上娱乐服务,具备电影/娱乐/游戏等传统功能,其重点是娱乐功能,除了有限的广告收入外无法为航空公司直接创造效益。随着航空电子技术、消费类电子技术、通信技术及电子商务的飞速发展,IFE系统已经开始逐渐演变成IFE-C(communication通信),甚至出现了IFE-C(commerce商务)的趋势,这将彻底改变航空公司IFE系统单纯投入的历史,使之变为航空公司增加边际收益的一个亮点。 可以说,机上娱乐系统的娱乐功能正在不断弱化,取而代之的是正在成为给旅客提供全方位信息服务,也为航空公司及有关服务产业创造价值的机载个人信息平台,机上互联网环境的突破性发展为该类应用创造了无限的遐想空间。 传统IFE系统主要由服务器端,乘客端以及分配网络(Distribution Network)3部分组成。其中服务器端主要负责整个系统的运行管理,包括向乘客端设备提供各种数据并与机上其他系统交联。乘客端设备包含壁挂式显示器、吊挂式显示器、乘客终端、乘客控制单元等,乘客端LRU通过以太网或其他链接方式与服务器相连,主要实现与乘客间的人机交互,分配网络主要负责将数据和电源分配至乘客端。 收稿日期:2012-06-14。 作者简介:吴 康(1982-),男,助理工程师,主要从事项 目管理方面的工作。 103

通用飞机航电系统研发流程浅析

龙源期刊网 https://www.360docs.net/doc/2817718621.html, 通用飞机航电系统研发流程浅析 作者:邵良 来源:《科技创新导报》2017年第01期 摘要:通用航空是民用航空的重要组成部分,这一产业的发展对整个国家经济的发展以 及社会的进步意义重大。通用航空的范畴较广,是除军用和商业行为以外的所有航空活动,囊括了直升机、固定翼飞机等航天器类型。目前,通用航空器具有最为广泛的类型,其在整个社会活动中应用最多。鉴于其类型的复杂和丰富,因此,其对整个航电系统和设备标准的要求较高,要全面进行航电系统和流程的研发。该文针对通用飞机中的航电系统不同于军机研发的特点,基于全球市场上对通用飞机航电系统的研究,提出航电系统研制流程的途径。提出主要的研发流程对象有:(1)民用飞机系统研制流程;(2)通用飞机特有的航电系统技术发展。 关键词:通用飞机航电系统市场需求民机系统研制流程 中图分类号:V24 文献标识码:A 文章编号:1674-098X(2017)01(a)-0017-02 1 概述 1.1 研究对象 通用航空是指除了军事和定期商业航线飞行以外的所有航空活动。通用航空器包括固定翼飞机、直升机和其他航空器(含无人机等)。通用航空器是目前世界上种类最多、用途最广的一类飞行器。 通用飞机由于种类多、功能复杂,对航电系统和设备的要求很高。主要是两大类,一类是低成本、安全可靠、自动化程度较高、人机界面简洁友好、易于裁剪构型的航空电子系统与设备;另一类是满足各种作业任务需要的设备与装置。 该文主要以23部通用飞机的航电系统为对象,对其航电系统的市场需求、功能、架构和其独有特点进行研究,提出航电系统研发流程。 1.2 民用飞机系统研制流程 1.2.1 双V模型流程 通用飞机航电系统开发遵从《ARP-4754A民用飞机与系统研制规则》和《ARP-4761民用机载系统和设备开展安全性评估的指导和方法》开发流程,可以大大精简开发成本和工作量。现代民机开发流程是通用飞机航电系统低成本化中最重要的因素。

航电系统发展

近日,我国航空报报载中航工业计算所,经过努力攻关“成功突破了某航电系统关键技术,完成了综合核心处理机软硬件平台调试工作,该样机的成功研制为加快新型号的研制打下了坚实的基础。”这则新闻表明我国第四代战斗机航空电子系统的研制取得了巨大的进展,完成了系统核心部分-综合核心处理机的样机的研制,即将进入整体系统的研制与测试阶段,我国第四代战斗机已经拥有自己“奔腾的心”。 [ 转自铁血社区http://bbs.tiexue.ne t/ ] 有人也许多会问;廖廖数语的新闻,何以见得就是我国第四代战斗机的航电系统的核心设备?笔者提请大家注意综合核心处理机这7个字,这正是第四代战斗机航电系统的关键,和特征,即通过在航空电子核心部分进行综合和模块化设计,大大提高信号和数据处理的能力,提高系统的处理速度、可靠性,降低系统的成本,许多人在阅读有关航空系统的文章可能会碰到火控计算机、任务计算机、综合核心处理机这样的名词,这些名词实际对应不同时代的航空电子系统,也就是说当我们看到某一个名词,实际上就可以对其航空电子系统的水平做个大致的推测。 早期飞机的航空电子十分简单 我们知道早期飞机的的航空电子系统除了基本的飞行登记表外,就是使用固定光环瞄准具来攻击目标,随着飞机性能的发展,出现可以与雷达交联的瞄准具,随着探测系统距离、精度的增加,这样就需要相应的火控运算手段以解算航炮、导弹等空战武器的攻击包线,这样就出现了火控计算机,但此时航空电子系统仍旧处于彼此分离阶段,火控计算机仅仅用于火控系统,其他功能很少,到了上世纪60年代随着惯导系统加入,飞机的航程及机动能力得到提高,同时由于飞机设备的增多,就出现了数据总线的概念,就是用数据总线将主要机载设备联接在一起,形成初期的航空电子综合系统,这时候火控计算机就成为系统的主控计算机,负责飞行员座舱信息、飞机整体状态的收集、信息处理、解法解算、各子系统的输出控制等功能,可以完成主要的飞行、作战信息、显示与控制等数据信息的获取与计算,系统以平视显示器来主要显示系统,因此也被称为平显/武器瞄准系统,第一种采用数据总线的战斗机是F-15,该机以火控计算机为核心,将雷达、惯导、大气数据计算机等有机的闻合成一起,有力的提高了飞机的作战能力,需要指出的是由于平显/武器瞄准系统采用了数据总线仍旧为单向低速数据总线,火控计算机运算速度也较低,因此只能容纳少数几个比较重要的系统和设备-主要集中在火控与导航系统,所以也有人称之为攻击/导航系统,随着飞机设备、武器数量和性能进一步增加,为了解决飞机众多设备之间的大量信号、数据传输,上世纪70年代美国提出了DAIS计划,其目标就是采用数字式数据总线网络,实现飞机设备的分布处理、集中控制,显示信息的综合显示,提高飞行员的获取战场信息的能力,实现信息的综合利用和共享,这便是以双向1553B数据总线为核心的联合式航空电子系统,在这种航电系统中以中央计算机为主控计算机,该计算机完成与作战任务计算,包括火控、导航、座舱控制与显示、各种电子设备的管理、协调,对于数据总线进行控制等。需要指的是早期联合式航空子系统结构相对简单,如F-16A/B的航电系统,采用单层双余度数据总线,以火控计算机为主控计算机,惯导计算机做为备份,而到了F/A-18则升级为多层多条数据总线,其主控计算机就更新为任务计算机,这种体积结构至今仍旧是各国现役战斗机的主流航空电体系结构,在这种体系中任务计算机是航空电子系统的核心子系统,其功能包括对探测系统采集来的信息进行处理、完成机载武器的管理及发射包线的计算以及信息的输出及显示任务等,80年代后期为满足多机协同作战的需要,进一步综合了通信导航识别子系统、电子战系统,以提供更多的目标信息对目标进行识别。 看起来不起眼的任务计算机,实际上是航空系统的核心

相关文档
最新文档