铁路桥涵钢筋混凝土结构设计规范(正文)

铁路桥涵钢筋混凝土结构设计规范(正文)
铁路桥涵钢筋混凝土结构设计规范(正文)

1 总则

1.0.1为统一铁路桥涵钢筋混凝土和预应力混凝土结构设计标准,贯彻国家有关法规和铁路技术政策,使设计符合安全适用、技术先进、经济合理的要求,制定本规范。

1.0.2本规范适用于旅客列车设计行车速度小于、等于160km/h客货共线标准轨距的新建、改建Ⅰ、Ⅱ级铁路桥涵钢筋混凝土和预应力混凝土结构的设计。

1.0.3 采用本规范进行设计时,荷载及桥涵基本构造应按铁道部现行的《铁路桥涵设计基本规范》(TB1000

2.1—3333)的规定采用;结构抗震设计尚应符合现行的国家标准《铁路工程抗震设计规范》(GBJ111)的规定。

1.0.4铁路混凝土桥梁应积极采用新材料、新工艺、新结构,宜优先采用预应力混凝土结构,提高结构的耐久性。

1.0.5 桥梁上部结构应有足够的强度,竖向和横向及抗扭刚度。采用T型梁时,必须对横隔板施加预应力将梁片连为整体,必要时桥面应连接。1.0.6特殊结构及代表性桥梁应进行车桥耦合动力分析,其行车安全性、平稳性及舒适度指标应符合铁道部现行的《铁路桥涵设计基本规范》(TB1000

2.1—3333) 1.0.9条的规定。

1.0.7 铁路桥涵钢筋混凝土和预应力混凝土结构设计,除应符合本规范外,尚应符合国家现行的有关强制性标准的规定。

212

2 术语和符号

2.1 术语

2.1.1钢筋混凝土结构 reinforced concrete structure

以包括受力钢筋的混凝土为主制作的结构。

2.1.2预应力混凝土结构 prestressed concrete structure

以用预应力钢材预先施加应力的混凝土为主制作的结构。

2.1.3桥跨结构(上部结构) bridge superstructure

梁桥支承以上或拱桥起拱线以上,跨越桥孔的结构。

2.1.4简支梁 simply supported beam

两端为铰支承的梁。

2.1.5连续梁 continuous beam

有三处或三处以上由支座支承的梁。

2.1.6框架 frame

由梁和柱以刚接或铰接相连接而构成承重体系的结构。

2.1.7顶进桥涵 jacked-in bridge or culvert

穿越既有线路用顶进方法施工的桥涵。

2.1.8支座 bearing

支承桥跨结构,并将其荷载传给墩(台)的构件。

2.1.9计算荷载 load for calculation

某一特定计算状态下,作用在结构或构件上的荷载。一般不包括预加力。

2.1.10运营荷载 service load

222

铁路信号维修规则(新)

铁运公司铁路信号维修细则 第一章总则 第一条为满足铁路运输生产的需要,确保铁路信号设备的正常运用,加强信号设备的维修管理工作,特制定《铁运公司铁路信号维修细则》。 第二条信号设备维修工作必须坚持“安全第一,预防为主”的方针,贯彻计划修与整修相结合的原则,确保信号设备运用状态良好。要积极采用现代化的技术手段,优化维修作业方式方法,提高维修效率,要全面落实责任制,完善考核制度,提高维修管理水平,保证信号设备符合技术标准,在规定的寿命期内性能良好、质量稳定、安全可靠地运用。 第三条铁路信号设备维修工作应坚持以安全和质量为主的原则,依据设备技术状态变化规律和磨损程度相应地进行月度计表、状态维修、故障修。测试工作是信号设备维修工作的重要内容之一,包含在月度计表、状态维修、故障修之中。 第四条铁路信号设备维修工作应以安全管理为核心,实行安全管理责任制、岗位责任制和质量验收制,建立设备质量、技术、设备、成本管理台账。铁路信号维修工作必须与工务工区实行密切协作的制度,做好各项基础工作。 第二章信号设备维修分类 第五条月度计表(占计划60%) 月度计表是每月对信号设备进行的日常养护和集中检修,通过维修,保持设备性能,预防设备故障,使设备经常处于良好的运用状态。 第六条状态维修(占计划30%) 状态维修是根据设备特性变化状态有针对性地进行维修。状态修要求建立信号设备技术档案,信号值班人员每天通过信号微机软件和设备记录信号设备技术参数,信号技术员通过技术参数分析后随时掌握该设备工作状态及变化趋势,预防可能出现的故障。 第七条故障修(占计划10%) 故障修是当信号设备发生事故或故障时,故障处理人员应严格按故障处理程序处理,

桥梁上部结构计算

第2章 桥梁上部结构计算 2.1 设计资料及构造布置 2.1.1 设计资料 1.桥梁跨径桥宽 标准跨径:30m (墩中心距离) 主梁全长:29.96m 计算跨径:28.9m 桥面净空:净—11m+2?0.5m=12m 2.设计荷载 公路-Ⅰ级,,每侧人行柱、防撞栏重力作用分别为1 1.52kN m -?和14.99kN m -?。 3.材料及工艺 混凝土:主梁采用C50,栏杆及桥面铺装采用C30。 预应力钢筋采用《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)的s φ12.7钢绞线,每束7根,全梁配6束,pk f =1860Mpa 。 普通钢筋直径大于和等于12mm 的采用HRB335钢筋;直径小于12mm 的均用R235钢筋。 按后张法施工工艺制作主梁,采用内径70mm 、外径77mm 的预埋波纹管和夹片锚具。 4.设计依据 (1)交通部颁《公路工程技术标准》(JTG B01—2003),简称《标准》; (2)交通部颁《公路桥涵设计通用规范》(JTG D60-2004),简称《桥规》 (3)交通部颁《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004),简称《公预规》。 5.基本计算数据(见表2-1) 表2-1 基本计算数据 名称 项目 符号 单位 数据

混 凝 土 立方强度 弹性模量 轴心抗压标准强度 轴心抗拉标准强度 轴心抗压设计强度 轴心抗拉设计强度 ,cu k c ck tk cd td f E f f f f MPa MPa MPa MPa MPa MPa 4 503.451032.4 2.6522.41.83 ? 短暂状态 容许压应力 容许拉应力 ' '0.70.7ck tk f f MPa MPa 20.721.757 持久状态 标准荷载组合 容许压应力 容许主压应力 短期效应组合 容许拉应力 容许主拉应力 0.50.6ck ck f f 0.850.6st pc tk f σσ- MPa MPa MPa MPa 16.219.44 01.59 15.2 s φ钢 绞 线 标准强度 弹性模量 抗拉设计强度 最大控制应力con σ 0.75pk p pd pk f E f f MPa MPa MPa MPa 51860 1.951012601395 ? 持久状态应力 标准荷载组合 0.6pk f MPa 1209 料 重 度 钢筋混凝土 沥青混凝土 钢绞线 123γγγ 3 33 ///kN m kN m kN m --- 25.023.078.5 钢筋与混凝土的弹性模量 比 Ep α 无量纲 5.65 2.1.2 横截面布置 1.主梁间距与主梁片数 主梁间距通常应随梁高与跨径的增大而加宽为经济,同时加宽翼板对提高主梁截面效率指标ρ很有效,故在许可条件下应适当加宽T 梁翼板。由于本设计桥面净空为17.5m,主梁翼板宽度为2500mm ,由于宽度较大,为保证桥梁

铁路桥涵工程施工质量验收标准TB-10415-2018与2003对比

1 总则 1.0.2 适用于200km/h一下,原验标适用于160km/h; 新增: 1.0.4 每道工序完成后应检查质量,形成记录; 1.0.5 将各种检测结果纳入竣工文件; 1.0.6 新增内容:各类技术资料按规定编制,履行签认制度 1.0.7 新增内容:三同时 1.0.8 新增内容:合同文件对技术要求高于验标时,按合同及设计文件验收 1.0.9 新增内容:四新质量按设计及相关标准验收。 2.术语 修订: 2.0.8 见证检验与对原验标的2.0.7见证取样检验进行了修订,取消了建设单位的监督; 2.0.11 主控项目对原验标的2.0.12的主控项目进行修订,增加了质量; 新增: 2.0.15 新增缺陷的术语; 删除: 删除了原验标的2.0.6见证,2.0.9旁站,2.0.15 抽样方案,2.0.16 技术检验,2.0.17计量检验,2.0.18 观感质量,2.0.23-2.0.32取消

掉; 3.基本规定 3 基本规定 3.1.3 对原验标3.1.2进行了修订,主要内容: 1 原材料及构配件,不合格不应用于施工 2增加隐蔽工程检查要求 3增加实体质量和外观质量检测要求 3.1.5 新增工程保证资料要求,共6项 3.1.6 新增内容,工程质量应符合设计、验标要求。 3.1.7 新增内容,抽样检验、试验数量可调整,试验方案由施工单位编制,报监理、建设单位确认。 3.1.8 新增内容,梁拱等组合结构按验标相关章节内容验收 3.1.9 新增内容,验标未最初规定时,设计、监理、施工单位制定验收方案。涉及安全、环保验收应由建设单位组织专家论证。 3.2.3对原验标进行了修订,增加“当分部工程较大时,可按照主要结构、材料及施工阶段划分为若干个子分部工程”。 3.2.5对原验标进行了修订,增加“……工程量等划分。检验批分划分以……便于一次验收的工程内容为一个检验批”。 3.2.6 对原验标分部分项及检验批划分进行了修订,主要内容有: 1 明挖基础分部工程里,将原验标的换填地基、重锤夯实、强夯、挤密桩、砂桩、碎石桩、粉喷桩、旋喷桩等分项工程合并为地基处理分项工程进行验收。

中国高速铁路信号系统分析与思考

文章编号:1673-0291(2012)05-0090-05 中国高速铁路信号系统分析与思考 郭 进,张亚东 (西南交通大学信息科学与技术学院,四川成都610031) 摘 要:介绍中国高速铁路信号系统的发展历程及成果,对比分析了中国高速铁路列车运行控制系统的技术水平及特点.在总结成果的基础上,针对现有信号系统的技术标准与体系结构存在缺陷、基础研究薄弱、安全保障体系不符合高速铁路安全需求等问题进行了思考,并提出了改进建议. 关键词:高速铁路;铁路信号;中国列控系统中图分类号:U284 文献标志码:A Study and consideration on Chinese high speed railway signal system G UO Jin ,ZH AN G Yadong (School of Infor matio n Science and T echnology,Southw est Jiaotong U niversity,Cheng du Sichuan 610031,China) Abstract:The paper introduced the achievement of Chinese high -speed railway signal system,and then analyzed the technical characteristics of China Train Control System (CTCS).After summarizing the development of CTCS,some problems of the technical standard and config uration on CTCS w ere men -tioned,and the modification suggestions w ere put forw ard to decrease the risk on CTCS.Key words:high -speed railw ay ;railw ay sig nal;China Train Control System 收稿日期:2011-10-20 基金项目:铁道部科技研究开发计划项目资助(2011X025-C,2012X007-D) 作者简介:郭进(1960 ),男,四川成都人,教授,博士,博士生导师.研究方向为铁路信号.email:jguo -scce@sw https://www.360docs.net/doc/2817816336.html,. 近年来,我国高速铁路建设取得了迅猛发展,截至2011年底,高速铁路营业里程达7531km(不包括台湾地区),在建高速铁路1万多千米,已成为世界高速铁路运营速度最高,运营里程最长、在建规模最大的国家[1] .铁路信号系统是为了保证铁路运输安全而诞生和发展的,它的第一使命是保证行车安全,没有铁路信号,就没有铁路运输的安全[2].随着列车运行速度的提高,完全靠人工 望、人工驾驶列 车已经不能保证行车安全了,当列车提速到200 km/h 时,紧急制动距离将达到2km (常用制动距离超过3km ),因此,国际上普遍认为当列车速度大于时速160km 时,必须装备列车运行控制系统(简称列控系统),以实现对列车间隔和速度的自动控制,提高运输效率,保证行车安全.要实现列车自动控 制,需要解决许多关键技术问题,例如:车-地之间大容量、实时和可靠信息传输,列车定位,列车精确、安全控制等,需要车载设备、轨旁设备、车站控制、调度指挥、通信传输等系统良好的配合才能实现,以现代列车运行控制技术为核心的信号系统可以称为现代铁路信号系统. 高速铁路装备了列控系统后,提高了列车运行速度和行车密度,同时对中国铁路信号技术还具有积极的促进作用,但由于发展速度太快,设备、标准、管理与养护都免不了存在一些缺陷和不足.本文作者简要阐述了中国列车运行控制系统为我国铁路发展所产生的促进作用,也对现有系统存在的若干问题进行了分析,在分析的基础上,针对今后中国列车运行控制系统的建设提出了改进建议. 第36卷第5期 2012年10月 北 京 交 通 大 学 学 报 JOU RNAL OF BEIJING JIA OT ON G U N IV ERSIT Y Vol.36No.5Oct.2012

铁路信号维护规则(最新版)

铁路信号维护规则 第一章总则第1条为满足铁路运输生产的需要,确保铁路信号设备的正常运用, 加强信号设备的维护管理工作,特制定《铁路信号维护规则》。 第2条铁路信号设备是指挥列车运行,保证行车安全,提高运输效率,改善行车组织方式,实现行车指挥现代化的关键设施。电务部门必须贯彻国家有关政策,坚持以运输生产为中心,做好维护管理工作,保证信号设备处于良好运用状态(原为:正常运用)。 第3条铁路信号维护工作是铁路运输安全生产的重要组成部分,直接涉及运输安全。信号工是铁路主要行车工种。信号维护工作必须严格执行铁路有关法规,牢固树立安全生产法制观念,认真执行标准化作业,保证行车、设备及人身安全。 第4条铁路信号设备技术密集、科技含量高,具有点多线长、设置分散、布局成网、不间断运用、结合部多、易受外界影响等特点。其维护工作技术要求高,既相对独立,又相互联系,因此,各级电务部门必须加强对职工的政治思想教育和文化、技术业务知识培训,不断提高电务职工队伍素质。参加信号工作的新职工必须经过专业技能培训和安全纪律培训,考试合格后方能上岗工作。 第5条信号维护工作必须坚持“安全第一,预防为主”的方针,贯彻预防与整修相结合的原则,确保信号设备运用状态良好。要积极采用新技术、新器材、新工艺,提高信号设备的可靠性、可用性和安全性;要积极采用现代化的技术手段,优化维护作业方式方法,推进修程修制改革,提高劳动生产率,要全面落实责任制,完善考核制度,提高维护管理水平。 第6条《铁路信号维护规则》是做好信号维护工作的基本规则,电务及有关部门制定的细则、标准、办法等,必须符合本规则的规定。 第二章管理 第一节通则 (全部内容进行修改、增加) 第7条铁路信号设备维护工作由维修、中修、大修三部分组成,测试工作是信号设备维护工作的重要内容之一,包含在维修、中修、大修之中。 第8条铁路信号设备维护工作应贯彻按期大修、强化中修、确保维修的指导思想,坚持以安全和质量为主的原则,依据设备技术状态变化规律和磨损程度做好大修、中修和维修工作,保证信号设备符合技术标准,在规定的寿命期内性能良好、质量稳定、安全可靠地运用。

8m钢筋混凝土空心板简支梁桥上部结构计算书完整版

8m钢筋混凝土空心板简支梁桥 上部结构计算书 7.1设计基本资料 1.跨度和桥面宽度 标准跨径:8m(墩中心距) 计算跨径:7.6m 桥面宽度:净7m(行车道)+2×1.5m(人行道) 2技术标准 设计荷载:公路-Ⅱ级,人行道和栏杆自重线密度按照单侧8kN/m计算,人群荷载取3kN/m2 环境标准:Ⅰ类环境 设计安全等级:二级 3主要材料 混凝土:混凝土空心板和铰接缝采用C40混凝土;桥面铺装采用0.04m 沥青混凝土,下层为0.06m厚C30混凝土。沥青混凝土重度按23kN/m3计算,混凝土重度按25kN/m3计算。 钢筋:采用R235钢筋、HRB335钢筋 2.构造形式及截面尺寸 本桥为c40钢筋混凝土简支板,由8块宽度为1.24m的空心板连接而成。 桥上横坡为双向2%,坡度由下部构造控制

空心板截面参数:单块板高为0.4m ,宽1.24m ,板间留有1.14cm 的缝隙用于 灌注砂浆 C40混凝土空心板抗压强度标准值Mpa f ck 8.26=,抗压强度设计值 Mpa f cd 4.18=,抗拉强度标准值Mpa f tk 4.2=,抗拉强度设计值Mpa f td 65.1=, c40混凝土的弹性模量为Mpa E C 41025.3?= 图1 桥梁横断面构造及尺寸图式(单位:cm ) 7.3空心板截面几何特性计算 1.毛截面面积计算 如图二所示 2)-4321?+++=S S S S S A (矩形 2 15.125521cm S =??= 2 cm 496040124=?=矩形S 225.1475)5.245(cm S =?+= 2 35.2425.2421cm S =??=

铁路桥涵工程施工质量验收标准

铁路桥涵工程施工质量验收标准 4.9.1 水泥质量必须符合铁道部现行《铁路混凝土与砌体工程施工质量验收标准》第6.2.1条的规定。 4.9.2 旋喷桩的布置范围、数量和形式必须符合设计要求。 检验数量:施工单位、监理单位全部检查。 检验方法:观察和尺量。 4.9.3 水泥浆配合比例必须符合设计要求。 检验数量:施工单位、监理单位全部检查。 检验方法:计量检查。 4.9.4 旋喷桩的施工必须符合设计和施工技术方案的要求。 检验数量:施工单位、监理单位全部检查。 检验方法:观察和尺量。 4.9.5 身无侧限抗压强度必须符合设计要求。 检验数量:施工单位检查桩数的2%,并不少于5根,每根桩在成桩28d后取3个试样(在桩径方向1/4处、桩头至桩长2/3长范围内垂直钻芯);监理单位按施工单位抽检次数的10%进行见证检验,且不少于1根。 检验方法:施工单位做无侧限抗压强度试验;监理单位检查试验报告和见证取样检测。 4.9.6 地基承载力必须符合设计要求。 检验数量:施工单位检查总桩数的2‰,且每基坑不少于1处;监理单位全部见证检测。

检验方法:平板载荷试验。 4.9.7 旋喷桩施工允许偏差和检验方法应符合表 4.9.7的规定。 表4.9.7 旋喷桩施工允许偏差和检验方法 检验数量:施工单位检查桩孔数的2%,并不少于5根。 5.1.1 模板及支架、钢筋、混凝土和砌体的施工应符合铁道部现行《铁路混凝土与砌体工程质量验收标准》第4.1节、第5.1节、第 6.1节和第8.1节的有关规定。 5.1.2 基坑开挖前应按地质、水文资料和环保要求,结合现场情况,指定施工方案,确定开挖范围、开挖坡度、支护方案、弃土位置和防、排水等措施。 5.1.3 基坑土方施工应对支护结构、周围环境进行观察和监测,当发现异常情况时应停止施工及时处理,待恢复正常后方可继续施工。 5.1.4 当基础底面处于软硬不匀地层时,应由勘察设计部门提出处理方案。

铁路桥梁检定规范pdf版本

1总则 1.0.1 本规范的制定是对既有铁路桥梁检算其承载能力和抗洪能力、测试评定其运营性能,据以制定运用对策,以便在保障行车安全和结构安全的基础上,充分发挥设备潜能,节约资金。 1.0.2 本规范适用于客货列车共线运行,旅客列车最高行车速度为160km/h、货物列车最高行车速度为80km/h的标准轨距线路上的既有桥梁,旅客列车最高行车速度在200 km/h 时,可参照执行。 1.0.3 铁路桥梁检定工作包括下列内容: 1桥梁现状检查; 2桥梁孔径及冲刷检算; 3桥跨结构及墩台承载能力的检算; 4铁路桥梁运营性能的检验; 5桥梁结构现场试验。 1.0.4 既有铁路桥梁由于下列原因,应提出检定的要求: 1因列车的提速或超载,要求确定桥梁的承载能力及运营性能; 2受损伤或洪水冲刷后桥梁的承载能力及运营性能的确定; 3老龄桥梁疲劳损伤及耐久性的检验; 4交付运营的特大桥、新型结构及加固后桥梁的承载能力及运营性能的确定。 1.0.5 凡汛期桥下净空或冲刷已接近设计条件,或为提高抗洪能力而需大修、改建的桥梁,均应按本规范进行孔径及冲刷检算。 1.0.6 桥梁的检定承载能力应以桥梁的检定承载系数K表示。K为结构所能承受的荷载相当于中华人们共和国铁路标准活载(中—活载)的倍数。 当K≥1时,表示桥梁承载能力满足标准活载的要求。 当K<1时,桥上容许通行的运行活载Q,必须满足: Q≤K (1.0.6—1) Q为运行活载的“活载系数”,即在桥梁结构承载能力检算中,运行活载相当于标准活载的倍数。 1各种梁式结构的K和Q可按下列公式计算: K=k/k0 (1.0.6—2) Q=k q/k0 (1.0.6—3) 式中 k—桥梁构件的容许换算均布活载; k0—标准活载的换算均布活载,计入动力系数; k q—运行活载的换算均布活载,计入相应的动力系数。 2拱桥、墩台及基础承载能力应按有关章节所列的方法计算。 1.0.7 桥梁的抗洪能力检定采用的洪水频率,应满足本规范第9.1.2条的规定。 在通过检定洪水时,桥下净空高度应满足本规范第9.3.2条的规定;基础埋深应满 足本规范第9.5.8条的规定。 1.0.8 桥梁的竖向刚度及横向刚度应满足本规范第10章关于运营性能各项指标的检验。1.0.9 经过检定的桥梁,应编制检定技术报告。其主要内容,可包括下列项目: 1桥梁建筑物的组成,桥址水文及自然环境特征,建造及加固、修复的历史; 2通过对桥梁各部的检查,指明结构及养护中存在的问题; 3按结构的检算结果,列出桥梁各部的承载能力; 4按桥梁孔径及河床冲刷调查和检算的结果,说明桥梁的抗洪能力;

铁路信号系统的现状与发展

铁路信号系统的现状与发展 铁路是一个国家国民经济的主要保障,对每一个国家的发展都有着非常重要的作用。由于铁路运输具有较低的成本、较高的效率和安全性以及能源节约性等特点,当下世界各个国家都在对铁路运输技术的研发速度进行不断地加快和创新,现代铁路发展方向正逐渐走向高速、重载以及高密度。铁路信号系统不但能够在很大程度上保障列车运行的安全性,同时也是让铁路效率得到提升的重要设施之一,是现代化铁路系统中必不可少的重要组成部分。但是,当下我国铁路信号系统依旧还存在着很多问题有待解决,这对我国铁路运输的发展带来了严重阻碍。 1 我国铁路信号系统现状 1.1 自动化程度有待提升 我国继电技术虽然已经越发成熟,但由于较大的设备体积,智能控制和联网集中监测很难得到有效实现。随着微电子技术发展速度的不断加快,在工业控制行业中,继电控制技术已逐渐无法有效满足现代化工业要求,PLC和微机控制等智能控制技术逐渐开始得到普遍使用。而相对于工业控制领域而言,我国铁路信息系统却依旧还是运用继电控制设备,虽然也对一些计算机智能控制设备进行了简单使用,但是较慢的发展脚步,促使大规模的综合控制体系很难得到有效形成,从而也就无法让其整体效率得到显著提升,其资源配置也无法得到优化和完善。 1.2 较低的安全性 由于受到自动化程度的局限,铁路行车调度指挥工作都是运用人力进行,列车的控制也大都是依靠列车司机来观察和判断地面信号。虽然这在传统铁路运行发展过程中有着一定作用,但是随着当下列车速度和密度的不断提升与增长,行车调度指挥工作的也愈加繁忙,相关调度员如果工作时间过长,则很有可能发生疏忽大意的现象,这样

不但会让工作效率降低,同时也会对列车的安全运行造成非常严重的影响。而且,当列车速度超过160 km/h之后,想要单单依赖于列车司机的自身视力,是很难对列车安全运行做到有效保障的。 1.3 管理缺乏统一性,管理水平较为落后 铁路系统属于一个整体系统,时间和地区的不同也就存在较大差异。当下我国铁路信号系统中由于缺乏先进的通信方法,信息传递存在较慢的速度,同时也很难都整体上对资源进行合理分配,虽然已经对微机监测系统进行了运用,但是却并没有让其作用得到充分发挥。其次,我国铁路系统在以往大都是由相关政府部门来进行综合管理,当现行的管理机制促使很多铁路系统人员没有认清自身职责所在,从而也就造成了较低办事效率、较为落后的营销手段以及资源无法得到有效和合理利用的现状。从当下我国市场经济条件的角度上来看,我国铁路系统作为物理行业中主要核心结构之一,应交给企业来管理,通过现代化企业的管理制度,让整体效率得到提升,进而让整体效益得到增加。 2 现代铁路信号系统的特点 2.1 网络化特点 现代铁路信号系统不单单只是有多种信号设备而简单组成的一种系统,而是一种具有完善的功能和层次分明的控制系统。在系统内部中,各个功能单元彼此单独运行,同时又彼此相互联系,对信息进行交换,构建出来非常复杂的网络化结构,能够让相关指挥人员对辖区内的各种情况做到全面了解和掌握,让系统资源得到灵活配置,从而促使铁路系统运行的安全性、高效性得到有效保障。 2.2 信息化 想要保障高速列车运行的安全性就必须对列车线路过程中的信息全面、准确的掌握。因此,现代铁路信号系统大都运用了诸多较为先进的通信技术,例如:光纤通信、无线通信、GPRS以及卫星通信等。 2.3 智能化

桥梁如何划分上中下附属结构

桥梁如何划分上中下附属结构 桥梁上部包括有那些?桥梁中部包括有那些?下部有那些组成桥梁的三个主要组成部分是: 上部结构,下部结构和附属结构。 上部结构由桥跨结构、支座系统组成。 桥跨结构或称桥孔结构,是桥梁中跨越桥孔的、支座以上的承重结构部分。 按受力图示不同,分为梁式、拱式、刚架和悬索等基本体系,并由这些基本体系构成各种组合体系。 它包含主要承重结构、纵横向联结系、拱上建筑、桥面构造和桥面铺装、排水防水系统,变形缝以及安全防护设施等部分。 支座系统设置在桥梁上、下结构之间的传力和连接装置。 其作用是把上部结构的各种荷载传递到墩台上,并适应活载、温度变化、混凝土收缩和徐变等因素所产生的位移,使桥梁的实际受力情况符合结构计算图示。 一般分为固定支座和活动支座。 下部结构,由桥墩、桥台、墩台基础几部分组成。 桥墩、桥台1是在河中或岸上支承两侧桥跨上部结构的建筑物。 桥台设在两端,桥墩则在两桥台之间,见下图。 而桥台除此之外,还要与路堤衔接,并防止其滑塌。 为保护桥台和路堤填土,桥台两侧常做一些防护和导流工程。 墩台基础保证桥梁墩台安全并将荷载传至地基的结构部分。

桥梁组成示意图附属构件,主要包括伸缩缝、灯光照明、桥面铺装、排水防水系统、栏杆(或防撞栏杆)等几部分。 ____________________伸缩缝在桥跨上部结构之间,或桥跨上部结构与桥台端墙之间,设有缝隙保证结构在各种因素作用下的变位。 为使桥面上行驶顺直,无任何颠动,此间要设置伸缩缝构造。 特别是大桥或城市桥的伸缩缝,不但要结构牢固,外观光洁,而且需要经常扫除深入伸缩缝中的垃圾泥土,以保证它的功能作用。 2灯光照明现代城市中标志式的大跨桥梁都装置了多变幻的灯光照明,增添了城市中光彩夺目的晚景。 桥面铺装或称行车道铺装,铺装的平整、耐磨性、不翘壳、不渗水是保证行车舒适的关键。 特别在钢箱梁上铺设沥青路面的技术要求甚严。 排水防水系统应迅速排除桥面上积水,并使渗水可能降低至最小限度。 此外,城市桥梁排水系统应保证桥下无滴水和结构上的漏水现象。 栏杆(或防撞栏杆)它既是保证安全的构造措施,又是有利于观赏的最佳装饰件 1、桥梁一般讲由上部结构、下部结构和附属构造物组成,上部指主要承重结构和桥面系;下部结构包括桥台、桥墩和基础;附属构造物则指桥头搭板、锥形护坡、护岸、导流工程等。 2、桥梁的分类: 按使用性分为公路桥、公铁两用桥、人行桥、机耕桥、过水桥等。 3按跨径大小和多跨总长分为小桥、中桥、大桥、特大桥。 涵洞L<8 L0<5按行车道位置分为上承式桥、中承式桥、下承式桥。

国内铁路信号技术发展及趋势

国内铁路信号技术发展及趋势 铁路运输与其他各种现代化运输方式相比较,具有受自然条件影响小、运输能力大,能够负担大量客货运输的显著特点。迫于运输市场愈演愈烈的竞争,各国铁路部门都在积极采取铁路新科技来提升铁路的运输能力。而在实现高速、重载运输的同时,要保证列车的行车的安全,就不能不提到铁路信号。铁路信号设备是保证列车行车安全的重要基础设备,其技术水平发展直接影响到了行车安全水平和铁路运输效率。 1.铁路信号的定义 铁路信号是用特定的物体(包括灯)的颜色、形状、位置,或用仪表和音响设备等向铁路行车人员传达有关机车车辆运行条件、行车设备状态以及行车的指示和命令等信息。铁路信号是铁路运输系统中,保证铁路行车安全、提高区间和车站通过能力以及编解能力的手动控制及远程控制的技术和设备的总称;是在行车、调车工作中,用于向行车人员指示行车条件而规定的符号;是显示、联锁、闭塞设备的总称。 2.铁路信号作用及发展历程 铁路信号的最主要的功能就是保证铁路行车安全。 随着列车运行速度的不断提升,从最初的人持信号旗、骑马前行、引导列车前进;到逐渐发展的球形固定信号装置、电报信号、连锁机、轨道接触器、自动停车装置;到后来出现的车内信号、调度集中控制、行车指挥自动化等设备。 每一次铁路速度的提升就会要求一种新型铁路信号的出现;每次铁路信号的革新,就会给铁路运输带来一次质的飞跃。随着铁路信號技术的发展和铁路信号的广泛应用,铁路信号的发展也成为提高铁路区间和车站通过能力、增加铁路运输经济效益的一种现代化技术手段。 3.铁路信号的组成

3.1信号控制设备 信号控制设备是指信号联锁系统,是保障铁路运输安全的核心,是铁路信号中最重要的组成部分。信号控制设备通过信号传输设备接收和发送不同的信息,经由联锁关系来控制信号设备及各种信号的显示。 3.2信号显示设备 信号显示设备指接收来自于信号控制设备的信息,通过信号机,机车信号,控制台、显示器,音响等设备,采用声、光等信息,来实时反应列车和相关信号设备状态的铁路信号设备。 3.3信号传输设备 指服务于信号控制系统与信号显示系统之间,进行各种信息互通的传输设备及媒介。 3.4信号防干扰措施及设备 指为防止信号被其他因素干扰而产生错误的信号显示而设立的防干扰设备及措施。 4.国内铁路信号技术及发展趋势 4.1信号控制设备的技术发展 信号控制设备中的核心是联锁系统。 国内联锁系统发展主要历经了早期的继电器联锁,90年代时期的计算机联锁加安全型继电器执行形式的控制系统,以及目前在广泛推广的计算机联锁系统。 计算机联锁除了自身的联锁系统管理之外,还可以向旅客服务系统、列车运行监督系统以及列车指挥系统等提供信息,加快铁路运输管理的一体化的实现。随着计算机技术的迅速发展,尤其是对于可靠性技术和容错技术的深入研究,计算机联锁技术日趋成熟,我国的计算机联锁也逐步开始由计算机联锁加安全型继电器控制型向全电子计算机联锁转变。 全电子计算联锁系统是基于未来铁路及城市轨道交通联锁设备集成度高、安装速度快、维护方便的使用需求而研制;具有模块化程

铁路信号维护规则(最新版)

铁路信号维护规则 第一章总则第 1条为满足铁路运输生产的需要 , 确保铁路信号设备的正常运用加强信 号设备的维护管理工作 , 特制定《铁路信号维护规则》。 , 第 2条铁路信号设备是指挥列车运行, 保证行车安全, 提高运输效率, 改善行车组织方式 , 实现行车指挥现代化的关键设施。电务部门必须贯彻国家有关政策 , 坚持以运输生产为中 心 , 做好维护管理工作 , 保证信号设备处于良好运用状态(原为:正常运用)。 第 3条铁路信号维护工作是铁路运输安全生产的重要组成部分 号工是铁路主要行车工种。信号维护工作必须严格执行铁路有关法规产法制观念 , 认真执行标准化作业, 保证行车、设备及人身安全。, 直接涉及运输安全。信 , 牢固树立安全生 第 4条铁路信号设备技术密集、科技含量高,具有点多线长、设置分散、布局成网、 不间断运用、结合部多、易受外界影响等特点。其维护工作技术要求高 , 既相对独立 , 又相互联 系 , 因此 , 各级电务部门必须加强对职工的政治思想教育和文化、技术业务知 识培训 , 不断提高电务职工队伍素质。参加信号工作的新职工必须经过专业技能培训和 安全纪律培训 , 考试合格后方能上岗工作。 第 5条信号维护工作必须坚持“安全第一,预防为主”的方针 , 贯彻预防与整修相结合的原则 , 确保信号设备运用状态良好。要积极采用新技术、新器材、新工艺, 提高信号设备的可靠性、可用性和安全性; 要积极采用现代化的技术手段, 优化维护作业方式方法,推进修程修制改革,提高劳动生产率,要全面落实责任制,完善考核制度,提高维护 管理水平。 第 6条《铁路信号维护规则》是做好信号维护工作的基本规则, 电务及有关部门制定的 细则、标准、办法等 , 必须符合本规则的规定。 第二章管理 第一节通则 (全部内容进行修改、增加) 第 7条铁路信号设备维护工作由维修、中修、大修三部分组 成护工作的重要内容之一 , 包含在维修、中修、大修之中。 , 测试工作是信号设备维 第 8条铁路信号设备维护工作应贯彻按期大修、强化中修、确保维修的指导思想 以安全和质量为主的原则, 依据设备技术状态变化规律和磨损程度做好大修、中修和维 修工作,保证信号设备符合技术标准, 在规定的寿命期内性能良好、质量稳定、安全可 靠地运用。 , 坚持

桥梁上部结构

1. 什么是桥梁的净跨径、计算跨径、标准跨径、总跨径、桥梁总长、建筑高度、 桥高? 净跨径:梁式桥的净跨径是指设计洪水位上相邻两个桥墩之间的净距。拱式桥的净跨径是指每孔拱跨两个拱脚截面最低点之间的水平距离。 计算跨径:对于拱式桥是指相邻两个拱脚截面形心点之间的水平距离,对于梁式桥是指桥跨结构相邻两个支座中心之间的水平距离。 标准跨径: 对于梁式桥,是指两相邻桥墩中心线之间的距离,或墩中心线至桥台台背前缘之间的距离。对于拱桥, 是每孔两个拱脚截面最低点之间的水平距离 多孔桥梁中各孔净跨径的总和称为总跨径,它反映了桥下泄洪的能力。 桥梁总长:桥梁两端两个桥台侧墙或八字墙后端点之间的距离 建筑高度:桥上行车路面(包括桥面铺装)或轨顶标高至桥跨结构最下缘之间的距离桥高:指桥面与低水位之差,或桥面与桥下线路路面之间的距离 2. 桥梁按主要承重结构基本体系、跨径大小、行车道位置如何分类? 承重结构:梁式桥,拱桥,悬索桥,钢架桥,组合系桥 跨径大小:特大桥(多孔跨径L大于等于1000米,单孔跨径大于等于150米) 大桥(多孔跨径L大于等于100米小于1000米,单孔跨径大于等于40米小于150米)中桥(多孔跨径L大于30米小于100米,单孔跨径大于等于20米小于100米) 小桥(多孔跨径L大于等于8米小于30米,单孔跨径大于等于5米小于20米) 涵洞(单孔跨径小于5米) 行车道位置:上承式桥,下承式桥,中承式桥 3. 梁式桥、拱式桥、悬索桥的主要承重结构是什么?主要受力特点是什么? 梁式桥:主要承重结构为梁(板),受力特点:在竖向荷载的作用下,支座处只有竖向反力,梁(板)内主要产生弯拉应力。 拱桥:主要承重结构为主拱圈;受力特点在竖向荷载的作用下,支座处除了竖向反力,还有水平推力;拱圈内主要产生弯压应力。 悬索桥(吊桥):主要承重结构是缆索;受力特点:在竖向荷载作用下,缆索只承受拉力受力后,变形大,振动大。 5. 桥梁纵断面设计主要包括哪几个方面的内容? 1确定桥梁总跨径 2桥梁分孔 3桥面标高 4桥下净空 5桥上及桥头纵坡布置等。 6. 桥梁分孔时其经济跨径和通航跨径如何选择?连续梁一般如何分孔? 桥梁的总跨径一般根据水文计算确定,必须保证桥下有足够的排洪面积。分孔布置时,对于通航河流,当通航净宽大于经济跨径时,一般将通航孔的跨径按通航净宽来确定,其余的桥孔跨径则选用经济跨径。 连续梁通常按照2到5孔为一联进行分联布置。为使连续梁边跨与中跨的梁高和配筋协调一致,各孔跨径的划分,通常按照边跨与中跨的跨中最大弯矩趋于相等的原则来确定承担传递支方力。 7. 桥面标高一般根据什么条件来确定?拱桥设计中的标高主要有哪几个? 根据路线纵断面设计中规定或者根据设计洪水位及桥下通航需要的净空高度确定。 拱桥的标高主要有:桥面标高、拱顶底面标高、起拱线标高和基础底面标高。 8. 桥梁桥下最小净空高度值如何规定? 对于非通航河流,梁底一般高出设计洪水位不小于0.5米,对于无铰拱桥,拱脚允许被计算洪水位淹没,但是一般不超过拱圈矢高的三分之二,拱顶底面至洪水位的净高不小于1米。 9. 桥梁桥面纵坡、桥头引道纵坡取值有何规定?

铁路桥涵钢筋混凝土结构设计规范(正文)

1 总则 1.0.1为统一铁路桥涵钢筋混凝土和预应力混凝土结构设计标准,贯彻国家有关法规和铁路技术政策,使设计符合安全适用、技术先进、经济合理的要求,制定本规范。 1.0.2本规范适用于旅客列车设计行车速度小于、等于160km/h客货共线标准轨距的新建、改建Ⅰ、Ⅱ级铁路桥涵钢筋混凝土和预应力混凝土结构的设计。 1.0.3 采用本规范进行设计时,荷载及桥涵基本构造应按铁道部现行的《铁路桥涵设计基本规范》(TB1000 2.1—3333)的规定采用;结构抗震设计尚应符合现行的国家标准《铁路工程抗震设计规范》(GBJ111)的规定。 1.0.4铁路混凝土桥梁应积极采用新材料、新工艺、新结构,宜优先采用预应力混凝土结构,提高结构的耐久性。 1.0.5 桥梁上部结构应有足够的强度,竖向和横向及抗扭刚度。采用T型梁时,必须对横隔板施加预应力将梁片连为整体,必要时桥面应连接。1.0.6特殊结构及代表性桥梁应进行车桥耦合动力分析,其行车安全性、平稳性及舒适度指标应符合铁道部现行的《铁路桥涵设计基本规范》(TB1000 2.1—3333) 1.0.9条的规定。 1.0.7 铁路桥涵钢筋混凝土和预应力混凝土结构设计,除应符合本规范外,尚应符合国家现行的有关强制性标准的规定。 212

2 术语和符号 2.1 术语 2.1.1钢筋混凝土结构 reinforced concrete structure 以包括受力钢筋的混凝土为主制作的结构。 2.1.2预应力混凝土结构 prestressed concrete structure 以用预应力钢材预先施加应力的混凝土为主制作的结构。 2.1.3桥跨结构(上部结构) bridge superstructure 梁桥支承以上或拱桥起拱线以上,跨越桥孔的结构。 2.1.4简支梁 simply supported beam 两端为铰支承的梁。 2.1.5连续梁 continuous beam 有三处或三处以上由支座支承的梁。 2.1.6框架 frame 由梁和柱以刚接或铰接相连接而构成承重体系的结构。 2.1.7顶进桥涵 jacked-in bridge or culvert 穿越既有线路用顶进方法施工的桥涵。 2.1.8支座 bearing 支承桥跨结构,并将其荷载传给墩(台)的构件。 2.1.9计算荷载 load for calculation 某一特定计算状态下,作用在结构或构件上的荷载。一般不包括预加力。 2.1.10运营荷载 service load 222

桥梁上部结构设计

桥梁上部结构设计 0前言 随着经济不断发展,桥梁建设得到了飞速发展,它已从最开始的方便人们过河、跨海之用,已广泛应用于各种场合,它的用途不断多样化,它的形式也在最基本的三种受力体系上逐渐多样化,不仅从功能上、规模上,还从美观上、经济效益上,逐渐与时代发展相协调。所以桥梁建筑已不仅是交通线上的重要载体,也是一道美丽的风景被人津津乐道。 面对着新工艺、新挑战,原有的桥梁建设正面对历史的考验,当代建设者肩负着光荣而又艰巨的任务,为明天创造历史。 本设计说明书所编写的是至公路桥的上部设计方案。通过详细的勘察确定上部可变荷载,拟定桥梁尺寸,以确定相应的力,配置以合适的预应力钢筋,使其提高桥梁的承载力,使达到桥梁的耐久性要求。在桥梁的使用期,完成桥梁的使命。 通过本次设计,我基本上掌握了桥梁上部设计的基本容,从选截面尺寸,到配置钢筋,每一个细节都是经过多次考虑,通过反复验算,使桥梁结构满足要求,且以经济合理的材料用量完成。所以上部设计是要求桥梁设计者,从一开始就要考虑到最后,这样就不会盲目的试算。但通过试算,使我深刻了解到了适当的真正含义。本次设计旨在使我巩固、加深本科期间所学理论知识,使自己能够具备在以后工作中利用知识解决问题的的能力。

1 概述 1.1 设计资料 桥孔布置为535m ?预应力混凝土简支桥梁,跨径为35m,桥梁总长为175m。 设计车速为80/ km h,整体式双向四车道。 路线等级:一级公路;荷载等级:公路-Ⅰ级荷载,人群荷载:2 kN m。 3.0/ 桥面宽: ?++?+?= 行车道双黄线人行道防撞墙。 m m m m m 4 3.75()0.5()2 1.0()20.5()18.5 1.2 工程地质资料 该地区土质主要分5层:1、素黏土 2、砾石 3、亚黏土 4、粉砂 5、泥岩。 地下水类型为第四季孔隙水,水位埋深4m左右,含水层主要岩性为砾石,厚3m左右。地震烈度为四度。 1.3 水文及气候资料 桥梁位于市境,河流均为独流水域,流量随季节变化较大,平均水深0.5m左右,地表水体为沙河支流,属于季节性河流(勘察时无水),设计洪水频率百年一遇。 气候属北温带大陆性气候,冬寒夏热,昼夜温差大,年平均最低气温-23℃,历史最高气温为37.4℃,年平均气温为7℃。年平均降水量为450mm-550mm,无霜期为145-160天。

桥梁上部结构

第一篇桥梁上部结构 第一章总论 第一节概论 一.桥梁在交通事业中的地位 二.国内外桥梁建筑的成就 1、国内桥梁建筑的成就 宋朝在浙江郡县洞桥乡修建的洞桥为2 孔石墩木梁结构,桥长26.76米,宽8.1米 赵州桥(空腹式石拱桥)为公元605年修建,净跨 37.02米,宽9米,拱矢高度为7.23米,现仍在 使用 目前在长江上建成的桥梁已有20余座。第一座是武汉长江大桥。 第一座由我国自己设计自己建造的长江大桥是南京长江大桥。 最大跨径的桥梁是江阴长江大桥(悬索桥),跨径为1385米。 最大跨径的斜拉桥是南京长江二桥,主跨628米。 2、国外桥梁建筑的成就 1873年在法国首创建成第一座钢筋混凝土桥(拱式人行桥)。 1928年由法国著名工程师弗莱西奈发明了预应力混凝土技术,后 在法国和德国开始修建预应力混凝土桥。 1937年修建的美国旧金山金门大桥(吊桥)跨径1280米,保持 了27年的桥梁最大跨径的世界纪录。 1974年在英国修建的亨伯桥(吊桥)跨径达到1410米,为世界 第二大跨径桥梁。

1998年建成的日本明石海峡大桥(吊桥)跨径达到1990米,为世 界第一大跨径桥梁。 3、桥梁发展趋势 轻质、高强、大跨 三、桥梁的组成 1.桥梁的组成 桥梁由上部结构和下部结构组成。 上部结构(桥跨结构):在线路中断时跨越障碍的主要承载结构。 下部结构(桥墩和桥台):支承桥跨结构并将恒载和车辆等活载传至地基的建筑物。 设置在桥梁两端的称为桥台。 设置在桥梁中间的支承结构物称为桥墩。 把所有荷载传至地基的底部奠基部分,称为基础。 支座:在桥跨结构与桥墩或桥台的支承处所设置的传力装置。 附属建筑物:锥坡 2.桥梁的主要尺寸和术语: 净跨径:梁桥指设计洪水位上相邻两个桥墩(或桥台)之间的净距离。 拱式桥指每孔拱跨两个拱脚最低点之间的水平距离。

城市轨道交通桥梁设计常用规范(截止2015年12月31日)

序号规范名称有效版本1《地铁设计规范》GB50157-2013 2《城市轨道交通工程设计文件编制深度规定》建质2013-160号3《城市轨道交通技术规范》GB50490-2009 4《城市轨道交通工程项目建设标准》建标104-2008 5《城际铁路设计规范》TB10623-2014 6《高速铁路设计规范》TB10621-2014 7《跨座式单轨交通设计规范》GB50458-2008 8《内河通航标准》GB50139-2014 9《混凝土结构设计规范》(2015版)GB50010-2010 10《铁路混凝土结构耐久性设计规范》TB10005-2010 11《铁路混凝土工程预防碱-骨料反应技术条件》TB/T3054-2002 12《铁路桥涵设计基本规范》TB10002.1-2005 13《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》TB10002.3-2005 14《铁路桥涵混凝土和砌体结构设计规范》TB10002.4-2005 15《铁路桥涵地基和基础设计规范》(2009版)TB10002.5-2005 16《铁路工程抗震设计规范》GB50111-2006 17《城市轨道交通结构抗震设计规范》GB50909-2014 18《混凝土结构加固设计规范 》GB50367-2013 19《混凝土结构后锚固技术规程》JGJ145-2013 20《铁路桥梁钢结构设计规范 》TB10002.2-2005 21《铁路结合梁设计规定》TBJ 24-89 22《钢-混凝土组合桥梁设计规范》GB50917-2013 23《公路钢混组合桥梁设计与施工规范》JTG/T D64-01-2015 24《公路钢结构桥梁设计规范》JTG D64-2015 25《钢结构设计规范》GB50017-2003 26《新建时速200公里客货共线铁路设计暂行规定》铁建设2005-285号27《铁路工程设计防火规范》TB10063-2007 28《铁路工程地质勘察规范》TB10012-2007 29《城市轨道交通岩土工程勘察规范》GB50307-2012 30《市政工程勘查规范》CJJ56-2012 31《城市地下管线探测技术规程》CJJ61-2003 32《铁路工程基桩检测技术规程》TB10218-2008 33《建筑基桩检测技术规范》JGJ106-2014 34《铁路桥涵工程施工安全技术规程》TB10303-2009 35《铁路桥梁盆式橡胶支座》TB/T2331-2013 36《铁路桥梁球形支座》TB/T3320-2013 37《桥梁球型支座》GB/T17955-2009 38《城市轨道交通桥梁盆式支座》CJ/T464-2014 39《城市轨道交通桥梁球型钢支座》CJ/T482-2015 40《钢筋混凝土用钢第1部分:热轧光圆钢筋》GB1499.1-2008 41《钢筋混凝土用钢第2部分:热轧带肋钢筋》GB1499.2-2007 42《钢筋混凝土用钢筋焊接网》GB/T1499.3-2010 43《预应力混凝土用螺纹钢筋》GB/T20065-2006 44《预应力混凝土用钢绞线》GB/T5224-2014 45《预应力混凝土桥梁用塑料波纹管》JT/T529-2004 46《预应力混凝土用金属波纹管》JG225-2007 47《预应力筋用锚具、夹具和联结器》GB/T14370-2007 48《铁路工程预应力筋用夹片式锚具、夹具和连接器技术条件》TB/T3193-2008 49《碳素结构钢》GB/T700-2006 50《桥梁用结构钢》GB/T714-2015 51《低合金高强度结构钢》GB/T1591-2008 52《电弧螺柱焊用圆柱头焊钉》GB/T10433-2002 53《钢结构焊接规范》GB50661-2011 54《钢结构高强度螺栓连接技术规程》JGJ82-2011 55《铁路钢桥高强度螺栓连接施工规定》TBJ214-92 56《金属熔化焊焊接接头射线照相》GB/T3323-2005 57《无损检测 焊缝磁粉检测》JB/T6061-2007铁路桥涵规范的修订内容见铁道部、铁总相关文件 (一)设计规范 (截止2015年12月31日) 拉索、缆索、冷铸 镦头锚、索鞍、索 夹等材料规范不在 此列表中

相关文档
最新文档