管径计算与鹤管布置

管径计算与鹤管布置
管径计算与鹤管布置

重庆科技学院

《油库设计与管理》

课程设计报告

设计地点(单位)___石油科技大楼 K802___________

设计题目:_ 某油库设计——管径计算与鹤管布置_

完成日期: 2014 年 12月 17日

指导教师评语: ______________________ _____________________________________________________________________

___________________________________________________________________________

成绩(五级记分制):______ __________

指导教师(签字):________ ________

摘要

油库设置管网的主要目的是完成油品的收发作业和输转倒罐等任务。各种油品的吸入管和排出管也是其中非常重要的一种管道,其管径的选择也是重中之重,本次设计的一个重要部分就是确定其管径的大小。

本设计为某中转-分配军用油库工艺设计。该油库经营油品包括1#航空汽油、2#航空汽油、70#航空煤油、95#航空煤油、130#航空煤油、93#车用汽油、97#车用汽油、0#轻柴油、-10#轻柴油;-20#轻柴油。全部油品均由铁路罐车散装运入,除部分油品从公路散装发出外,大部分油品仍由铁路散装发出。根据原始资料、数据进行基础设计。计算铁路货位的个数、专运线的长度,然后计算汽车装油鹤管数。然后进行布置。

关键词:油库鹤管数布置方式管径

Abstract

The main purpose of the depot set network is completed to send and receive operations and oil transferring inverted cans and other tasks. The suction pipe and the discharge pipe is one of the most important kind of various oil pipelines, the pipe diameter selection is also important, an important part of the design is to determine the diameter of the pipe size.

For the design of a transit assignment process design of military oil depot. The oil depot operating including 1# 2# of aviation gasoline, aviation gasoline, aviation kerosene, 70# 95# aviation kerosene, 130# aviation kerosene, 93# gasoline, gasoline, light diesel oil, 97# vehicle 0# -10# -20# light diesel oil, light diesel oil.All oil by bulk of railway tank car transport into, except some oil emanating from the highway bulk, much of the oil is still issued by the railway bulk. Foundation design according to the original data, data. Calculation of railway freight transport specially a number, the length of the line, and then calculating the auto oil filling crane tube number. Then layout.

Keywords:Oil Depot The crane pipe number Layout Diameter

目录

1 设计参数及基础数据 (1)

1.1管径计算的基本参数 (1)

1.2鹤管布置的基本参数 (1)

2 吸入管和排出管的管径的计算 (2)

2.1 经济流速的选取 (2)

2.2管径计算 (2)

2.2.1车用汽油的吸入管和排出管的管径的计算 (2)

2.2.2航空汽油的吸入管和排出管的管径的计算 (3)

2.2.3农用柴油的吸入管和排出管的管径的计算 (4)

2.3管壁厚度的计算 (5)

2.3.1车用汽油管壁厚度的计算: (5)

2.3.2航空汽油管壁厚度的计算: (5)

2.3.3农用柴油管壁厚度的计算: (5)

3 装卸油设施布置 (7)

3.1铁路油品装卸方式 (7)

3.2每天到库的车位数的确定 (7)

3.3装卸专用作业线长度的计算 (8)

4结论 (9)

参考文献 (10)

1 设计参数及基础数据

1.1管径计算的基本参数

表1.1

该地最高月平均温度为27℃,最低月平均温度为-15℃。油品的收发波动系数取3。每年的工作日为360天,每天按平均工作8小时计。

1.2鹤管布置的基本参数

表1.2

铁路运输的收发不均匀系数取3,铁路干线上机车最大牵引定数为3400 吨。

2 吸入管和排出管的管径的计算

2.1 经济流速的选取

依据《油库设计与管理》查的不同粘度的油品在管路中的经济流速如下表2.1

根据每种油品粘度查得各种油品的经济流速选择见表2.2。

表2.2 不同油品的经济流速

2.2管径计算

2.2.1车用汽油的吸入管和排出管的管径的计算

业务流量

G

Q T

ρ=

(2-1) 式中: Q ——油品的最大业务流量,3/m h

G ——油品每天最大周转量,kg ; ρ——油品密度,3kg/m ;

T ——每天的运行时间,8h 。

最大流量作为每种油品的业务流量: Q=34000/(0.74*8*360)=15.953/m h

管径的计算公式:d =

(2-2) 式中: d ——输油管管内径,m ;

Q ——业务要求的输送量,m 3/s ;

v ——该油品的经济流速,m/s ,

由表2.1、2.2得:吸入管的经济流速v=1.5m/s 排除管的经济流速v=2.5m/s 车用汽油的管径

吸入管管径d =

5.1*3600*14.359

.15*4=

=0.061m

排除管管径d =

5

.2*3600*14.359.15*4=0.047m 2.2.2航空汽油的吸入管和排出管的管径的计算

业务流量

G

Q T

ρ=

式中: Q ——油品的最大业务流量,3/m h

G ——油品每天最大周转量,kg ; ρ——油品密度,3kg/m ;

T ——每天的运行时间,8h 。

最大流量作为每种油品的业务流量: Q=91000/(0.78*8*360)=40.51 3/m h

管径的计算公式:d =

式中: d ——输油管管内径,m ;

Q ——业务要求的输送量,m 3/s ;

v ——该油品的经济流速,m/s ,

由表2.1、2.2得:吸入管的经济流速v=1.2m/s 排除管的经济流速v=1.5m/s 车用汽油的管径

吸入管管径d =

2.1*3600*14.351

.40*4=

=0.109m

排除管管径d =

5

.1*3600*14.351

.40*4=

=0.098m 2.2.3农用柴油的吸入管和排出管的管径的计算

业务流量

G

Q T

ρ=

式中: Q ——油品的最大业务流量,3/m h

G ——油品每天最大周转量,kg ; ρ——油品密度,3kg/m ;

T ——每天的运行时间,8h 。

最大流量作为每种油品的业务流量: Q=21000/(0.84*8*360)=12.813/m h

管径的计算公式:d =

式中: d ——输油管管内径,m ;

Q ——业务要求的输送量,m 3/s ;

v ——该油品的经济流速,m/s ,

由表2.1、2.2得:吸入管的经济流速v=1.3m/s 排除管的经济流速v=2.0m/s 车用汽油的管径

吸入管管径d =

3

.1*3600*14.381

.12*4=

=0.059m

排除管管径d =

.2*3600*14.381

.12*4=

=0.048m 2.3管壁厚度的计算

2.3.1车用汽油管壁厚度的计算:

吸入管壁厚=+???

????-=+????

??

?-=54.21305.2)125.01(27054.2)125.01(2t P o D t δ 3.31mm 按标准选:5mm

排除管壁厚=+?

??????-=+??

??

??

?-=54.21305.2)125.01(25054.2)125.01(2t P o D t δ 3.09mm 按标准选::3.5mm

2.3.2航空汽油管壁厚度的计算:

吸入管壁厚=+?

??

????-=+????

??

?-=54.21305.2)125.01(211054.2)125.01(2t P o D t δ 3.75mm 按标准选:4mm

排除管壁厚=+???

????-=+??

??

??

?-=54.21305.2)125.01(210054.2)125.01(2t P o D t δ 3.64mm 按标准选:5.5mm

2.3.3农用柴油管壁厚度的计算:

吸入管壁厚=+?

??????-=+??

??

??

?-=54.21305.2)125.01(26054.2)125.01(2t P o D t δ 3.20mm 按标准选:4mm

排除管壁厚=+???

????-=+??

??

??

?-=54.21305.2)125.01(25054.2)125.01(2t P o D t δ 3.09mm 按标准选:3.5mm

表2-3各油品管径的选取

3 装卸油设施布置

3.1铁路油品装卸方式

铁路装卸油品的方法一般可分为上部卸油和下部卸油。上部卸油又包括泵卸法、自流卸油、浸没泵卸油和压力卸油,该油库采用泵卸油法。

3.2每天到库的车位数的确定

按作业量确定一次到库的最大油罐车数

i n =KG/360ρV (向上取整) (3-1) 式中:n —— 每天到库最大车数; K ——收油不均匀系数 K=3

G ——该种油品散装铁路收油的计划年周转量 t/年; V ——一辆油罐车的容积 V=50m 3 ρ——该种油品的密度, 3/m t 360——一年工作日;

1#航空汽油:i 455003

n =KG/360 V=

9.53600.850ρ?=?? 取10个鹤管

2#航空汽油:i 455003

n =KG/360 V=

9.53600.850ρ?=?? 取10个鹤管 70#航空煤油:i 110003

n =KG/360 V=

2.53600.7250ρ?=?? 取3个鹤管 95#航空煤油:i 110003

n =KG/360 V=

2.53600.7250

ρ?=?? 取3个鹤管 130#航空煤油:i 110003

n =KG/360 V= 2.53600.7250ρ?=?? 取3个鹤管

93#车用汽油:n i =KG/360ρV=5073.03603

17000???=3.9 取4个鹤管

97#车用汽油:n i =KG/360ρV=5073.03603

17000???=3.9 取4个鹤管

0#轻柴油:i 70003

n =KG/360 V=

1.43600.8450

ρ?=?? 取2个鹤管 -10#轻柴油:i 70003

n =KG/360 V=

1.43600.8450ρ?=?? 取2个鹤管 -20#轻柴油:i 70003

n =KG/360 V=

1.43600.8450

ρ?=?? 取2个鹤管 所以:i n 总=10+10+3+3+3+4+4+2+2+2=43个 按机车牵引定数确定一次到库的最大油罐车数

2n =

+机车牵引定数

一辆油罐车自重标记载重 (向上取整) (3-2)

2n = 机车牵引定数/(自重+标记载重)=

3400

22+50

= 48 n=min {43:48}=43

因此确定一次到库最多油罐车数为43节。因为航空用油质量要求较高,所以鹤管与集油管的连接为专用单鹤管形式。作业线布置成两条作业线的形式。 两条作业线分别为:

第一条作业线为20个航空汽油

第二条作业线为9个航空煤油、8个车用汽油和6个轻柴油 鹤管数为: 20+9+8+6=43个

3.3装卸专用作业线长度的计算

铁路作业线长度的确定

[][]1212L L L nl =+++ (3-3)

式中:L ——装卸线有效长度,m ;

[]中的项表示可选;

1L ——机车头至警冲标的距离,取1L =10m ; l —一辆油罐车列的长度,m ; n ——一次到库的最大油罐车数;

2L ——装卸车线终端安全距离(终端罐车至车档距离),2L =20m ; 12——轻、粘油罐车之间的安全净距,m 。 所以,两条作业线长度为:

第一条作业线:[][]11212L L L nl =+++= 10+20+20×12=270(m )

第二条作业线:[][]21212L L L nl =+++= 10+20+23×12=306(m )

铁路作用线总长为:L =1L +2L =270+306=576(m )

4结论

本次课程设计先计算的是某一油库各油品的吸入管、排出管管径,选取相应的输油管。车用汽油吸入管、排出管管径分别为70mm、50mm;航空汽油为110mm、100mm;农用柴油为60mm、50mm。

此次课程设计为某中转-分配军用油库工艺设计。通过查询资料和个人计算,简单地计算出了此油库所需的工艺参数。此油库主要收发油方式为铁路,计算铁路各油品所需鹤管数为,航空汽油各需10个鹤管,航空煤油各需3个鹤管,车用汽油各需4个,轻柴油各需2个鹤管。确定铁路作业线为两条第一条长270m,第二条长306m。

参考文献

[1] 郭光臣,董文兰,张志廉:《油库设计与管理》,中国石油大学出版社2006年12月

[2]王从岗,张艳梅:《储运油料学》,中国石油大学出版社2006年8月,19

[3] 中国石油化工集团公司.石油库设计规范(GB50074-2002),10,14

[4]马秀让:《油库设计实用手册》,中国石化出版社,2009年,6,13,17

管径计算公式

管道的设计计算——管径和管壁厚度 空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。A.管内径:管道内径可按预先选取的气体流速由下式求得: i d 8 .182 1 u q v 式中, i d 为管道内径(mm );v q 为气体容积流量( h m 3 );u 为管内气体平均流速( s m ),下 表中给出压缩空气的平均流速取值范围。 管内平均流速推荐值 气体介质 压力范围 p (Mpa) 平均流速u (m/s ) 空气 0.3~0.6 10~20 0.6~1.0 10~15 1.0~2.0 8~12 2.0~3.0 3~6 注:上表内推荐值,为输气主管路(或主干管)内压缩空气流速推荐值;对于长度在 1m 内的管 路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。 例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。 已知WJF-1.5/30型空压机排气量为 1.5 m 3 /min 排气压力为 3.0 MPa 已知H-6S 型空压机排气量为0.6 m 3 /min 排气压力为 3.0 MPa 4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3 /h 如上表所示u=6 m/s 带入上述公式 i d 8 .182 1 u q v i d 8 .182 1 6 252=121.8 mm 得出管路内径为121mm 。 B.管壁厚度:管壁厚度取决于管道内气体压力。

给排水污水管道设计计算.

2 污水管道设计计算 2.1排水区域划分及管线布置 2.1.1排水区域划分 该地区所地区地面平坦,可按一个高度确定地面标高。区域最北部为京杭大运河,沿河的东部和西部分别有一个污水处理厂。根据以上条件划分排水区域为:以淮海路为分界线,划分成两个排水区域。淮海路以西所排放的污水排入四季青污水处理厂,以东排入淮安第二污水处理厂。 2.1.2管线布置

污水厂污水厂

图1 污水管道布置图(初步设计) 管线布置原则是充分利用地形、地势,就近排入水体,以减小管道埋深,降低工程造价。该地区地势平坦,区域最北边为京杭大运河,因此干管自南向北采用截流式敷设。 截流式是正交式的改进,即沿河岸敷设主干管。这种布置的优点是干管长度短,管径小,因而较经济,污水排出也比较迅速。干管基本上汇集街道两边相邻街区的污水,若街区面积较小且最近街道未敷设干管,则可能利用支管将该街区污水输送进最近的干管。具体如图1所示。 2.2 污水流量计算 污水设计流量包括生活废水和工业废水两大类。本设计中,工业废水水量不大,可直接汇入生活污水管道中一并送入污水处理厂。 已知各个功能区的排水量,并从所给地图中量出排水面积,即可求出污水的流量。 街区流量的计算公式[3]: 1000 243600 A q Q 创= ′ (2-1) Q ——流量,L/s q ——污水指标,m 3/ha·d ,居住用地:55m 3/(ha·d ); 公共设施用地:40 m 3/(ha·d ); 仓储用地:20m 3/(ha·d ); 市政用地:15 m 3/(ha·d ); 其它污水为总污水量的10%。 A ——面积,ha ,在所给地区地形图上根据区域面积计算。 由于居住区生活污水定额是平均值,因此根据设计人口和生活污水定额计算所得的是污水平均流量。而实际上流入污水管道的污水量时刻扣在变化。这些变化包括季节变换,日间变换等等。若要采用平均值计算流量,必须设定污水变化系数来修订水量。下表是我国《室外排水设计规范》(GBJ14—87)采用的居住区生活污水量总变化系数值。 表1 生活污水总变化系数[9]

水机管径的估算表

空调水系统管径的确定 水管管径d 由下式确定: d = 式中m w ------------水流量, m 3/s v------------水流速, m/s 我们建议,水系统中管内水流速按表一中的推荐值选用,经试算来确定其管径,或按表二根据流量确定管径。 ~~~~~~~~~~~~~~摘自《民用建筑空调设计》P234~~~~~~~~~~~~~~ 4m w 3.14 v

空调风系统的管道设计 (一)风管机在设计管道时首先必须从产品资料上了解三个参数:风量、风压、噪声。 1.风量:为了确定送风管道大小。 2.风压:也叫机外静压。为了计算在送风过程中克服阻力所需的参数。简单不确切地说,就是能将风送多大距离的动力。 3.噪声:其产品技术资料所标的噪声只是相对的,因为噪声是随不同条件而相应的变动的。可能产生噪声的渠道有:机器本身的风机、机器运行振动、送风风压过大等。 (二)风系统设计包括的主要内容有:合理采用管内的空气流速以确定风管截面尺寸,计算风系统的阻力及选择风机,平衡各支风路的阻力以保证各支风路的风量达到设计值。 那么管内风速如何选择?风管尺寸如何来确定呢? ※管内风速的选取决定了风管截面的尺寸,两者之间的关系如下: F=a×b=L/(3600*V) (公式1-1) 式中:F:风管断面积(㎡) a、b:风管断面长、宽(m) L:风管风量(m3/h) V:风速(m/s) 以上各取值受到以下几个方面的影响: ①建筑空间:在现代的建筑中,无论是多层建筑或高层建筑,还是高档别墅,建筑空间都是相当紧张的,因此要求我们尽可能提高风速以减少风管的截面。(管内风速与风管截面积成反比,即是风速越高,则风管截面积越小,反之,风速越低,则风管截面积越大。) ②风机压力及能耗:风速越高,则风阻力越大,风机的能耗也就越大,从此点来说又要求降低风速。 ③噪音要求:风速对噪音的影响表现在三个方面:首先,随着风速的提高,风机风压的要求较高而引起风机的运行噪声加大;第二,风速加大至一定程度时,在通过风管部件时将产生气流噪声;第三,随着风速的提高,风管消声的消声能力下降。总的来说,风管内的风速越高,则所产生的噪声就越大。 因此,管内风速的选取是综合平衡各种因素的一个结果.通过查阅相关资料和有关手册以及根据实际工程的体会,建议空调通风系统中的各种风道内的推荐风速见下表所示:(表1) 场合以合宜噪声为主导主风管的风速V(m/s)以合宜风管阻力为主导的风速V(m/s) 送风主管回风主管送风支管回风支管 住宅 3.0 5.0 4.0 3.0 3.0 公寓、酒店客房、医院病房 5.0 7.5 6.5 6.0 5.0

管道直径设计计算步骤

管道直径设计计算步骤 以假定流速法为例,其计算步骤和方法如下: 1.绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量。 管段长度一般按两管件间中心线长度计算,不扣除管件(如三通,弯头)本身的长度。 2.确定合理的空气流速 风管内的空气流速对通风、空调系统的经济性有较大的影响。流速高,风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加。对除尘系统会增加设备和管道的摩损,对空调系统会增加噪声。流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大。对除尘系统流速过低会使粉尘沉积堵塞管道。因此,必须通过全面的技术经济比较选定合理的流速。根据经验总结,风管内的空气流速可按表6-2- 1、表6-2-2及表6-2-3确定。除尘器后风管内的流速可比表6-2-3中的数值适当减小。 表6-2-1一般通风系统中常用空气流速(m/s) 支室内xx空干管 管进风口回风口气入口6~2~1.5~2.5~ 5.5~薄钢1483.53.5 工业建筑机6.5板、混凝土 械通讯 4~2~1.5~2.0~ 砖等

5~61263.03.0 工业辅助及 民用建筑 0.5 0.50.2~~0.7 自然通风~1.01.0类别 机械通风5~8 52~ 2~4风管 材料 表6-2-2空调系统低速风管内的空气流速部位 新风xx 总管和总干管 无送、回风口的支管 有送、回风口的支管频率为1000Hz时室内允许声压级(dB)<40~60>60 3.5~ 4.04.0~4.5 5.0~ 6.0 6.0~8.06.0~8.0 7.0~12.0 3.0~ 4.0 5.0~7.0 6.0~8.0 2.0~ 3.03.0~5.03.0~6.0表6-2-3除尘风管的最小风速(m/s)粉尘类

管径寸径计算方法

中 海 石 油 炼 化 有 限 责 任 公 司 惠 州 炼 油 项 目 管道寸D 统计方法规定 内部文件 注意保密

中海石油炼化有限责任公司惠州炼油项目 管道寸D统计方法规定 第一章总则 第一条为统一惠州炼油项目管道寸径统计方法,尽可能准确地反映焊工的实际工作量,特制定了本规定,同时作为《进度检测及控制管理办法》附件C 焊接工作量计算的补充规定。 第二条编制依据:《广东省安装工程综合定额》——第六册《工业管道工程》。 第三条本方法仅适用于中海石油炼化有限责任公司惠州炼油项目管道寸D的统计计算。 第二章寸径统计方法规定 第四条标准寸D的规定 以低压碳钢管道DN25的1道焊口为标准寸D,即1寸D,其它规格低压管道的寸D数见下表。 表1:低压管道公称直径—寸D对照表

第五条其它压力等级、材质及规格的管道寸D计算 其它压力等级和材质的管道以低压碳钢管相应公称直径的寸D数乘以下表中的系数,计算1道焊口的寸D数。 表2:管道寸D计算系数表 举例说明: 1)1道中压碳钢DN25的焊口寸D数=1标准寸D*1.3=1.3 D” 2)1道中压合金钢DN50的焊口寸D数=2标准寸D*1.9=3.8D” 3)1道低压不锈钢DN80的焊口寸D数=3标准寸D*1.7=5.1D” 注:D”为“寸D”的一种简单表示方法 第六条管道焊口数统计规定 管道焊口数以单线图中的焊口数为准,区分材质、压力等级分别统计(不区分对接焊口和承插焊口统一计算)。 第七条寸D数的合计

寸D数的合计首先区分材质小计,然后汇总为总寸D数量,如:碳钢管道寸D数合计2300 D” 合金钢管道寸D数合计800 D” 不锈钢管道寸D数合计1200 D” 以上各项总寸D数=2300+800+1200=4300 D” 第三章附则 第八条本规定解释权归属控制部。 第九条本规定自发布之日起执行。 附:管道寸D工作量统计表

采暖设计计算书1

设计题目:某住宅采暖系统设计

目录 第一章绪论 设计内容及原始资料、设计目的 第二章热负荷计算 围护结构基本传热量、附加传热量、 冷风渗透传热量计算 第三章散热器计算选型 散热器面积、片数计算、设备选型 第四章采暖系统水力计算 系统布置、水力计算 第五章设计成果 参考文献

第一章绪论 一、设计内容 本工程为哈尔滨市一民用住宅楼,住宅楼为六层,每一层有 8个用户,建筑总面积为 5740 ㎡。 二、原始资料 1.设计工程所在地区:哈尔滨 45°41′N 126°37 ′E 2.室外设计参数:冬季大气压 100.15KPa 供暖室外计算温度 -26℃ 冬季室外平均风速 3.8m/s 冬季主导风向东南风 供暖天数 179 天 供暖期日平均温度 -9.5℃ 最大冻土层深度 205cm 3.建筑资料 (1)建筑每层层高 3m; (2)建筑围护结构概况 外墙:砖墙,厚度为 240mm,保温层为水泥膨胀珍珠岩 l190mm,双面抹灰δ20mm;K0.45W/m2K 地面:不保温地面,K 值按地带划分,一共为四个地带; 屋顶:钢筋混凝土板,砾砂外表层 5mm,保温层为沥青膨胀岩l150mmK0.47W/(m2K) 外窗:单层钢窗,塑料中空玻璃(空气 12mm)K2.4 W/(m2K)

外门:木框双层玻璃门(高 2.0 米),K2.5W/m2.K。2100mm×1500mm,门型为无上亮的单扇门。 4.室内设计参数: 室内计算温度:卧室、起居室 18℃厨房 10℃ 门厅、走廊、楼梯间 16℃盥洗室 18℃ 三、设计目的 对该建筑进行室内采暖系统的设计,使其能达到采暖设计标准,同时符合建筑节能规范。 第二章热负荷计算 一、围护结构基本传热量 1.外围护结构的基本耗热量计算公式如下: Q= KF( tn- t w) a q ——围护结构的基本耗热量,W; K——围护结构的传热系数, F——围护结构的面积 tn——冬季室内计算温度 t w ——供暖室外计算温度 α——围护结构的温差修正系数 整个建筑的基本耗热量 Q1. j 等于它的围护结构各部分基本耗热量

污水及雨水管道怎样计算管道长度

污水及雨水管道怎样计算管道长度 【篇一:2014年管道课设】 2011级环境工程专业 《管道工程》课程设计 设计任务书 一、设计目的 本课程设计就是在经过《管道工程》理论学习后,学生在初步掌握污水排水管道系统与雨水管渠系统的概念、理论、设计计算方法的基础上,而进行的城市排水工程初步设计实践。 通过课程设计,使学生在基本理论、基本知识、基本技能等方面得到一次综合性训练: 1.了解污水排水管道系统设计的方法与步骤; 2.了解雨水管渠系统设计的方法与步骤; 3.学习利用各种资料确定设计方案的方法; 4.熟悉污水排水管道设计计算方法; 5.熟悉雨水管渠设计计算方法; 6.加强工程制图能力。 二、设计任务 1、确定污水排水管道系统的平面布置方案。 2、确定雨水管渠系统的平面布置方案。 3、进行污水排水管道(主干管)的流量计算与水力计算。 4、进行雨水管渠(选其中1~2条)的流量计算与水力计算。 5、进行平面图与纵剖面图的绘制。 6、整理计算书,编制说明书。 三、设计原始资料 1、某市南区规划地形图1张。城市位于河南省。 2、设计人口数: 3、2万人。 3、在规划区东部已建成污水处理厂一座,处理工艺采用二级生化处理+深度 处理,能够完全接纳工业园区的污水处理量。 4、工业废水设计流量按工业产业区0、6l/ (s 、ha);生活污水设计流量按全规 划区平均比流量设计。

5.夏季主导风向为东风,冬季主导风向为西风,年平均气温为15oc,冬季最冷月平均气温为-1oc。 6.该地区冰冻线深度为0、20米。 7.根据水文及气象资料,当地的暴雨强度公式: q=599(1+0、86lgp)/t0、56 设计指导书 一.污水管道系统的设计原则 城市排水管渠系统就是城市的一项重要基础设施,就是城市建设的重要组成部分、同时也就是控制水污染、改善与保护水环境的重要工程措施。在进行城镇排水管渠系统的规划与布置时,通常应遵循以下原则: (1)排水管道系统的规划设计应将合城市总体规划,并应与其它单项工程建设密切配合,相互协调。 (2)合理地确定管网密度,排水管渠尽量分散,避免集中,排水路线尽量短捷。 (3)主干管尽可能布置在较低处(如河岸或水体附近),以便于干管接入。 (4)城镇污水管渠应考虑城市工业废水的接入,满足排入城市下水道水质标准的工业废水直接排入下水道,不满足标准的在厂内进行预处理后排人下水道。 (5)排水管渠应尽量避免穿越不易通过的地带与构筑物;也不宜穿越有待规划与发展的大片空地,以避免影响整块地的功能与价值。 (6)排水管渠系统应与地形地势变化相适应,顺坡排水,尽量使污水重力排除,不设或少设中途提升泵站。 (7)合理比较与选择整个排水系统的控制点及控制点标高,以使整个管网系统埋深与投资合理。 二.雨水管道系统的设计原则 (1)管道定线:根据地形特点,布置雨水管渠,雨水应以最短的距离尽快排入水体。 (2)划分干管与支管的服务面积,进行编号并计算出面积的大小。 (3)确定干管与支管的检查井位置与编号,并计算设计管段长度与管渠总长度。 (4)列表计算各设计管段的设计流量:雨水管道的设计流量为地面径流系数、暴雨强度与集水面积的乘积。其中径流系数数可根据不同的

管径寸径计算方法

管径寸径计算方法内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

惠州炼油项目 管道寸D统计方法规定

中海石油炼化有限责任公司惠州炼油项目 管道寸D统计方法规定 第一章总则 第一条为统一惠州炼油项目管道寸径统计方法,尽可能准确地反映焊工的实际工作量,特制定了本规定,同时作为《进度检测及控制管理办法》附件C焊接工作量计算的补充规定。 第二条编制依据:《广东省安装工程综合定额》——第六册《工业管道工程》。 第三条本方法仅适用于中海石油炼化有限责任公司惠州炼油项目管道寸D的统计计算。 第二章寸径统计方法规定 第四条标准寸D的规定 以低压碳钢管道DN25的1道焊口为标准寸D,即1寸D,其它规格低压管道的寸D数见下表。 表1:低压管道公称直径—寸D对照表

第五条其它压力等级、材质及规格的管道寸D计算 其它压力等级和材质的管道以低压碳钢管相应公称直径的寸D数乘以下表中的系数,计算1道焊口的寸D数。 表2:管道寸D计算系数表 举例说明: 1)1道中压碳钢DN25的焊口寸D数=1标准寸D*= D”

2)1道中压合金钢DN50的焊口寸D数=2标准寸D*=” 3)1道低压不锈钢DN80的焊口寸D数=3标准寸D*=” 注:D”为“寸D”的一种简单表示方法 第六条管道焊口数统计规定 管道焊口数以单线图中的焊口数为准,区分材质、压力等级分别统计(不区分对接焊口和承插焊口统一计算)。 第七条寸D数的合计 寸D数的合计首先区分材质小计,然后汇总为总寸D数量,如:碳钢管道寸D数合计2300 D” 合金钢管道寸D数合计800 D” 不锈钢管道寸D数合计1200 D” 以上各项总寸D数=2300+800+1200=4300 D” 第三章附则 第八条本规定解释权归属控制部。 第九条本规定自发布之日起执行。 附:管道寸D工作量统计表

管径计算公式

流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位为 m/s。 流量与管道断面及流速成正比,三者之间关系: `Q = (∏ D^2)/ 4 · v · 3600 `(`m^3` / h ) 式中 Q —流量(`m ^3` / h 或 t / h ); D —管道内径(m); V —流体平均速度(m / s)。 根据上式,当流速一定时,其流量与管径的平方成正比,在施工中遇到管径替代时,应进行计算后方 可代用。例如用二根DN50的管代替一根DN100的管是不允许的,从公式得知DN100的管道流量是DN50管 道流量的4倍,因此必须用4根DN50的管才能代用DN100的管。 给水管道经济流速 影响给水管道经济流速的因素很多,精确计算非常复杂。 对于单独的压力输水管道,经济管径公式: D=(fQ^3)^[1/(a+m)] 式中:f——经济因素,与电费、管道造价、投资偿还期、管道水头损失计算公式等多项因素有关的系数;Q——管道输水流量;a——管道造价公式中的指数;m——管道水头损失计算公式中的指数。 为简化计算,取f=1,a=1.8,m=5.3,则经济管径公式可简化为: D=Q^0.42 例:管道流量22 L/S,求经济管径为多少? 解:Q=22 L/S=0.022m^3/s 经济管径 D=Q^0.42=0.022^0.42=0.201m,所以经济管径可取200mm。 水头损失 没有“压力与流速的计算公式 管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。(水头损失可以 理解为固体相对运动的摩擦力) 以常用的长管自由出流为例,则计算公式为 H=(v^2*L)/(C^2*R), 其中H为水头,可以由压力换算, L是管的长度, v是管道出流的流速, R是水力半径R=管道断面面积/内壁周长=r/2, C是谢才系数C=R^(1/6)/n,

采暖系统水力计算

在《供热工程》P97和P115有下面两段话:可以看出对于单元立管平均比摩阻的选择需要考虑重力循环自然附加压力的影响,试参照下面实例,分析对于供回水温60/50℃低温热水辐射供暖系统立管比摩阻的取值是多少?

实例:

附件6.2关于地板辐射采暖水力计算的方法和步骤(天正暖通软件辅助完成) 6.2.1水力计算界面: 菜单位置:【计算】→【采暖水力】(cnsl)菜单点取【采暖水力】或命令行输入“cnsL”后,会执行本命令,系统会弹出如下所示的对话框。 功能:进行采暖水力计算,系统的树视图、数据表格和原理图在同一对话框中,编辑数据的同时可预览原理图,直观的实现了数据、图形的结合,计算结果可赋值到图上进行标注。 快捷工具条:可在工具菜单中调整需要显示的部分,根据计算习惯定制快捷工具条内容;树视图:计算系统的结构树;可通过【设置】菜单中的【系统形式】和【生成框架】进行设置; 原理图:与树视图对应的采暖原理图,根据树视图的变化,时时更新,计算完成后,

可通过【绘图】菜单中的【绘原理图】将其插入到dwg中,并可根据计算结果进行标注;数据表格:计算所需的必要参数及计算结果,计算完成后,可通过【计算书设置】选择内容输出计算书; 菜单:下面是菜单对应的下拉命令,同样可通过快捷工具条中的图标调用; [文件] 提供了工程保存、打开等命令; 新建:可以同时建立多个计算工程文档; 打开:打开之前保存的水力计算工程,后缀名称为.csl; 保存:可以将水力计算工程保存下来; [设置] 计算前,选择计算的方法等; [编辑] 提供了一些编辑树视图的功能; 对象处理:对于使用天正命令绘制出来的平面图、系统图或原理图,有时由于管线间的连接处理不到位,可能造成提图识别不正确,可以使用此命令先框选处理后,再进行提图; [计算] 数据信息建立完毕后,可以通过下面提供的命令进行计算; [绘图] 可以将计算同时建立的原理图,绘制到dwg图上,也可将计算的数据赋回到原图上; [工具] 设置快捷命令菜单; 6.2.2采暖水力计算的具体操作: 1.下面以某住宅楼为例进行计算:住宅楼施工图如下:

案例5-1:内容:施工临时用水量及管径计算方法

不记得页码: 施工机械用水量 3600 83221?? ?=∑K N Q K q (5-7) 麻烦核实一下施工机械用水量公式5-7 q 缺少下角标2,正确应为q 2: 3600 832212?? ?=∑K N Q K q (5-7) 页码:154 原文字: 工地上采用这种布置方式。 7.工地临时供电系统的布置 建议修改文字: 插入案例5-1 工地上采用这种布置方式。 案例5-1 案例5-1 某工程,建筑面积为18133m 2,占地面积为4600m 2。地下一层,地上9层。筏形基础,现浇混凝土框架剪力墙结构,填充墙空心砌块隔墙;生活区与现场一墙之隔,建筑面积750m 2,常住工人330名。水源从现场南侧引入,要求保证施工生产,生活及消防用水。 问题: (1) 当施工用水系数K 1=1.15,年混凝土浇筑量11743m 3,施工用水定额2400L/m 3 ,年持续有效工作日为150d ,两班作业,用水不均衡系数K 2=1.5。要求计算现场施工用水? (2) 施工机械主要是混凝土搅拌机,共4台,包括混凝土输送泵的清洗用水、进出施工现场运输车辆冲洗等,用水定额平均N 2=300L/台。未预计用水系数K 1=1.15,施工不均衡系数K 3=2.0,求施工机械用水量? (3) 假定现场生活高峰人数P 1=350人,施工现场生活用水定额N 3=40L/班,施工现场生活用水不均

衡系数K 4=1.5,每天用水2个班,要求计算施工现场生活用水量? (4) 假定生活区常住工人平均每人每天消耗水量为N 4=120L ,生活区用水不均衡系数K 5按2.5计取;计算生活区生活用水量? (5) 请根据现场占地面积设定消防用水量? (6) 计算总用水量? (7) 计算临时用水管径? 案例解析 (1) 计算现场施工用水量: S L K b T N Q K q /626.53600 85.1215024001174315.136008211111=?????=???= (2) 计算施工机械用水量: s L K N Q K q /0958.03600 80.2300415.13600832 212=????=?=∑ (3) 计算施工现场生活用水量: s L b K N P q /365.03600 825.140350360084313=????=????= (4) 计算生活居住区生活用水量 s L K N p q /15.13600245.21203303600245424=???=???= (5) 设定消防用水量: 消防用水量 q 5的确定。按规程规定,施工现场在25ha(250000m 2)以内时,不大于15L/s ;(注:一公倾(ha )等于10000m 2)。 由于施工占地面积远远小于250000m 2,故按最小消防用水量选用,为q 5=10L/s 。 (6) 计算总用水量 54321/237.715.1365.00958.0626.5q s L q q q q <=+++=+++, 故总用水量按消防用水量考虑,即总用水量s L q Q /105==。若考虑10%的漏水损失,则总用水量:s L Q /1110%)101(=?+=。 (7) 计算临时用水管径 供水管管径是在计算总用水量的基础上按公式计算的,如果已知用水量,按规定设定水流速度(假定为:1.5m/s),就可以进行计算。计算公式如下:

采暖管道水力计算

采暖供热管道水力计算表说明 1 电算表编制说明 1.1 采暖供热管道的沿程损失采用以下计算公式: ΔP m =L λρ?v 2 d j ?2 (1.1) ;式中:△Pm——计算管段的沿程水头损失(Pa) L ——计算管段长度(m); λ——管段的摩擦阻力系数; d j ——水管计算内径(m),按本院技术措施表A.1.1-2~A.1.1-9编制取值; 3 ρ——流体的密度(kg/m),按本院技术措施表A.2.3编制取值;v —— 流体在管内的流速(m/s)。 1.2 管道摩擦阻力系数λ 1.2.1采用钢管的采暖供热管道摩擦阻力系数λ采用以下计算公式: 1 层流区(R e ≤2000) λ=

64 Re 2 紊流区(R e >2000)一般采用柯列勃洛克公式 1 ?2. 51K /d j =?2lg?+?λ?Reλ3.72 ?K 68? ?λ=0.11?+??d ?j Re? 0. 25 ???? 简化计算时采用阿里特苏里公式 雷诺数 Re= v ?d j γ 以上各式中 λ——管段的摩擦阻力系数;Re ——雷诺数; d j ——管子计算内径(m),钢管计算内径按本院技术措施表A.1.1-2取值;

- K ——管壁的当量绝对粗糙度(m),室内闭式采暖热水管路K =0.2×103m,室外供热管网 - K =0.5×103m ; v ——热媒在管内的流速,根据热量和供回水温差计算确定(m/s); ,根据供回水平均温度按按本院技术措施表A. 2.1取值。γ—— 热媒的运动粘滞系数(m2/s) 1.2.2塑料管和内衬(涂)塑料管的摩擦阻力系数λ,按下式计算: λ={ d j ? b 1. 312(2 lg 3. 7??b 0. 5?+ lg Re s?1?2 ?? 3. 7d j lg K ?????? }2

管径寸径计算方法

管径寸径计算方法 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

惠州炼油项目 管道寸D统计方法规定

中海石油炼化有限责任公司惠州炼油项目 管道寸D统计方法规定 第一章总则 第一条为统一惠州炼油项目管道寸径统计方法,尽可能准确地反映焊工的实际工作量,特制定了本规定,同时作为《进度检测及控制管理办法》附件C焊接工作量计算的补充规定。 第二条编制依据:《广东省安装工程综合定额》——第六册《工业管道工程》。 第三条本方法仅适用于中海石油炼化有限责任公司惠州炼油项目管道寸D的统计计算。 第二章寸径统计方法规定 第四条标准寸D的规定 以低压碳钢管道DN25的1道焊口为标准寸D,即1寸D,其它规格低压管道的寸D数见下表。 表1:低压管道公称直径—寸D对照表

第五条其它压力等级、材质及规格的管道寸D计算 其它压力等级和材质的管道以低压碳钢管相应公称直径的寸D数乘以下表中的系数,计算1道焊口的寸D数。 表2:管道寸D计算系数表 举例说明: 1)1道中压碳钢DN25的焊口寸D数=1标准寸D*1.3=1.3 D”

2)1道中压合金钢DN50的焊口寸D数=2标准寸D*1.9=3.8D” 3)1道低压不锈钢DN80的焊口寸D数=3标准寸D*1.7=5.1D” 注:D”为“寸D”的一种简单表示方法 第六条管道焊口数统计规定 管道焊口数以单线图中的焊口数为准,区分材质、压力等级分别统计(不区分对接焊口和承插焊口统一计算)。 第七条寸D数的合计 寸D数的合计首先区分材质小计,然后汇总为总寸D数量,如:碳钢管道寸D数合计2300 D” 合金钢管道寸D数合计800 D” 不锈钢管道寸D数合计1200 D” 以上各项总寸D数=2300+800+1200=4300 D” 第三章附则 第八条本规定解释权归属控制部。 第九条本规定自发布之日起执行。 附:管道寸D工作量统计表

地暖设计管径确定

地暖设计管径确定 1、地暖盘管管径的确定 1.1.1一般说来,地暖盘管管径不需要计算,在大多数民用建筑中,用De20(DN15)的管径就可以满足要求。查《地面辐射供暖技术规程》附录A “单位地面面积的散热量和向下传热损失”选择合适的平均水温和地暖盘管的间距就可以满足要求。请注意:附录A给出计算条件是加热管公称外径为20mm、填充层厚度为50mm、聚苯乙烯泡沫塑料绝热层厚度20mm、供回水温差10℃时PE-X管或PB管时数据。表中给出了地面为水泥或陶瓷、塑料类材料、木地板、铺厚地毯几种情况下“单位地面面积的散热量和向下传热损失”。如果是其他材料,如PE-RT 、PP-R和PP-B,按照《地面辐射供暖技术规程》3.4.2条要求,应通过计算确定单位地面面积的散热量和向下传热损失(可参阅该规程“3.4地面散热量的计算”进行精确计算)。实际上,在缺乏相关专业资料的情况下,附录A也可以作为其他管材设计时的参考数据。 1.1.2举例说明:某20℃房间计算热指标为40 W/m2地面层为木地板,平均水温40℃时,当平均水温40℃时,选用DN15的PE-X时可查附录A.1.3确定单位地面面积的散热量和向下传热损失。如下表(这是附录A.1.3的一部分),间距300即满足要求(66.8-26.3=40.5满足要求房间耗热量40W/m2的要求)

1.1.3顺便加以说明:选择地暖盘管时,管材、管径确定之后,还要根据采暖系统设计运行温度、压力选择壁厚,这样地暖管才算选完。这部分请参看《地面辐射供暖技术规程》“附录B加热管的选择”。这里也给出一个范例:一般六层住宅楼,平均水温40℃时,用壁厚2mm,DN15的PE-RT管子就可以了。 2、立管管径的确定朋友们应该还记得负荷计算的方法。 假设我们已经通过负荷计算确定了建筑物各部分的负荷。下面先介绍一个公式。流量计算公式:GL=0.86×∑Q/(tg-th)Kg/h 其中:GL—流量,Kg/h;∑Q—热负荷,W;tg、th—供回水温度,℃。我们把计算的负荷与供回水温度代入上边的公式,就可以得出相应的流量。 接下来接着介绍一个参数:比摩阻,可以简单的理解为一米管道的阻力。室内采暖系统的经济比摩阻应控制在60~120Pa/m。 室内采暖立管常采用焊接钢管。可以在暖通专业的设计手册(如:《供

流量与管径、力、流速之间关系计算公式

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2)

R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s)

g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做

给水管管径的计算方法

给水管管径的计算方法 流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或(m3/h);用重量表示流量单位是kg/s 或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位为m/s。 流量与管道断面及流速成正比,三者之间关系: Q = (πD2)/4·v·3600 (m3/ h ) 式中Q —流量(m3/h或t/h ); D —管道内径(m); V —流体平均速度(m/s)。 根据上式,当流速一定时,其流量与管径的平方成正比,在施工中遇到管径替代时,应进行计算后方可代用。例如用二根DN50的管代替一根DN100的管是不允许的,从公式得知DN100的管道流量是DN50管道流量的4倍,因此必须用4根DN50的管才能代用DN100的管。暖通南社 给水管道经济流速:

影响给水管道经济流速的因素很多,精确计算非常复杂。 对于单独的压力输水管道,经济管径公式: D=(fQ^3)^[1/(a+m)] 式中:f—经济因素,与电费、管道造价、投资偿还期、管道水头损失计算公式等多项因素有关的系数;Q—管道输水流量;a—管道造价公式中的指数;m—管道水头损失计算公式中的指数。为简化计算,取f=1,a=1.8,m=5.3,则经济管径公式可简化为: D=Q^0.42 例:管道流量22 L/S,求经济管径为多少? 解:Q=22 L/S=0.022m^3/s 经济管径D=Q^0.42=0.022^0.42=0.201m,所以经济管径可取200mm。 水头损失: 没有压力与流速的计算公式,管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。(水头损失可以理解为固体相对运动的摩擦力)

管径计算公式

管径计算公式 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位为 m/s。 流量与管道断面及流速成正比,三者之间关系: `Q=(∏D^2)/4·v·3600`(`m^3`/h) 式中Q—流量(`m^3`/h或t/h); D—管道内径(m); V—流体平均速度(m/s)。 根据上式,当流速一定时,其流量与管径的平方成正比,在施工中遇到管径替代时,应进行计算后方可代用。例如用二根DN50的管代替一根DN100的管是不允许的,从公式得知DN100的管道流量是DN50管道流量的4倍,因此必须用4根DN50的管才能代用DN100的管。 给水管道经济流速 影响给水管道经济流速的因素很多,精确计算非常复杂。 对于单独的压力输水管道,经济管径公式: D=(fQ^3)^[1/(a+m)] 式中:f——经济因素,与电费、管道造价、投资偿还期、管道水头损失计算公式等多项因素有关的系数;Q——管道输水流量;a——管道造价公式中的指数;m——管道水头损失计算公式中的指数。

为简化计算,取f=1,a=,m=,则经济管径公式可简化为: D=Q^ 例:管道流量 22 L/S,求经济管径为多少? 解:Q=22 L/S=0.022m^3/s 经济管径 D=Q^=^=0.201m,所以经济管径可取200mm。 水头损失 没有“压力与流速的计算公式管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。(水头损失可以理解为固体相对运动的摩擦力)以常用的长管自由出流为例,则计算公式为 H=(v^2*L)/(C^2*R), 其中H为水头,可以由压力换算, L是管的长度, v是管道出流的流速, R是水力半径R=管道断面面积/内壁周长=r/2, C是谢才系数C=R^(1/6)/n, 给水管径选择 1、支管流速选择范围0..8~1.2m/s。 内径计算的,16mm也就相当于3分管,20mm差不多相当于4分的镀锌管径 一般工程上计算时,水管路,压力常见为,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=管径^2X流速(立方米/小时)^2:平方。管径单位:mm 管径=sqrt流量/流速) sqrt:开平方

排水管道计算说明书样本

1、污水管道的布置 1.1确定排水体制 排水体制的选择: 根据所给城镇和工厂的地形规划, 风向和水体条件, 综合现行对污水处理的要求, 考虑确定使用分流制, 这样能够分别处理雨水和污水, 流入污水厂的水量比合流制小得多, 污水厂的运行容易控制, 减轻城市污水厂的负担。同时分质处理雨水和污水, 针对性强, 适应城市发展的需要, 又能符合卫生要求。 1.2污水厂位置的选择 该规划区域虽多为丘陵地区, 地势高低起伏, 主导风向为东南风, 考虑综合因素, 将污水厂设在南部, 利于污水在管道内重力流动。该城镇中部有一大河流经, 将污水处理厂布置在东南角。 1.3划分排水流域 该城镇按人口密度分为四个区, Ⅰ区、Ⅱ区、Ⅲ区、Ⅳ区。考虑到该城镇小区众多, 人口密度较大, 拟将该城镇划分为四个排水区域, 以四条干管承接各区域的污水, 最后接入主干管。 2、管网布置与定线 ①管道定线时, 一般按主干管、干管、支管顺序依次进行, 应尽可能的在管线较短和埋深较小的情况下, 让最大区域的污水能自流排出。在定线时要考虑各方面的因素, 如: 地形和用地布局, 排水体制等等, 其中, 地形是重点考虑的因素。应充分利用地形, 顺

坡排水, 在整个排水区域较低的地方敷设主干管及干管便于污水自流接入。 污水主干管的走向取决于污水厂和出水口的位置, 小城市一般只设一个污水厂, 只需一条主干管。 ②为使污水能重力自流, 管道必须设置有一定的坡度, 因此, 随着管线的延长, 管道埋深不断加大, 当管道埋深过大时, 应设置中途泵站, 提升污水, 当管道无法避免穿过铁路、河流或其它地下建筑时, 管道最好垂直穿过障碍物, 并根据具体情况设置倒虹管等工程设施。 3、街区编号及其面积 3.1比流量的计算: Ⅰ区: 350×85%×280÷86400=0.964 L/s ha Ⅱ区: 350×85%×320÷86400=1.102 L/s ha Ⅲ区: 350×85%×350÷86400=1.205 L/s ha Ⅳ区: 350×85%×240÷86400=0.826 L/s ha 3.2设计人口数: Ⅰ区: 8059 Ⅱ区: 6121

采暖系统水力计算

在《供热工程》P97与P115有下面两段话:可以瞧出对于单元立管平均比摩阻得选择需要考虑重力循环自然附加压力得影响,试参照下面实例,分析对于供回水温60/50℃低温热水辐射供暖系统立管比摩阻得取值就是多少? 实例: 附件6、2关于地板辐射采暖水力计算得方法与步骤(天正暖通软件辅助完成) 6.2。1水力计算界面: 菜单位置:【计算】→【采暖水力】(c nsl )菜单点取【采暖水力】或命令行输入“cnsL”后,会执行本命令,系统会弹出如下所示得对话框。

功能:进行采暖水力计算,系统得树视图、数据表格与原理图在同一对话框中,编辑数据得同时可预览原理图,直观得实现了数据、图形得结合,计算结果可赋值到图上进行标注。 快捷工具条:可在工具菜单中调整需要显示得部分,根据计算习惯定制快捷工具条内容;树视图:计算系统得结构树;可通过【设置】菜单中得【系统形式】与【生成框架】进行设置; 原理图:与树视图对应得采暖原理图,根据树视图得变化,时时更新,计算完成后,可通过【绘图】菜单中得【绘原理图】将其插入到dwg中,并可根据计算结果进行标注; 数据表格:计算所需得必要参数及计算结果,计算完成后,可通过【计算书设置】选择内容输出计算书; 菜单:下面就是菜单对应得下拉命令,同样可通过快捷工具条中得图标调用;

[文件] 提供了工程保存、打开等命令; 新建:可以同时建立多个计算工程文档; 打开:打开之前保存得水力计算工程,后缀名称为、csl; 保存:可以将水力计算工程保存下来; [设置] 计算前,选择计算得方法等; [编辑]提供了一些编辑树视图得功能; 对象处理:对于使用天正命令绘制出来得平面图、系统图或原理图,有时由于管线间得连接处理不到位,可能造成提图识别不正确,可以使用此命令先框选处理后,再进行提图; [计算]数据信息建立完毕后,可以通过下面提供得命令进行计算; [绘图] 可以将计算同时建立得原理图,绘制到dwg图上,也可将计算得数据赋回到原图上; [工具] 设置快捷命令菜单; 6。2。2采暖水力计算得具体操作: 1、下面以某住宅楼为例进行计算:住宅楼施工图如下:

流量与管径计算书

流量与管径、压力、流速的一般关系 流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管径的平方X流速(立方米/小时)。 其中,管径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 Chezy 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 管网建模之基本公式篇 一、管渠沿程水头损失

才公式 圆管满流,沿程水头损失也可以用达西公式表示: h f——沿程水头损失(mm3/s) λ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2) C、λ与水流流态有关,一般采用经验公式或半经验公式计算。常用: 1.舍维列夫公式(适用:旧铸铁管和旧钢管满管紊流,水温100C0(给水管道计算)

相关文档
最新文档