北邮电磁场与电磁波

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

电磁场与电磁波概念题汇总解读

电磁场与电磁波概念题汇总 1.请写出B-D形式的场定律的微分形式及其相应的边界条件,并阐明每个方程(包括边界条件)的物理意义。(20分) 答:B-D形式的场定律的微分形式为 其物理意义为: (1式:时变的磁场是电场的涡旋源,可以产生涡旋电场; (2式:电流和时变的电场是磁场的涡旋源,可以产生涡旋磁场; (3式:电荷可以产生电场通量,电荷只有正、负两种; (4式:磁场没有通量源:磁荷; (5式:当空间点上的电荷密度减少时,必有电流密度的净通量。 在介质分界面上满足的边界条件为 其物理意义为: 边界两边电场切向分量连续;

边界上存在面电流时,两边磁场切向分量不连续; 边界上有面电荷存在时,电位移矢量法向分量不连续; 边界两边磁感应强度法向分量连续; 电荷守恒定律在边界上也是成立的。 2.写出简单媒质中关于正弦律时变场的复数形式的场定律。(10分) 答:简单媒质中关于正弦律时变场的复数形式的场定律为 3.写出时变电磁场的基本方程,并解释为什么电磁场的边值关系只能从积分形式的麦克斯韦方程组导出? 4.写出坡印廷矢量的定义式及微分形式坡印廷定理,并给出定理的物理解释。(P286~291)答:定义 微分形式 物理解释:电磁场在空间某点对运动电磁荷所提供的电磁功率密度等于该点电磁场能密度的减少率与外界向这点提供的电磁功率密度之和。 积分形式 物理解释:V内的电磁荷对电磁场所提供的总功率等于V内电磁场能量的增加率与从V内流出的电磁功率之和。 5.什么是均匀平面波?什么是TEM波?均匀平面波是TEM波吗?TEM波是均匀平面波吗?写出无源自由空间条件下均匀平面波的五个传播特性。 答:等相面与等幅面重合且为平面的电磁波称为均匀平面波;电场强度和磁场强度矢量在传播方向上分量为零的电磁波称为TEM波;均匀平面波是TEM波;TEM波不一定是均匀平面,如均匀柱面波、均匀平面波等都是TEM波。 无源自由空间条件下均匀平面波的五个传播特性(P355)

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场与电磁波复习

一、名词解释 1.通量、散度、高斯散度定理 通量:矢量穿过曲面的矢量线总数。(矢量线也叫通量线,穿出的为正,穿入的为负) 散度:矢量场中任意一点处通量对体积的变化率。 高斯散度定理:任意矢量函数A的散度在场中任意一个体积内的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。 2.环量、旋度、斯托克斯定理 环量:矢量A沿空间有向闭合曲线C的线积分称为矢量A沿闭合曲线l的环量。其物理意义随A 所代表的场而定,当A为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。 旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。 斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。 3.亥姆霍兹定理 在有限区域V内的任一矢量场,由他的散度,旋度和边界条件(即限定区域V的闭合 面S上矢量场的分布)唯一的确定。 说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度 4.电场力、磁场力、洛仑兹力电场力:电场 力:电场对电荷的作用称为电力。 磁场力:运动的电荷,即电流之间的作用力,称为磁场力。 洛伦兹力:电场力与磁场力的合力称为洛伦兹力。 5.电偶极子、磁偶极子 电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。 磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。 6.传导电流、位移电流 传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。 位移电流:电场的变化引起电介质内部的电量变化而产生的电流。 7.全电流定律、电流连续性方程 全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面内穿过的全部电流的代数和。 电流连续性方程: 8.电介质的极化、极化矢量 电介质的极化:把一块电介质放入电场中,它会受到电场的作用,其分子或原子内的正,负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子, 这种现象称为电介质的极化。 极化矢量P:单位体积内的电偶极矩矢量和。 9.磁介质的磁化、磁化矢量 磁介质的磁化:当把一块介质放入磁场中时,它也会受到磁场的作用,其中也会形成一个个 小的磁偶极子,这种现象称为介质的磁化。

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

电磁场与电磁波理论基础自学指导书

电磁场与电磁波理论基础自学指导书 课程简介:电磁场理论是通信技术的理论基础,是通信专业本科学生必须具备的知识结构的重要组成部分之一。使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生对"场"与"路"这两种既密切相关又相距甚远的理论有深刻的认识,并学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。为以后的学习和工作打下坚实的理论基础。 第一章矢量分析场论初步 1主要内容 本章从矢量分析入手,介绍了标量场和矢量场的基本概念,学习了矢量的通量、散度以及散度定理,矢量的环流、旋度以及斯托克斯定理,标量的梯度,以及上述的物理量在圆柱和球坐标系下的表达形式,最后介绍了亥姆霍兹定理,该定理说明了研究一个矢量场从它的散度和旋度两方面入手。通过本章的学习,使学生掌握场矢量的散度、旋度和标量的梯度的概念和数学计算为以后的电磁场分析打下基础。 2学习要求 深刻理解标量场和矢量场的概念;深刻理解散度、旋度和梯度的概念、物理意义及相关定理; 熟练使用直角坐标、圆柱坐标和球坐标进行矢量的微积分运算; 了解亥姆霍兹定理的内容。 3重点及难点 重点:在直角坐标、圆柱坐标和球坐标中计算矢量场的散度和旋度、标量场的梯度以及矢量的线积分、面积分和体积分。 难点:正确理解和掌握散度、旋度和梯度的概念及定理,可以借助流体的流量和涡旋等自然界中比较具体而形象的相似问题来理解。 4思考题合作业 1.4, 1.8, 1.9, 1.11, 1.14, 1.16, 1.24 第二章静电场 1主要内容 本章我们从点电荷的库仑定律发,推导出静电场的基本方程(微分表达及积分表达),该基本方程第一组与静电场的散度和通量有关(高斯定律),第二组有关静电场的环量和旋度,推导的过程运用了叠加原理。由静电场的基本方程中的环量和旋度的基本方程,我们引入了电位的概念,并给出了电场强度与电位之间的关系以及电位的计算公式。运用静电场的基本方程及电位可以解决静电场中的场源互求问题(已知源求场或已知场求源)。然后介绍了电偶极子的概念,推导了电偶极子的电场强度与电位的表达式。接着介绍了介质的极化,被极化的分子可等效为电偶极子,所以介质极化产生的电位就可以借用电偶极子的相关结论。由极化介质的电位公式我们推导了介质中的高斯定律,在该定律中引入了一个新的量—

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电磁场与电磁波名词解释

学习必备欢迎下载 电磁场与电磁波名词解释: 1.亥姆赫兹定理(P26):在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,这就是亥姆赫兹定理的核心内容。 2.洛伦兹力(P40):当一个电荷既受到电场力同时又受到磁场力的作用时,我们称这样的合力为洛伦兹力。 3.传导电流(P48):自由电荷在导电媒质中作有规则运动而形成。 4.运流电流(P49):电荷在无阻力空间作有规则运动而形成。 5.位移电流(P49):电介质内部的分子束缚电荷作微观位移而形成。 6.电介质(P65):电介质实际上就是绝缘材料,其中不存在自由电荷,带电粒子是以束缚电荷形式存在的。 7.电介质的极化(P64):当把一块电介质放入电场中时,它会受到电场的作用,其分子或原子内的正、负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。 8.电介质的磁化(P64):当把一块介质放入磁场中时,它也会受到磁场的作用,其中也会产生一个个小的磁偶极子,这种现象称为介质的磁化。 9.对偶原理(P105):如果描述两种物理现象的方程具有相同的数学形式,并且有相似的边界条件或对应的边界条件,那么它们的数学解的形式也将是相同的,这就是对偶原理。10.叠加原理(P106):若φ1和φ2分别满足拉普拉斯方程,即▽2φ1=0和▽2φ2=0,则φ1和φ2的线性组合φ=aφ1+bφ2也必然满足拉普拉斯方程,即▽2(aφ1+bφ2)=0。11.唯一性原理(P107):对于任一静态场,在边界条件给定后,空间各处的场也就唯一地确定了,或者说这时拉普拉斯方程的解是唯一的。 12.镜像法(P107):通过计算由源电荷和镜象电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场,这种方法称为镜象法。 13.电磁波谱(P141):为了对各种电磁波有个全面的了解,人们按照波长或频率的顺序把这些电磁波排列起来,这就是电磁波谱。 14.相速(P155):我们将速度v (介质中的波速)称为相速,即正弦波的最大速度。一般情况下,速度v 是恒定相位面在波中向前推进的速度,所以也可以根据电场极小值通过空间一固定点的速度来定义这个速度。 15.群速(P159):定义为Vg=dw/dk。 16.色散现象(P157):不同频率的波将以不同的速率在介质中传播的现象称为色散 17.耗散介质(P148):非理想介质是有损耗介质也称为耗散介质,在这里是指电导率,但仍然保持均匀、线性及各向同性等特性。 18.穿透深度(P165):将电磁波的振幅衰减到e^-1时它的导电介质的深度定义为趋肤深度(穿透深度) 19.等离子体(P175):是除气体、液体和固体以外的第四种物态,它是由电子、负离子、正离子和未电离的中性分子组成的混合体。 20.全折射(P195):当电磁波以某一入射角入射到两种媒质交界面上时,如果反射系数为0,则全部电磁能量都进入到第二种媒质,这种情况称为全折射。 21.全反射(P195):当电磁波入射到两种媒质交界面上时,如果反射系数|R|=1,则投射到界面上的电磁波将全部反射回第一种媒质中,这种情况称为全反射。

南京邮电大学电磁场与电磁波考试必背公式

电磁场与电磁波复习 第一部分 知识点归纳 第一章 矢量分析 1、三种常用的坐标系 (1)直角坐标系 微分线元:dz a dy a dx a R d z y x → → → → ++= 面积元:?????===dxdy dS dxdz dS dydz dS z y x ,体积元:dxdydz d =τ (2)柱坐标系 长度元:?????===dz dl rd dl dr dl z r ??,面积元??? ??======rdrdz dl dl dS drdz dl dl dS dz rd dl dl dS z z z r z r ????,体积元:dz rdrd d ?τ= (3)球坐标系 长度元:??? ??===?θθ? θd r dl rd dl dr dl r sin ,面积元: ?? ? ??======θ ?θ? θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:?θθτd drd r d sin 2= 2、三种坐标系的坐标变量之间的关系 (1)直角坐标系与柱坐标系的关系 ?? ?? ??? ==+=?????===z z x y y x r z z r y r x arctan ,sin cos 22??? (2)直角坐标系与球坐标系的关系 ? ?? ? ?? ??? =++=++=?????===z y z y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 2 222 22?θθ?θ?θ (3)柱坐标系与球坐标系的关系 ?? ? ? ???=+=+=?????===??θθ??θ2 2'2 2''arccos ,cos sin z r z z r r r z r r 3、梯度 (1)直角坐标系中: z a y a x a grad z y x ??+??+??=?=→→→ μ μμμμ (2)柱坐标系中: z a r a r a grad z r ??+??+??=?=→→→ μ ?μμμμ?1 (3)球坐标系中:

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

电磁场与电磁波课设解读

目录 1.课程设计的目的与作用 1 1.1设计目的 1 1.2设计作 用 (1) 2 设计任务及所用maxwell软件环境介绍 2 2.1设计任务2 2.2maxwell软件环境: 2 3电磁模型的建立 3 4电磁模型计算及仿真结果后处理分析 7 5 设计总结和体会 12 6 参考文献13 1.课程设计的目的与作用 1.1设计目的: 随着经济的发展和社会的进步,人们的日常生活水平不断的提高,人们在充分享用现代生活方便,舒适的同时也越来越离不开电子产品了。对电子产品本身来

说,只要通电,就存在电磁之类干扰的问题,而电子产品对外界来说又存在着电磁辐射等问题,如何解决这类问题,趋利避害,更好地让电子产品为我们的服务器真是我们需要做的工作。 电磁场与电磁波课程理论抽象、数学计算繁杂,将Maxwell软件引入教学中,通过对典型电磁产品的仿真设计,并模拟电磁场的特性,将理论与实践有效结合,强化学生对电磁场与电磁波的理解和应用,提高教学质量。 1.2设计作用: 电磁场与电磁波主要介绍电磁场与电磁波的发展历史、基本理论、基本概念、基本方法以及在现实生活中的应用,内容包括电磁场与电磁波理论建立的历史意义、静电场与恒流电场、电磁场的边值问题、静磁场、时变场和麦克斯韦方程组、准静态场、平面电磁波的传播、导行电磁波以及谐振器原理等。全书沿着电磁场与电磁波理论和实践发展的历史脉络,将历史发展的趣味性与理论叙述和推导有机结合,同时介绍了电磁场与电磁波在日常生活、经济社会以及科学研究中的广泛应用。书中的大量例题强调了基本概念并说明分析和解决典型问题的方法;每章末的思考题用于测验学生对本章内容的记忆和理解程度;每章的习题可增强学生对于公式中不同物理量的相互关系的理解,同时也可培养学生应用公式分析和解决问题的能力。 2 设计任务及所用Maxwell软件环境介绍 2.1设计任务: 平板电容器电场仿真 平板电容器模型描述: 上下两极板尺寸:25mm×25mm×2mm,材料:pec(理想导体) 介质尺寸:25mm×25mm×1mm,材料:mica(云母介质)

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第1章习题解答

第1章习题解答 1.4 计算下列标量场u 的梯度u ? : (1)234u x y z =; (2)u xy yz zx =++; (3)222323u x y z =-+。 解:(1) 34224233234x y z x y z u u u u e e e e xy z e x y z e x y z x y z ????=++=++??? (2)()()()x y z x y z u u u u e e e e y z e x z e y x x y z ????=++=+++++??? (3)646x y z x y z u u u u e e e e x e y e z x y z ????=++=-+??? 1.6 设()22,,1f x y z x y y z =++。试求在点()2,1,3A 处f 的方向导数最大的方向的单位矢量及其方向导 数。方向导数最小值是多少?它在什么方向? 解: ()2222x y z x y z f f f f e e e e xy e x yz e y x y z ????=++=+++??? 因为410x y z x y z A f f f f e e e e e e x y z ????=++=++??? 所以 ( max 410l x y z f e e e e l ?==++? ( min 410l x y z f e e e e l ?==-++? 1.10 求下列矢量场在给定点的散度值: (1)()x y z A xyz e x e y e z =++ 在()1,3,2M 处; (2)242x y z A e x e xy e z =++ 在()1,1,3M 处; (3)())1222x y z A e x e y e z x y z =++++ 在()1,1,1M 处。 解:(1) 222636y x z M A A A A xyz xyz xyz xyz A x y z ?????=++=++=??=??? (2)42212y x z M A A A A x z A x y z ?????= ++=++??=??? (3)y x z A A A A x y z ?????=++ ??? ( )( )( ) 2222 2222 2222 3 3 3 x y z x x y z y x y z z ++-++-++ -= + + = M A ??=

电磁场与电磁波实验报告

实验一 静电场仿真 1.实验目的 建立静电场中电场及电位空间分布的直观概念。 2.实验仪器 计算机一台 3.基本原理 当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。 点电荷q 在无限大真空中产生的电场强度E 的数学表达式为 204q E r r πε= (r 是单位向量) (1-1) 真空中点电荷产生的电位为 04q r ?πε= (1-2) 其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为 1221014n i n i i i q E E E E r r πε==+++=∑ (i r 是单位向量)(1-3) 电位为 121014n i n i i q r ????πε==+++=∑ (1-4) 本章模拟的就是基本的电位图形。 4.实验内容及步骤 (1) 点电荷静电场仿真 题目:真空中有一个点电荷-q ,求其电场分布图。

程序1: 负点电荷电场示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; E=(-q./m1).*r; surfc(x,y,E);

负点电荷电势示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; z=-q./m1 surfc(x,y,z); xlabel('x','fontsize',16) ylabel('y','fontsize',16) title('负点电荷电势示意图','fontsize',10)

电磁场与电磁波课程知识点汇总和公式

电磁场与电磁波课程知识点汇总和公式

————————————————————————————————作者:————————————————————————————————日期:

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : a b ρ r ε ρs r S a b ε q l 球对称 轴对称 面对称

电磁场与电磁波实验报告 2

电磁场与电磁波实验报告

实验一 电磁场参量的测量 一、 实验目的 1、 在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、 熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波 的相位常数β和波速υ。 二、 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反) 方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ的值,再由 λ πβ2=,βωλν==f 得到电磁波的主要参量:β和ν等。 本实验采取了如下的实验装置 设入射波为φj i i e E E -=0,当入射波以入射角1θ向介质板斜投射时,则在 分界面上产生反射波r E 和折射波t E 。设介质板的反射系数为R ,由空气进入介质板的折射系数为0T ,由介质板进入空气的折射系数为c T ,另外,可动板 2r P 和固定板1r P 都是金属板,其电场反射系数都为-1。在一次近似的条件下, 接收喇叭处的相干波分别为1001Φ--=j i c r e E T RT E ,2002Φ--=j i c r e E T RT E

这里 ()13112r r r L L L ββφ=+=;()()231322222L L L L L L r r r r βββφ=+?+=+=; 其中12L L L -=?。 又因为1L 为定值,2L 则随可动板位移而变化。当2r P 移动L ?值,使3r P 有零指示输出时,必有1r E 与2r E 反相。故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。从而测出电磁波的波长λ和相位常数β。下面用数学式来表达测定波长的关系式。 在3r P 处的相干波合成为()210021φφj j i c r r r e e E T RT E E E --+-=+= 或写成 () ?? ? ??+-?Φ-=200212cos 2φφj i c r e E T RT E (1-2) 式中L ?=-=?Φβφφ221 为了测量准确,一般采用3r P 零指示法,即02cos =?φ 或 π)12(+=?Φn ,n=0,1,2...... 这里n 表示相干波合成驻波场的波节点(0=r E )数。同时,除n=0以外的n 值,又表示相干波合成驻波的半波长数。故把n=0时0=r E 驻波节点为参考节点的位置0L 又因 L ??? ? ??=?λπφ22 (1-3) 故 ()L n ??? ? ??=+λππ2212 或 λ)12(4+=?n L (1-4) 由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的 值。当n=0的节点处0L 作为第一个波节点,对其他N 值则有: n=1,()λ24401=-=?L L L ,对应第二个波节点,或第一个半波长数。 n=1,()λ24412=-=?L L L ,对应第三个波节点,或第二个半波长数。

相关文档
最新文档