二次函数中几何图形的最值问题

二次函数中几何图形的最值问题
二次函数中几何图形的最值问题

二次函数中几何图形的最值问题

教情分析:

二次函数中与几何图形的结合题变化多端,关于几何图形的最值问题只是这些变化中的一类,在教学中如何引导学生在复杂的变化中发现解题的路径,关键是训练学生在题目中寻找不变的已知元素,运用“两点间的线段最短”“垂线段最短”“二次函数的最值”“三角形中的三边关系”等知识点,来实现问题的转化与解决。

教学目标:

引导学生掌握处理二次函数中的最值问题,明确解决最值问题的思考方向。

思想方法:

由于这类问题有一定的综合性和探索性,解题中需要运用数形结合、转化和化归、动态思维、特殊与一般等数学思想。

教学过程:

问题:在平面直角坐标系中,抛物线y=ax2+2x+c的图象

A的坐标为(3,0),B的坐标为(0,3),

(1)求直线AB和抛物线的解析式;

(2)点E是线段AB上的动点,过E作x

交抛物线于点F,设点E的横坐标为t,

求线段EF的最大值,并求出此时点E

点F的坐标呢?

(3)在直线AB上方的抛物线上有一动点P使得

?ABP的面积最大?若存在求出点P的坐标及最大面积;若不存在请说明理由解题思路:

(1)求出直线AB的解析式;

(2)若直线AB上有一动点E的横坐标为t,那么它的纵坐标如何表示?

(3)已知抛物线y=ax2+2x+c的图象与x轴交于点A和点C,与y轴交于点B,求此抛物线的解析式;

(4)若在上题中的抛物线上有一动点P的横坐标为m,那么它的纵坐标如何表示? 已知抛物线y=-x2+2x+3经过A(3,0)、B(0,3)两点;

(5)点E是线段AB上的动点,过E作x轴的垂线交抛物线于点F,设点E的横坐标为t,求线段EP的最大值,并求出此时点E的坐标;点P的坐标呢?(6)在直线AB上方的抛物线上有一动点P使得?ABP的面积最大?若存在求出点P的坐标及最大面积;若不存在请说明理由.

小结:

练习:在直线AB上方(6)题中的抛物线上有一动点G,当G到直线AB的距离最大时,求G点的坐标及距离最大值

二次函数与几何图形结合练习

3.2 与几何图形结合3.2.1 与等腰三角形结合1、如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交 x 轴于另 一点C (3,0). ⑴求抛物线的解析式 ; ⑵在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的 Q 点坐标;若不存在,请说明理由 2、如图,已知直线y=x 与交于A 、B 两点. (1)求交点A 、B 的坐标;(2)记一次函数y=x 的函数值为y 1,二次函数 的函数值为y 2.若y 1>y 2,求x 的 取值范围; (3)在该抛物线上存在几个点,使得每个点与AB 构成的三角形为等腰三角形?并求出不 少于3个满足条件的点 P 的坐标. y =x 2 y =x 2

3、如图,已知二次函数的图象经过点A (3,3)、B (4,0)和原点O 。P 为二次函数图象 上的一个动点,过点 P 作x 轴的垂线,垂足为 D (m ,0),并与直线OA 交于点C . (1)求出二次函数的解析式; (2)当点P 在直线OA 的上方时,求线段PC 的最大值; (3)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,如果存在,求出 P 的坐 标;如果不存在,请说明理由. 3.2.2 与直角三角形结合1、二次函数的图象的一部分如图所示.已知它的顶点 M 在第二象限,且经 过点A(1,0)和点B(0,l).(1)试求,所满足的关系式;(2)设此二次函数的图象与x 轴的另一个交点为 C ,当△AMC 的面积为△ABC 面积的 倍时,求a 的值;(3)是否存在实数a ,使得△ABC 为直角三角形.若存在,请求出 a 的值;若不存在,请说 明理由. 2 y ax bx c a b 5 4

平面图形与立体图形的认识

【几何图形】 从实物中抽象出来的各种图形,包括立体图形和平面图形。 立体图形分为柱体,锥体,球体 多面体:围城棱柱和棱锥的面都是平的面,像这样的立体图形叫做多面体 欧拉公式:定点数+面数-棱数=2 练习: 1.下面几何体中,不是多面体的是() A球体 B 三棱锥 C 三棱柱D四棱柱 2.下列判断正确的是 A长方形是多面体B柱体是多面体 C圆锥是多面体D棱柱、棱锥都是多面体 3、将半圆绕它的直径旋转一周形成的几何体是() A、圆柱 B、圆锥 C、球 D、正方体 【点、线、面、体】 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 例、右侧这个几何体的名称是_______;它由_______个面组成;它有_______个顶点;经过每个顶点有_______条边。 解答:五棱柱,7,10,3 【直线】 1、概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。 2、直线的性质 (1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 3、表示:一条直线可以用一个小写字母表示;或者用两个大写字母表示 练习: 1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线. 2、我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________. 【射线】 直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。

几何图形中的函数问题

D C B A 几何图形中的函数问题 1如图,在梯形ABCD 中,AB ∥CD . (1)如果∠A =?50,∠B =?80,求证:AB CD BC =+. (2)如果AB CD BC =+,设∠A =?x ,∠B =?y ,那么y 关于x 的函数关系式是_______. 2.如图,P 是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于点Q ,已知AD=6cm,AB=8cm ,设AP=x(cm),BQ=y(cm). (1)求y 与x 之间的函数解析式并求自变量x 的取值范围; (2)是否存在点P ,使BQ=2AP 。若存在,求出AP 的长;若不存在,说明理由。 3.如图,矩形EFGH 内接与△ABC ,AD ⊥BC 与点D ,交EH 于点M ,BC=10cm , AD=8cm , 设EF=x cm ,EH=y cm ,矩形EFGH 的面积为S cm2, ①分别求出y 与x ,及S 与x 的函数关系式,写出x 的取值范围; ②若矩形EFGH 为正方形,求正方形的边长; ③ x 取何值时,矩形EFGH 的面积最大。 A B D A B C D E F M H G

5.如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x, CE=y (l )如果∠BAC=30°,∠DAE=l05°,试确定y 与x 之间的函数关系式; (2)如果∠BAC=α,∠DAE=β,当α, β满足怎样的关系时,(l )中y 与x 之间的函数关系式还成立?试说明理由. 6.已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在 矩形ABCD 边AB 、BC 、DA 上,AE =2. (1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分) (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积(用含a 的代数式表示); D C A B E F D C A B E F H G

高中数学-二次函数定区间上最值问题

高中数学-二次函数定区间上最值问题 一、二次函数知识点回顾 (一)二次函数的概念: 一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. (二)二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大; 当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小; 当2b x a =-时,y 有最大值244ac b a -. (三)二次函数基本形式: 1、2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。

3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: 二、二次函数闭区间上的最值解题思路分析 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 如设: f x a x b xc a ()() =++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 方法思路分析:将f x ()配方,得顶点为--?? ???b a a c b a 2442,、对称轴为x b a =- 2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上 f x ()的最值:

几何图形中的最值问题

几何图形中的最值问题 引言:最值问题可以分为最大值与最小值。在初中包含三个方面的问题: 1、函数:①二次函数有最大值与最小值;②一次函数中有取值范围时有最大值与最小值。 2、不等式: ①如x ≤7,最大值就是7;②如x ≥5,最小值就是5、 3、几何图形: ①两点之间线段线段最短。②直线外一点向直线上任一点连线中垂线段最短,③在三角形中,两边之与大于第三边,两边之差小于第三边。 一、最小值问题 例1、 如图4,已知正方形的边长就是8,M 在DC 上,且DM=2,N 为线段AC 上的一动点,求DN+MN 的最小值。 解: 作点D 关于AC 的对称点D / ,则点D / 与点B 重合,连BM,交AC 于N,连DN,则DN+MN 最短,且DN+MN=BM 。 ∵CD=BC=8,DM=2, ∴MC=6, 在Rt △BCM 中,BM= 682 2 =10, ∴DN+MN 的最小值就是10。 例2,已知,MN 就是⊙O 直径上,MN=2,点A 在⊙O 上,∠AMN=300 ,B 就 是弧AN 的中点,P 就是MN 上的一动点,则PA+PB 的最小值就是 解:作A 点关于MN 的对称点A / ,连A / B,交MN 于P,则PA+PB 最短。 连OB,OA / , ∵∠AMN=300,B 就是弧AN 的中点, ∴∠BOA / =300, 根据对称性可知 ∴∠NOA / =600 , ∴∠MOA / =900 , 在Rt △A / BO 中,OA / =OB=1, ∴A / B=2 即PA+PB=2 图1 L B' C B A 图4 N C D M P O N M A A / E A M O P N B

平面图形与立体图形教案

4.1几何图形 4.1.1立体图形与平面图形 【教学目标】 1、能从实物图形中抽取出几何图形;能在生活中寻找出相应的几何图形;会认识常见的平面几何图形和立体几何图形。 2、通过实物抽取几何图形的体验,培养自己的几何图形感,能用几何图形描述生活中的物体。 3、通过对多彩多姿的图形世界体验,激发自己对几何学习的兴趣,也体会学习的快乐。 【教学重难点】 1.重点: (1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;?初步建立空间观念. (2)理解几何图形是从实物图形中抽象出来的。 (3)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣. 2.难点: (1)立体图形与平面图形之间的互相转化. (2)从现实情境中,抽象概括出几何图形 【教具准备】 长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片.

【教学过程】 一、引入新课 由多媒体展示美丽的图形世界 在同学们所观看中,有哪些是我们熟悉的几何图形? 二、新授 1.学生在回顾刚才所看到的图片,充分发表自己的意见,?并通过小组交流,补充自己的意见,积累小组活动经验. 2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等. 教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征. 3.立体图形的概念. (1)长方体、正方体、球、圆柱、圆锥等都是立体图形. (2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥) (3)用多媒体放映课本4.1-4的幻灯片 (4)提出问题:在这个幻灯片中,包含哪些简单的平面图形? (5)探索解决问题的方法. ①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案. ②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.

中考数学重难点专题讲座第八讲动态几何与函数问题

中考数学重难点专题讲座 第八讲 动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E. (1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积. (2)当24t <<时,求S 关于t 的函数解析式. 【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。很多考生看到图二

的函数图像没有数学感觉,反应不上来那个M 点是何含义,于是无从下手。其实M 点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N 点表示移动距离超过4之后阴影部分面积就不动了。脑中模拟一下就能想到阴影面积固定就是当D 移动过了0点的时候.所以根据这么几种情况去作答就可以了。第二问建立函数式则需要看出当24t <<时,阴影部分面积就是整个梯形面积减去△ODE 的面积,于是根据这个构造函数式即可。动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。 【解】 (1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==, ; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO = ∴直角梯形OABC 的面积为: ()()112441222 AB OC OA +?=+?=..... (3分) (2)当24t <<时, 阴影部分的面积=直角梯形OABC 的面积-ODE ?的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系) ∴1122S OD OE =-? ∵142 OD OD t OE ==-, ∴()24OE t =- . ∴()()()21122441242 S t t t =-?-?-=-- 284S t t =-+-. 【例2】 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k y k x =>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;

二次函数在闭区间上的最值 (经典)

二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为- -?? ???b a ac b a 2442 ,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是 f b a ac b a f x -?? ???=-2442 ,()的最大值是f m f n ()()、中的较大者。 (2)当[] - ?b a m n 2,时 若-< b a m 2,由f x ()在[] m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a <-2,由f x ()在[] m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。 二、例题分析归类: (一)、正向型 是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。 1. 轴定区间定 二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。 例1. 函数y x x =-+-2 42在区间[0,3]上的最大值是_________,最小值是_______。 练习. 已知232 x x ≤,求函数f x x x ()=++2 1的最值。 2、轴定区间变 二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的 最值”。 例2. 如果函数f x x ()()=-+112 定义在区间[] t t ,+1上,求f x ()的最值。 例3. 已知2 ()43f x x x =--+,当[1]()x t t t ∈+∈R ,时,求()f x 的最值. 对二次函数的区间最值结合函数图象总结如下: 当a >0时??? ???? +<-+≥-=) )((212)())((2 12)()(21max 如图如图,,n m a b n f n m a b m f x f ?? ? ? ? ? ??? <-≤-≤->-=)(2)()(2)2()(2)()(543min 如图如图如图,,,m a b m f n a b m a b f n a b n f x f

二次函数与几何图形结合题及答案

1.如图,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标; (2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积; (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 解:(1)令0y =,得2 10x -= 解得1x =± 令0x =,得1y =- ∴ A (1,0)- B (1,0) C (0,1)- ……………………3分 (2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O= 45 ∵A P ∥CB , ∴∠P AB = 45 过点P 作P E ⊥x 轴于E ,则?A P E 为等腰直角三角形 令O E =a ,则P E =1a + ∴P (,1)a a + ∵点P 在抛物线21y x =-上 ∴2 11a a +=- 解得12a =,21a =-(不合题意,舍去) ∴P E =3……………………………………………………………………………5分 ∴四边形ACB P 的面积S =12AB ?O C +12AB ?P E =11 2123422 ??+??=………………………………6分 (3). 假设存在 ∵∠P AB =∠BAC =45 ∴P A ⊥AC ∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90 在Rt △A O C 中,O A =O C =1 ∴AC =2 在Rt △P AE 中,AE =P E =3 ∴A P= 32 ………8分 设M 点的横坐标为m ,则M 2 (,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当?A MG ∽?P CA 时,有 AG PA =MG CA ∵A G=1m --,MG=2 1m -即2322 = 解得11m =-(舍去) 23m =(舍去)………9分 G M C B y P A o x

几何图形中的动态问题

几何图形中的动态问题 ★1.如图,在矩形ABCD中,点E在BC边上,动点P 以2厘米/秒的速度从点A出发,沿△AED的边按照A→E→D→A的顺序运动一周.设点P从点A出发经x(x>0)秒后,△ABP的面积是y. (1)若AB=8cm,BE=6cm,当点P在线段AE上时,求y关于x的函数表达式; (2)已知点E是BC的中点,当点P在线段ED上时,y=12 5x;当点P在线段AD上时,y=32-4x.求y关于x的函数表达式. 第1题图 解:(1)∵四边形ABCD是矩形,∴∠ABE=90°, 又∵AB=8cm,BE=6cm,

∴AE=AB2+BE2=82+62=10厘米,如解图①,过点B作BH⊥AE于点H, 第1题解图① ∵S△ABE=1 2AE·BH=1 2AB·BE, ∴BH=24 5cm,又∵AP=2x, ∴y=1 2AP·BH=24 5x(0

∴AE =DE , ∵y =12 5x (P 在ED 上), y =32-4x (P 在AD 上), 当点P 运动至点D 时,可联立得,?????y =125x y =32-4x , 解得x =5, ∴AE +ED =2x =10, ∴AE =ED =5cm , 当点P 运动一周回到点A 时,y =0, ∴y =32-4x =0, 解得x =8, ∴AE +DE +AD =16, ∴AD =BC =6cm ,∴BE =3cm , 在Rt △ABE 中, AB = AE 2-BE 2=4cm , 如解图②,过点B 作BN ⊥AE 于N ,则BN =12 5cm ,

二次函数在给定区间上的最值问题

二次函数在给定区间上的最值问题 【学前思考】 二次函数在闭区间上取得最值时的X ,只能是其图像的顶点的横坐标或给定区间的端点?因此,影响二次函数在闭区间上的最值主要有三个因素:抛物线的开口方向、对称轴以及给定区间的位置.在这三大因素中,最容易确定的是抛物线的开口方向(与二次项系数的正负有关),而关于对称轴与给定区间的位置关系的讨论是解决二次函数在给定区间上的最值问题的关键.本节,我 们将以若干实例说明解决此类问题的具体方法. 【知识要点&例题精讲】 二次函数在给定区间上的最值问题,常见的有以下三种类型,分别是: CaSe l、给定区间确定,对称轴位置也确定 说明:此种类型是较为简单的一种,只要找到二次函数的对称轴,画出其函数 图像,再将给定区间标出,那么二次函数的最值一目了然. 解法:若二次函数的给定区间是确定的,其对称轴的位置也确定,则要求二次函数在给定区间上的最值,只需先考察其对称轴的横坐标是否在给定区间内 (i) 当其对称轴的横坐标在给定区间内时,二次函数在给定区间上不具有单调性,此时其一个最值在顶点处取得,另一个最值在离对称轴的横坐标较远的端点处取得;(ii )当其对称轴的横坐标不在给定区间内时,二次函数在给定区间上具有单调性,此时可利用二次函数的单调性确定其最值. 例1、二次函数y = χ2-2χ+3在闭区间[-1,2】上的最大值是_________ . 例2、函数f(X)= -X2 +4x-2在区间【0,3】上的最大值是_________ 最小值是

例3、已知2χ2≤3x,则函数f(χ)=χ2+χ+1的最大值是 ____________ ,最小值是 CaSe n、给定区间确定,对称轴位置变化 说明:此种类型是非常重要的,是考试必考点,主要是讨论二次函数的对称轴与给定区间的位置关系,一般需要分对称轴在给定区间的左侧、内部以及右侧三种情况进行分类讨论,然后根据不同情况求出相应的最值. 解法:若二次函数的给定区间是确定的,而其对称轴的位置是变化的,则要求 二次函数y=aχ2?bx ?c ( a =O)在给定区间[p,q 1上的最值,需对其对称轴与 给定区间的位置关系进行分类讨论.这里我们以a 0的情形进行分析: (i)若一A P ,即对称轴在给定区间∣p,q 1的左侧,贝U函数f(χ)在给定区间 2a l-P,q ]上单调递增,此时[f (X)]max = f(q),[f (X)]min = f ( P); (ii) 若^-―

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

二次函数与几何图形综合题(可编辑修改word版)

二次函数与几何图形综合题 类型 1 二次函数与相似三角形的存在性问题 1.(2015·昆明西山区一模)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段BC 上的一个动点,过P 作PE 垂直于x 轴与抛物线交于点E,设P 点横坐标为m,PE 长度为y,请写出y 与m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点D 使以A、B、D 为顶点的三角形与△COB 相似?若存在,试求出点D 的坐标;若不存在,请说明理由.

2.(2013·曲靖)如图,在平面直角坐标系xOy 中,直线y=x+4 与坐标轴分别交于A,B 两点,过A,B 两点的抛物线为y=-x2+bx+c.点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C,交抛物线于点E. (1)求抛物线的解析式; (2)当DE=4 时,求四边形CAEB 的面积; (3)连接BE,是否存在点D,使得△DBE 和△DAC 相似?若存在,求出D 点坐标;若不存在,说明理由. 3.(2015·襄阳)边长为 2 的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD,点E 在第一象限,且DE⊥DC,DE=DC.以直线AB 为对称轴的抛物线过C,E 两点.

(1)求抛物线的解析式; (2)点P 从点C 出发,沿射线CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点P 作PF⊥CD 于点F.当t 为何值时,以点P,F,D 为顶点的三角形与△COD 相似? (3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由. 类型 2 二次函数与平行四边形的存在性问题 1.(2014·曲靖)如图,抛物线y=ax2+bx+c 与坐标轴分别交于A(-3,0),B(1,0),C(0,3)三点,D

二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322 ++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线 x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2 经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

(完整版)二次函数与几何图形综合题.doc

二次函数与几何图形综合题 类型 1二次函数与相似三角形的存在性问题 1. (2015 ·明西山区一模昆)如图,已知抛物线y= ax2+bx+ c(a≠0)经过 A(- 1, 0), B(4, 0), C(0 ,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段 BC 上的一个动点,过P 作 PE 垂直于 x 轴与抛物线交于点 E,设 P 点横坐标为 m, PE 长度为 y,请写出 y 与 m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点 D 使以 A、B、D 为顶点的三角形与△ COB 相似?若存在,试求出点 D 的坐标;若不存在,请说明理由.

2. (2013 ·靖曲 )如图,在平面直角坐标系xOy 中,直线y= x+ 4 与坐标轴分别交于A, B 两点,过A,B 两点的抛物线为y=- x2+ bx+ c.点 D 为线段 AB 上一动点,过点 D 作 CD⊥ x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式; (2)当 DE= 4 时,求四边形CAEB 的面积; (3)连接 BE,是否存在点 D ,使得△ DBE 和△ DAC 相似?若存在,求出 D 点坐标;若不存在,说明理由.

3.(2015 襄·阳 )边长为 2 的正方形O ABC 在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接 CD ,点 E 在第一象限,且DE⊥ DC , DE =DC.以直线 AB 为对称轴的抛物线过C, E 两点. (1)求抛物线的解析式; (2)点 P 从点 C 出发,沿射线 CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点 P 作 PF ⊥ CD 于点 F .当 t 为何值时,以点P, F ,D 为顶点的三角形与△COD 相似? (3)点 M 为直线 AB 上一动点,点N 为抛物线上一动点,是否存在点M, N,使得以点M,N, D, E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

几何图形与平面图形

课题 4.1.1几何图形与平面图形 一、学习目标 1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程; 2、能由实物形状想象出几何图形,由几何图形想象出实物形状; 3、能识别一些简单几何体,正确区分平面图形与立体图形。 学习重点:识别简单的几何体 学习难点:从具体事物中抽象出几何图形 二、自主探究 1、几何图形 (1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界; (2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题: 从整体上看,它的形状是 从不同侧面看,你看到的图形是 看棱得到的是 看顶点的到的是 。 我们见过的长方体、圆柱、圆锥、球、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。 2、立体图形 说一说下面这些几何图形有什么共同特点? 有些几何图形的各部分不都在同一平面内,它们是 .(如: ) 请再举出一些立体图形的例子. 想一想 生活中还有哪些物体的形状类似于这些立体图形呢? 3、平面图形 (1)纸盒 (1)长方体 (2)长方形 (3)正方形(4)线段 点

说一说下面这些几何图形又有什么共同特点? 平面图形的概念 线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是 。 请再举出一些平面图形的例子。 思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系? 三、课堂练习 课本119页练习 四、要点归纳 1、 2、平面图形与立体图形的关系: 立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内; 立体图形中某些部分是平面图形。 五、拓展训练 1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球. 其中属于立体图形的是( ) A. ①②③; B. ③④⑤; C. ① ③⑤; D. ③④⑤⑥ 【总结反思】 现实物体 几何图形 平面图形 立体图形 看外形

几何图形中的函数问题

D C B A 几何图形中的函数问题 1如图,在梯形ABCD 中,AB ∥CD 、 (1)如果∠A =?50,∠B =?80,求证:AB CD BC =+、 (2)如果AB CD BC =+,设∠A =?x ,∠B =?y ,那么y 关于x 的函数关系式就是_______、 2、如图,P 就是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于 点Q,已知AD=6cm,AB=8cm,设AP=x(cm),BQ=y(cm)、 (1)求y 与x 之间的函数解析式并求自变量x 的取值范围; (2)就是否存在点P,使BQ=2AP 。若存在,求出AP 的长;若不存在, 说明理由。 3、如图,矩形EFGH 内接与△ABC,AD ⊥BC 与点D,交EH 于点M,BC=10cm, AD=8cm, 设EF=x cm,EH=y cm ,矩形EFGH 的面积为S cm2, ①分别求出y 与x,及S 与x 的函数关系式,写出x 的取值范围; ②若矩形EFGH 为正方形,求正方形的边长; ③x 取何值时,矩形EFGH 的面积最大。 5.如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x, CE=y (l)如果∠BAC=30°,∠DAE=l05°,试确定y 与x 之间的函数关系式; (2)如果∠BAC=α,∠DAE=β,当α, β满足怎样的关系时,(l)中y 与x 之间的函数关系式还成立?试说明理由. 6、已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在 矩形ABCD 边AB 、BC 、DA 上,AE =2、 (1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分) (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积 (用含a 的 A B C D P Q A B C D E F M H G

《立体图形与平面图形》练习题

4.1 多姿多彩的图形(1) 几何图形 长方形的是()1.如图所示,水平放置的下列几何体,从正面看到的视图不是 .. 2.下列几何体中,直棱柱的个数是() A.5 B.4 C.3 D.2 3.直四棱柱、长方体和正方体之间的包含关系是() A B C D 4.若一个棱柱有10个顶点,则下列说法正确的是() A.这个棱柱有4个侧面 B.这个棱柱有5条侧棱 C.这个棱柱的底面是十边形 D.这个棱柱是一个十棱柱 5.小明用如下左图所示的胶漆滚从左到右滚涂墙壁,下列平面图形中符合胶漆滚涂出的图案是() A B C D 6.举出两个俯视图为圆的实物例子: 、. 7.写出下列立体图形的名称(从左到右依次写出): . 8.如果直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为 cm. 9.分别画出图中的物体的三个视图: 10.如图①②③④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.

(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表: (2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系; (3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数. 参考答案 1.答案: B 解析:B答案中圆锥的主视图是三角形. 2.答案: C 解析:直棱柱的侧面应是矩形,符合这个条件的有第一个,第五个和第六个.故选C.

3.答案:A 解析:正方体是特殊的长方体,长方体又是特殊的直四棱柱,故选A.4.答案:B 解析:一个棱柱有10个顶点,则它是五棱柱,五棱柱有5个侧面,有5条侧棱,底面是五边形.故选B. 5.答案:A 解析:由胶漆滚得图形可得,最左边中间为一小黑正方形,胶漆滚从左到右,则最先留下印记的即为中间有一小黑正方形的图形.故选A. 6.圆柱,球,圆锥. 7.从左到右依次为:圆柱、长方体、四棱锥、圆锥. 8.直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为6×4=24cm.故答案为24. 9.三个视图如下: 10.解:(1)结和图形我们可以得出: 图①有4个顶点、6条边、这些边围成3个区域; 图②有7个顶点、9条边、这些边围成3个区域; 图③有8个顶点、12条边、这些边围成5个区域; 10个顶点、15条边、这些边围成6区域.

-几何图形在二次函数中的存在性问题探解

---几何图形在二次函数中的存在性问题探解 二次函数是初中数学的重要内容,更是中考的重要考点之一,它以丰富的知识内涵,深远的知识综合,深厚的数学思想,灵活的解题方法,奇趣的知识背景等深深吸引着命题老师,更深刻启迪着每位同学.下面就把几何图形在二次函数中的存在性问题介绍给大家,供学习时借鉴. 一、.三角形的存在性 1.1 等腰三角形的存在性 例1 (2017年淮安)如图1-1,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=2x +bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图1-2、1-3供画图探究). 分析: 第一问考查的是待定系数法确定函数的解析式,思路有几个待定系数,解答时就需要确定几个点的坐标; 第二问探析等腰三角形的存在性,解答时,要做到一先一后,先清楚动点的位置与特点,后对等腰三角形进行科学分类,一是按边分类,一是按角分类; 第三问探求三角形面积的最大值,这是二次函数的看家本领,只需将三角形的面积适当分割,恰当表示,最后将三角形面积最大问题转化为二次函数的最值问题求解即可. 解: (1)因为直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,所以B (3,0),C (0,3), 所以{c =39a+3b+c =0,解得{c =3b =4-,所以抛物线解析式为y=2x ﹣4x+3; (2)因为y=2x ﹣4x+3=2(x 2)-﹣1,所以抛物线对称轴为x=2,顶点P (2,﹣1), 设M (2,t ),因为△CPM 为等腰三角形,如图2所示, ①当MC=PC 时,过C 作CQ ⊥对称轴,垂足为Q ,则Q(2,3),所以QP=MQ=3-(-1)=4,所以M 到x 轴的距离8-1=7,所以1M 的坐标(2,7); ②当MP=MC 时,作PC 的垂直平分线交对称轴于点M ,所以222(t+1)2+(t-3)=,解得t=32,所以2M 的坐标(2, 32 );

几何中的函数问题(一)

几何中的函数问题 金汇学校初三数学备课组 教学目标: 以四边形为载体探究几何图形中两个变量的数量关系,了解、掌握在几何图形背景中建立函数解析式常见的方法;研究几何图形的性质,沟通函数与几何的关系,体验函数在几何图形中的应用;进一步感悟和运用数形结合思想、分类讨论思想、方程思想解决综合问题。 教学重点与难点: 探求几何图形中两个变量之间的函数关系,寻找解题规律,并正确写出函数定义域。 教学过程: 问题1:已知正方形ABCD 中,点P 在对角线BD 上,联结PC ,过点P 作PE ⊥PC ,交AB 于点E ,如图1所示。 求证:PE=PC . (学生独立思考并解答,让学生体会随着点P 的运动,变量PE 、 PC 之间的关系) 问题2:如果把条件中的正方形改为梯形ABCD ,其中AD ∥BC , ∠ABC = 90,并设AD =3,AB =4,BC =6,(如图)若将一个直角顶点P 放在对角线BD 上移动,一条直角边过点C ,另一条直角边与腰AB (或AB 思考:图中哪些量在变化? 探究一:当Q 在AB 的上 时试探究PQ 、PC 之间有怎样的数量关系,并证明你的结论; (说明:以问题(1)为铺垫,从几何图形入 手,根据几何图形的特点,运用几何图形的有关 性质,来找到两个变量PQ 、PC 之间的关系。) 探究二、在图2中,联结AP ,且点Q 在线段AB 上时,设点B Q 、之间的距离为x , APQ PBC S y S △△,其中APQ S △表 示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函 数解析式,并写出函数定义域; 说明:(1)解题的关键是用含x 的代数式表示出相关的线段,利 图1 D C B A E P 。 O

相关文档
最新文档