凸轮—连杆组合机构优化设计

凸轮—连杆组合机构优化设计
凸轮—连杆组合机构优化设计

(完整word版)摆动式固定凸轮与连杆机构的设计

摆动式固定凸轮与连杆机构的设计 姓名:xxx 学校:湖南工业大学 专业:机械设计制造及其自动化 班级:机设1002班 学号:xxxxxxxxxx 指导老师:贺兵 时间:2013年12月20日

目录 一、课程设计的目的 (3) 二、设计内容与步骤 (3) 1、设计内容 (3) 2、设计步骤 (3) 三、设计要求 (3) 四、设计指导 (4) 1、概述 (4) 2、基本参数 (5) 3、设计步聚 (6) 1)确定驱动方案 (6) 2)确定e (7) 3)确定h (7) 4)确定α (7) 5)确定δ (7) 6)求算b1、b2 (7) 7)设计凸轮廊线 (9) 8)检验压力角 (12) 五、结论 (14) 六、参考文献 (14) 七、附图 (14)

摘要 包装设计课程设计是在完成机械设计课程学习后,一次重要的实践性教学环节。是高等工科院校大多数专业学生第一次较全面的设计能力训练,也是对机械设计课程的全面复习和实践。其目的是培养理论联系实际的设计思想,训练综合运用机械设计和有关选修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关机械设计方面的知识。 本次设计的题目是直动式固定凸轮与连杆机构的设计。根据题目要求和机械设计的特点作者做了以下几个方面的工作:①根据有关参数进行计算或编写有关设计计算程序;②利用程序设计的方法输出结果并自动生成图形;③画出装配图及其主要零件图;④完成设计计算说明书。

一、课程设计的目的 《包装机械设计》课程设计是本课程各教学环节中重要的一环,它让学习者联系实际进一步深入理解、掌握所学的理论知识。其基本目的是: (1)培养理论联系实际的设计思想,训练综合运用包装机械和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关包装机械设计方面的知识。 (2)通过制订设计方案,合理选择裹包机中块状物品推送机构和零件类型,正确计算零件工作能力、确定尺寸和选择材料,以及较全面地考虑制造工艺、使用和维护等要求,之后进行结构设计,达到了解和掌握机械零件、包装机械经常采用的机构的设计过程和方法。 (3)进行设计基本技能的训练。例如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据、进行经验估算和处理数据的能力。 二、设计内容与步骤 (一)设计内容 以裹包机中块状物品推送机构的典型机构——固定凸轮与连杆组合机构为题。课程设计通常包括如下内容:读懂块状物品推送机构典型机构——固定凸轮与连杆组合机构,了解设计题目要求;分析该块状物品推送机构设计的可能方案;具体计算和设计该方案中机构的基本参数;进行机体结构及其附件的设计;绘制装配图及零件工作图;编写计算说明书以及进行设计答辩。 (二)设计步骤: (1)设计准备 认真研究设计任务书,明确设计要求、条件、内容和步骤;通过阅读有关资料、图纸、参观实物或模型、观看电视教学片、挂图以及推送机构进行拆装实验等,了解设计对象;复习有关课程内容,熟悉零部件的设计方法和步骤;准备好设计需要的图书、资料和用具;拟定设计计划等。 (2)推送机构装置的总体设计 决定推送机构装置的方案;选择机构的类型,计算机构装置的运动参数。 (3)装配图设计 计算和选择机构的参数;确定机体结构和有关尺寸;绘制装配图草图;选择计算轴承和进行支承结构设计;进行机体结构及其附件的设计;完成装配图的其他要求;审核图纸。 (4)零件工作图设计 (5)整理和编写计算说明书 (6)设计总结和答辩 (三)、设计要求 在课程设计之前,准备好必要的设计手册或参考资料,以便在设计过程中逐步去学习查阅资料。确定设计题目后,至少应复习在课程中学过的相关内容。完成本课程设计的具体要求如下:

凸轮连杆机构课程设计

第一章 固定凸轮连杆机构参数选取 1.确定驱动方案 图1 如上图所示,设:与从动杆升程运动相对应的曲柄转角为1?,即101AB B ∠=?;而与降程运动相对应的曲柄转角为,即3?323AB B =?,则: (1)当21??>时,选用曲柄AB 拉着BC 杆运动的方案。 (2)当21??<时,选用曲柄AB 推着BC 杆运动的方案。 (3)当21??=时,任选其中一种驱动方案。 已知数据?=1101?,?=1503?,很明显21??<,所以选用方案2。 2.确定e 直动从动杆,取m S e 2.0~0=,取0=e 3.确定h 从结构紧凑和减小凸轮压力角考虑,应将h 值取小些。但h 值愈小,对从动杆驱动力的压力角也愈大。通常取m S h ≥,去mm h 120= 4.确定a

若a 值过小,会使凸轮压力角明显增大,甚至不能实现预期动动。可取a=0.6~0.9S m 或a=1.2~1.8lsin 2m ψ。取a=70mm 6、确定δ 其值对凸轮的压力角影响极大,δ过小,尤其是过大,会使压力角急剧增加。在前述参数确定后,最好将δ优化,目标函数为 a 1m (δ) (a 1m )min 式中a 1m 为凸轮的最大压力角。 暂时取?=8δ 7. 求算b 1、b 2 须先求算b max 、b min 。 依据铰销B 、D 的坐标,可建立它们之间距离的公式。B 的坐标为 ? ??+-=+=)cos() sin(?δ?δa y a X B B D 的坐标为 ???+==S h y e X D D 式中 ?——曲柄转角,取升程起始时的? =0°; S ——与?相对应的从动杆位移,即铰销D 至其最低位置的距离。S 值分为升程(?=0~?1)、最高位置停留(?=?1~?1+?2)、降程(?=?1+?2~?1+?2+?3)、最低位置停留(?=?1+?2+?3~360°)四个阶段求算。b 值为 b=2 2)()(D B D B y y x x -+- (1)用matlab 编程画出b 与?曲线图,并算出min max b b 、: clear sm=100; h=120; e=0; a=70; d=8*pi/180; fa1=110*pi/180; fa2=0*pi/180; fa3=150*pi/180; fa4=100*pi/180; fa01=0:0.001:fa1; s=sm/2*(1-cos(pi*fa01/fa1));

第9章凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。 (1) 由等速运动规律和等加速等减速运动规律组合而成。 (2) 有冲击。 (3) ABCD 处有柔性冲击。 2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。 (1) 运动规律发生了变化。 (见下图 ) (2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度 '='v O P 2111ω,由于O P O P v v 1111 22≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60?时从动件的位置及从动件的位移s。 总分5分。(1)3 分;(2)2 分 (1) 找出转过60?的位置。 (2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h ,说明推程运动角和回程运动角的大小。 总分5分。(1)2 分;(2)1 分;(3)1 分;(4)1 分 (1) 从动件升到最高点位置如图示。 (2) 行程h 如图示。 (3)Φ=δ0-θ (4)Φ'=δ' 0+θ

5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=? 从动件行程h=30 mm,要求: (1)画出推程时从动件的位移线图s-?; (2)分析推程时有无冲击,发生在何处?是哪种冲击? - 总分10分。(1)6 分;(2)4 分 (1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0?ω,其位移为直线, 如图示。

第九章凸轮机构及其设计

第九章凸轮机构及其设计 第一节凸轮机构的应用、特点及分类 1.凸轮机构的应用 在各种机械,特别是自动机械和自动控制装置中,广泛地应用着各种形式的凸轮机构。 例1内燃机的配气机构 当凸轮回转时,其轮廓将迫使推杆作往复摆动,从而使气阀开启或关闭(关闭是借弹簧的作用),以控制可燃物质在适当的时间进入气缸或排出废气。至于气阀开启和关闭时间的长短及其速度和加速度的变化规律,则取决于凸轮轮廓曲线的形状。 例2自动机床的进刀机构 当具有凹槽的圆柱凸轮回转时,其凹槽的侧面通过嵌于凹槽中的滚子迫使推杆绕其轴作往复摆动,从而控制刀架的进刀和退刀运动。至于进刀和退刀的运动规律如何,则决定于凹槽曲线的形状。 2.凸轮机构及其特点 (1)凸轮机构的组成 凸轮是一个具有曲线轮廓或凹槽的构件。凸轮通常作等速转动,但也有作往复摆动或移动的。推杆是被凸轮直接推动的构件。因为在凸轮机构中推杆多是从动件,故又常称其为从动件。凸轮机构就是由凸轮、推杆和机架三个主要构件所组成的高副机构。 (2)凸轮机构的特点

1)优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。 2)缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 3.凸轮机构的分类 凸轮机构的类型很多,常就凸轮和推杆的形状及其运动形式的不同来分类。 (1)按凸轮的形状分 1)盘形凸轮(移动凸轮) 2)圆柱凸轮 盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转。移动 凸轮可看作是转轴在无穷远处的盘形凸轮的一部分,它作往复直线移动。圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作 出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。盘形凸轮机构和移动凸轮机构为平面凸轮机构,而圆柱凸轮机构是一种 空间凸轮机构。盘形凸轮机构的结构比较简单,应用也最广泛,但其推杆的行程不能太大,否则将使凸轮的尺寸过大。 (2)按推杆的形状分 1)尖顶推杆。这种推杆的构造最简单,但易磨损,所以只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。 2)滚子推杆。滚子推杆由于滚子与凸轮轮廓之间为滚动摩擦,所以磨损较小,故可用来传递较大的动力,因而应用较广。

机械原理 第9章组合机构思考题及习题解答

思考题及习题解答 9-1 常用的组合机构有哪几种?它们各有何特点? 组合机构按其组成的结构形式可分为串联式、并联式、封闭式和装载式四种基本类型。串联式组合机构是由基本机构串联而成。它的前一个基本机构的输出构件是后一个基本机构的原动件。并联式组合机构是由n 个自由度为1的基本机构的输出件与一个自由度为n 的基本机构的运动输入构件分别固联而成。封闭式组合机构是利用自由度为1的基本机构去封闭一个多自由度的基本机构而成。装载式组合机构则是将基本机构装载于另一基本机构的运动构件上而成。 9-2 在图示的联动凸轮组合机构中(尺寸和位置如图所示),它是由两组径向凸轮机构组合而成。在此机构中,利用凸轮A 及B 的协调配合,控制E 点X 及Y 方向的运动,使其准确地实现预定的轨迹()y y x = (“R ”字形)。试说明该机构中的凸轮A 和凸轮B 的轮廓线设计的方法和步骤。 答:设计这种机构时,应首先根据所要求的轨迹()y y x =,算出两个凸轮的推杆位移与凸轮转角的关系()A x x ?=及()B y y ?=,如图(b )所示,然后就可按一般凸轮机构的设计方法分别设计出两凸轮的轮廓曲线。 9-3 在图示的凸轮—连杆组合机构中(尺寸和位置如图所示),拟使C 点的运动轨迹 为图示为abca 曲线。试说明该机构中的凸轮1和凸轮2的轮廓线设计的方法和步骤。 答:首先应根据所要求的轨迹算出两个凸轮的推杆位移与凸轮转角的关系,然后就可按一般凸轮的设计方法分别设计出两凸轮的轮廓曲线。 9-4 在图示的齿轮—连杆组合机构中,齿轮a 与曲柄1固联,齿轮b 和c 分别活套在 轴C 和D 上,试证明齿轮c 的角速度c ω与曲柄1、连杆2、摇杆3的角速度1ω、2ω、3ω之间的关系为 321()/()//c b c c a b c a c r r r r r r r r ωωωω=+-++ 题9-2解答图 联动凸轮机构

机械原理 凸轮机构及其设计

第六讲凸轮机构及其设计 (一)凸轮机构的应用和分类 一、凸轮机构 1.组成:凸轮,推杆,机架。 2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 二、凸轮机构的分类 1.按凸轮的形状分:盘形凸轮圆柱凸轮 2.按推杆的形状分 尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。易遭磨损,只适用于作用力不大和速度较低的场合 滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。不能与凹槽的凸轮轮廓时时处处保持接触。 平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。不能与凹槽的凸轮轮廓时时处处保持接触。 3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。 4.根据凸轮与推杆接触方法不同分: (1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。①等宽凸轮机构②等径凸轮机构③共轭凸轮 (二)推杆的运动规律 一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0称为基圆半径。推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。休止:推杆处于静止不动的阶段。推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角 二、推杆常用的运动规律 1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。 2.柔性冲击:加速度有突变,因而推杆的惯性力也将有突变,不过这一突变为有限值,因而引起有限

按给定运动轨迹反求凸轮轮廓机构

第7章 按给定运动轨迹反求凸轮轮廓机构 按给定运动轨迹反求零件模型,是机构设计的一种常用方法,采用SolidWorks 完成设计,相对于传统计算方法,简单实用,并且可以模拟再现轨迹的实现。本章以应用广泛的凸轮连杆组合机构为例,根据连杆一端点预定轨迹,利用反求法得到凸轮的理论廓线及实际轮廓,并通过运动仿真验证了凸轮连杆组合机构的实际运动轨迹与预定轨迹相符。 7.1工作原理 凸轮连杆组合机构简图如图7.1所示,凸轮1固定,原动件曲柄2匀速转动,带动连杆3运动,此时固定凸轮约束着与连杆端点B 通过铰链结合的滚子4,使连杆的端点C 沿着给定的运动轨迹5运动,从而达到该机构的工作要求。 设计参数: 预定轨迹:长为400mm ,宽为300mm 的长方形,经半径R=100mm 的边角倒圆;各杆长度:OA l =150mm, AB l =80mm, AC l =150mm ;∠BAC=120°,滚子半径Rg =10mm ,曲柄OA 转速n=60r/min 。 图 7.1 凸轮连杆组合机构简图 7.2 零件造型 启动SolidWorks2012,选择【文件】/【新建】/【零件】命令,创建新的零件文件。选择【插入】/【草图绘制】命令,选择一基准面为草绘平面。 根据图7.2~7.5所示,分别绘制机架、曲柄、连杆和滚子的轮廓草图。然后选择【插入】

/【凸台/基体】/【拉伸】命令,分别以距离10mm拉伸机架、曲柄和连杆轮廓草图分别得到其实体零件。选择【插入】/【凸台/基体】/【旋转】命令,以滚子轴线为旋转轴,以360°为旋转角度,旋转后得到滚子实体零件。零件的材质均设置为“普通碳钢”,分别以文件名“机架”、“曲柄”、“连杆”和“滚子”保存。 图7.2 机架草图图7.3 曲柄草图 图7.4 连杆草图图7.5 滚子草图 为了满足装配时的“路径配合”要求,在连杆零件图中,选择【插入】/【参考几何体】/【点】命令,在图7.1所示连杆中的端点C处创建一个参考点。如图7.6所示,在弹出的属 性管理器【选择】栏中,点击【圆弧中心】按钮,然后点击【参考实体】按钮,在视图区选择连杆C端的圆孔边线,点击确定按钮,完成连杆参考点的创建。

直动式固定凸轮及连杆机构设计

直动式固定凸轮与连杆机构的设计 设计者 所在院(系):湖南工业大学 专业:机械设计制造及其自动化 班级 学号: 指导老师: 时间:2015年12月27日

目录 一、课程设计的目的 (3) 二、设计内容与步骤 (4) 1、设计内容 (4) 2.设计步骤 (4) 三、设计要求 (6) 四、设计指导 (7) 1、概述 (7) 2、基本参数 (9) 3、设计步聚 (11) 1)确定驱动方案 (11) 2)确定e (11) 3)确定h (12) 4)确定α ...................................................................................... 错误!未定义书签。 5)确定δ ...................................................................................... 错误!未定义书签。 6)求算b1、b2 (12) 7)设计凸轮廊线 (14) 8)检验压力角 (16) 五、参数优化 (18) 六、结论 (19) 七、参考文献 (20) 八、附图 (21)

摘要 包装设计课程设计是在完成机械设计课程学习后,一次重要的实践性教学环节。是高等工科院校大多数专业学生第一次较全面的设计能力训练,也是对机械设计课程的全面复习和实践。其目的是培养理论联系实际的设计思想,训练综合运用机械设计和有关选修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关机械设计方面的知识。 本次设计的题目是直动式固定凸轮与连杆机构的设计。根据题目要求和机械设计的特点作者做了以下几个方面的工作:①根据有关参数进行计算或编写有关设计计算程序; ②利用程序设计的方法输出结果并自动生成图形;③画出装配图及其主要零件图;④完成设计计算说明书。

按给定运动轨迹反求凸轮轮廓机构

第7章 按给定运动轨迹反求凸轮轮廓机构 按给定运动轨迹反求零件模型,是机构设计的一种常用方法,采用SolidWorks 完成设计,相对于传统计算方法,简单实用,并且可以模拟再现轨迹的实现。本章以应用广泛的凸轮连杆组合机构为例,根据连杆一端点预定轨迹,利用反求法得到凸轮的理论廓线及实际轮廓,并通过运动仿真验证了凸轮连杆组合机构的实际运动轨迹与预定轨迹相符。 7.1工作原理 凸轮连杆组合机构简图如图7.1所示,凸轮1固定,原动件曲柄2匀速转动,带动连杆3运动,此时固定凸轮约束着与连杆端点B 通过铰链结合的滚子4,使连杆的端点C 沿着给定的运动轨迹5运动,从而达到该机构的工作要求。 设计参数: 预定轨迹:长为400mm ,宽为300mm 的长方形,经半径R=100mm 的边角倒圆;各杆长度:OA l =150mm, AB l =80mm, AC l =150mm ;∠BAC=120°,滚子半径Rg =10mm ,曲柄OA 转速n=60r/min 。 图 7.1 凸轮连杆组合机构简图 7.2 零件造型 启动SolidWorks2012,选择【文件】/【新建】/【零件】命令,创建新的零件文件。选择【插入】/【草图绘制】命令,选择一基准面为草绘平面。 根据图7.2~7.5所示,分别绘制机架、曲柄、连杆和滚子的轮廓草图。然后选择【插入】

/【凸台/基体】/【拉伸】命令,分别以距离10mm拉伸机架、曲柄和连杆轮廓草图分别得到其实体零件。选择【插入】/【凸台/基体】/【旋转】命令,以滚子轴线为旋转轴,以360°为旋转角度,旋转后得到滚子实体零件。零件的材质均设置为“普通碳钢”,分别以文件名“机架”、“曲柄”、“连杆”和“滚子”保存。 图7.2 机架草图图7.3 曲柄草图 图7.4 连杆草图图7.5 滚子草图 为了满足装配时的“路径配合”要求,在连杆零件图中,选择【插入】/【参考几何体】/【点】命令,在图7.1所示连杆中的端点C处创建一个参考点。如图7.6所示,在弹出的属 性管理器【选择】栏中,点击【圆弧中心】按钮,然后点击【参考实体】按钮,在视图区选择连杆C端的圆孔边线,点击确定按钮,完成连杆参考点的创建。

包装机械设计课程设计指导书-固定凸轮与连杆组合机构

包装机械设计课程设计指导书(1) 机械工程学院 2011年八月

一、课程设计的目的 《包装机械设计》课程设计是本课程各教学环节中重要的一环,它让学习者联系实际进一步深入理解、掌握所学的理论知识。其基本目的是: (1)培养理论联系实际的设计思想,训练综合运用包装机械和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关包装机械设计方面的知识。 (2)通过制订设计方案,合理选择裹包机中块状物品推送机构和零件类型,正确计算零件工作能力、确定尺寸和选择材料,以及较全面地考虑制造工艺、使用和维护等要求,之后进行结构设计,达到了解和掌握机械零件、包装机械经常采用的机构的设计过程和方法。 (3)进行设计基本技能的训练。例如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据、进行经验估算和处理数据的能力。 二、设计内容与步骤 (一)设计内容 以裹包机中块状物品推送机构的典型机构——固定凸轮与连杆组合机构为题。课程设计通常包括如下内容:读懂块状物品推送机构典型机构——固定凸轮与连杆组合机构,了解设计题目要求;分析该块状物品推送机构设计的可能方案;具体计算和设计该方案中机构的基本参数;进行机体结构及其附件的设计;绘制装配图及零件工作图;编写计算说明书以及进行设计答辩。 (二)设计步骤: (1)设计准备 认真研究设计任务书,明确设计要求、条件、内容和步骤;通过阅读有关资料、图纸、参观实物或模型、观看电视教学片、挂图以及推送机构进行拆装实验等,了解设计对象;复习有关课程内容,熟悉零部件的设计方法和步骤;准备好设计需要的图书、资料和用具;拟定设计计划等。 (2)推送机构装置的总体设计 决定推送机构装置的方案;选择机构的类型,计算机构装置的运动参数。 (3)装配图设计 计算和选择机构的参数;确定机体结构和有关尺寸;绘制装配图草图;选择计算轴承和进行支承结构设计;进行机体结构及其附件的设计;完成装配图的其他要求;审核图纸。 (4)零件工作图设计 (5)整理和编写计算说明书 (6)设计总结和答辩 三、设计要求 在课程设计之前,准备好必要的设计手册或参考资料,以便在设计过程中逐步去学习查阅资料。确定设计题目后,至少应复习在课程中学过的相关内容。完成本课程设计的具体要求如下: 1、设计说明书要全面反映设计思想、设计过程和结论性认识。其工艺设计要有文字、计算、公式来源、参数选取的资料名称或代号、图表(草图)。说明书用A4纸打印,约20页左右,并装订成册。

椭圆轨迹直摆凸轮组合机构的设计

1 绪论 本课题要求设计一直摆凸轮组合机构,使给定在摆杆上的某个点实现预期椭圆轨迹,并在此基础上进一步设计出整个机构所需的所有零件的实体模型,然后将其装配组合,并进行运动仿真。机构示意图如图1-1: 图1-1 直摆组合凸轮机构示意图 众所周知,人类创造发明机构和机器的历史十分悠久,并且随着人们对不同机器和机构的需求的日益增多,对它们的研究也在不断的深入,特别是在近代,科学技术的飞速发展使得机构和机器的种类和它们所能完成的功能得到了极大的丰富。也正因为如此,机构和机器理论已经发展成为一门重要的技术基础学科。在这一学科中,进一步完善传统典型机构的分析与综合方法,例如实现预期轨迹的机构的类型和设计方法的创新,仍是值得研究的课题。在这一方面,对本课题的研究就有着重要的意义。 现代化的生产,许多都要求设备能实现某种预期轨迹来更好的生产,比如在食品加工机械中的馒头自动化生产线上,其馒头堆放机构就是一个利用组合机构来完成预期的馒头堆放轨迹的。在实现预期轨迹的组合机构中,直摆凸轮组合机构是一种非常实用的机构,通过不同轮廓的直动凸轮和摆动通论驱动连杆配合运动,既能实现连续性预期轨迹,如星形线、内摆线、旋轮线、渐开线、正态曲线等;又能实现离散化预期轨迹,如人头像、金鱼、黑桃、三菱商标等。所涉及到的工业生产:如专用线切割机床、专用电火花加工机床、专用焊接焊切机械手、专用几何测量仪器、行程控制机构及各类轻工机械等。可以实现图案加工、电火花刻线等等。因此,研究本课题不仅有其理论意义,也有着其现实意义。

该机构是由直动从动件凸轮机构与摆动从动件凸轮机构组成的联动凸轮机构(图-1),该机构具有3个活动构件(n=3),3个低副(P l =3),2个高副(P h =2),由平面机构自由度计算公式h l P P n --=23η[1] 故其机构自由度η为:123233=-?-?=η该机构原动件数目为1,与其机构自由度相等,故该机构成立。 通过建立直、摆组合凸轮机构的设计公式,从而得出该机构各构件位置、大小及形状尺寸、凸轮实际廓线、理论廓线。在此基础上,再合理设计出机构所需的每个零部件的结构,之后将它们装配组合,并进行运动彷真,验证设计的正确性。 此机构的设计可以分为如下几个部分:直动从动件凸轮和摆动从动件凸轮的设计,直动杆和摆动杆的设计,直动导轨的设计,轴系零部件的设计和机架的设计。其中最为关键也最为困难的是直动从动件凸轮和摆动从动件凸轮的设计,而采用何种方法进行设计又是首先需要考虑的问题。因此在设计过程中应该先确定所要采用的凸轮设计方法。 在以上部分设计完成后,机构的运动仿真,包括机构各个部件的装配和装配后的动态仿真。在这一阶段需仔细计划各个部件的安装位置和安装顺序,将每一个部件都正确安装到位。其中值得注意的是直动凸轮与摆动凸轮的安装滞后角,这一角度需严格控制,稍微的误差可能就直接影响预期的曲线。 本课题所用到的硬件主要是计算机。用到的软件有:AutoCAD 2004,Proe Wildfire3.0,Word2000,Powerpoint2000。

典型机构设计作业

典型机构设计与分析 ---凸轮连杆机构的设计方法研究

摘要:(1)对基本机构和组合机构给出了本文的定义,按组合机构组成的结构型式进行分类。 (2)在分析机构结构特点的基础上,以机构综合理论为基础,以执行构件的运动规律为出发点,采用解析的方法建立了凸轮一连杆组合机构的数学模型,推导了凸轮连杆组合机构的尺寸综合公式,完成了凸轮轮廓曲线和杆件尺寸的综合。 (3)在机构尺寸综合的基础上,根据已知的执行件的运动规律,对机构进行运动学分析,推导出固定凸轮一连杆组合机构各构件的运动方程式。 (4)以机构最小纵向尺寸为优化目标,以许用压力角为约束条件,采用鲍威尔法、内点惩罚函数法等优化方法对变连杆长度固定凸轮连杆机构进行优化设计,得出合理的结果,使机构在满足运动要求和传力性能要求的前提下,结构更加紧凑。 凸轮-连杆组合机构是由凸轮机构和连杆机构按一定工作要求组合而成的,它综合这两种机构各自的优点,具有广泛的应用潜力。介绍当连杆末端的轨迹曲线给定,如何采用解析法精确设计滚子摆动从动件双凸轮-连杆组合机构的凸轮廓线。 在系统程序设计中采用了机构分析和综合于一体的方法,在综合的同时进行分析。整个系统按功能模块设计,具有尺寸综合和运动学分析、动态仿真及数据显示等功能。各模块的程序代码之间相互独立,分别编制实现. 正文:(1)凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。 凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。与凸轮轮廓接触,并传递动力和实现预定的运动规律的构件,一

般做往复直线运动或摆动,称为从动件。凸轮机构在应用中的基本特点在于能使从动件获得较复杂的运动规律。因为从动件的运动规律取决于凸轮轮廓曲线,所以在应用时,只要根据从动件的运动规律来设计凸轮的轮廓曲线就可以了。凸轮机构广泛应用于各种自动机械、仪器和操纵控制装置。凸轮机构之所以得到如此广泛的应用,主要是由于凸轮机构可以实现各种复杂的运动要求,而且结构简单、紧凑[2]。 (2)连杆机构 连杆机构的设计方法主要有几何法、解析法和参数化设计方法等。几何法利用机构运动过程中各运动副位置之间的几何关系, 通过作图获得有关尺寸。此方法设计方便快捷, 但由于作图误差的存在, 设计精度较低。解析法是将设计问题用数学方程加以描述, 通过方程的求解获得有关尺寸, 故其设计精度高, 但设计效率较低。参数化设计方法是根据连杆机构的性能参数确定连杆机构的其它有关尺寸, 当性能参数变化时, 其它参数可以得到相应的改变, 故参数化设计方法可以大幅度提高设计效率, 并保证其设计精度。而且随着计算机的普及应用, 参数化设计方法已成为各类连杆机构设计的一种快捷而有效的方法。 用参数化设计方法来设计连杆机构, 可以利用VB 实现设计的自动化、结果的可视化, 并将设计结果保存到数据库中, 便于利用数据仓库技术进行总结、参考、重用、优化等[3]。 (3)凸轮连杆组合机构 基本机构应具有简单和能组成各种组合机构的属性。在闭环机构中,只构成一个封闭形的单环机构最简单。由最少构件通过最少运动副连接而成的单环机构是自由度为1的基本机构。如凸轮、齿轮和连杆机构构成一个封闭环形且自由度为1的单环机构。显然它们的倒置机构也是如此。至于自由度为2的单环饥构,构成它的构件和运动副的数量都必然大于自由度为1的相应单环机构,不是最小值。那么按第二种基本机构的定义,自由度大于1的单环机构已不能算是基本机构。事实上许多组合机构是要由多自由度的单环机构来组成。所以多自由度的单环机构也应该是组合机构的基本机构。 平面连杆机构与凸轮连杆机构都是应用十分广泛的机构,对它们的分析及设计一直是机构学研究的一个重要课题。传统的机构分析方法主要是图解法,其特

凸轮机构习题作图题

凸轮机构考试复习与练习题 一、单项选择题(从给出的A、B、C、D中选一个答案) 1 与连杆机构相比,凸轮机构最大的缺点是。 A.惯性力难以平衡B.点、线接触,易磨损 C.设计较为复杂D.不能实现间歇运动 2 与其他机构相比,凸轮机构最大的优点是。 A.可实现各种预期的运动规律B.便于润滑 C.制造方便,易获得较高的精度D.从动件的行程可较大 3 盘形凸轮机构的压力角恒等于常数。 A.摆动尖顶推杆B.直动滚子推杆 C.摆动平底推杆D.摆动滚子推杆 4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为关系。 A.偏置比对心大B.对心比偏置大 C.一样大D.不一定 5 下述几种运动规律中,既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。 A.等速运动规律B.摆线运动规律(正弦加速度运动规律) C.等加速等减速运动规律D.简谐运动规律(余弦加速度运动规律) 6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。 A.增大基圆半径B.改用滚子推杆 C.改变凸轮转向D.改为偏置直动尖顶推杆 7.()从动杆的行程不能太大。 A. 盘形凸轮机构 B. 移动凸轮机构 C. 圆柱凸轮机构 8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。 A 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 9.()可使从动杆得到较大的行程。 A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构 10.()的摩擦阻力较小,传力能力大。 A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆 11.()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。 A. 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 12.计算凸轮机构从动杆行程的基础是()。 A 基圆 B. 转角 C 轮廓曲线 13.凸轮轮廓曲线上各点的压力角是()。

典型机构设计与分析

摘要:由固定凸轮与连杆系所组成的凸轮一连杆组合机构是自动机械中一种常用机构. 本文在前人工作的基础上提出了筒便有效的优化设计方法. 对任意给定的从动件运动规律和要求的约束条件求得最佳的连杆尺寸及凸轮轮廓曲线.

总结:凸轮连杆机构具有结构简单、紧凑、设计方便,可实现从动件任意预期运动,因此在机床、纺织机械、轻工机械、印刷机械、机电一体化装配中大量应用。人们在进行机构的尺度综合时,习惯于采用常规的设计方法,即根据给定的设计条件。但这种方法对设计者的专业设计水平和经验要求较高。且所需的设计计算要多次反复进行,因而使设计效率降低,另外也很难得到最优的设计结果。通过一些优秀的设计和优化方法,使设计周期大大缩短,设计质量显著提高,得到的设计结果是设计者所追求目标的最优解。本文作者在书本打包机的设计中,对推书机构进行了优化设计,与常规设计方法相比,可很快地得到最优解,大大提高了设计效率和质量。 参考文献: 1王文博;实现等速直动与急回的凸轮连杆机构的运动综合[J];北京服装学院学报(自然科学版);2001年01期 2刘芳,于晓红,邱丽芳,王小群;凸轮-连杆组合机构设计系统[J];北京科技大学学报;2005年01期 3 孟俊焕,姚俊红,冯瑞宁;评价机构传动质量的新方法—当量压力角法[J];德州学院学报;2004年02期 4 张秀花,夏玲,刘春明;凸轮组合机构在压力机上的应用[J];机械设计与制造;2004年04期 5 张景霞,王润孝,于江;一种实用凸轮连杆机构运动分析的方法[J];机械科学与技术;2003年04期 6 徐大伟;关于摆动从动件盘形凸轮机构的优化设计方法[J];机械设计;1992年03期 7 钮志红,王旭;确定滚子摆动从动件盘状凸轮机构基本尺寸新方法[J];机械设

直动式固定凸轮与连杆机构的设计

直动式固定凸轮与连杆机构的设计 设计者:姜泽成 所在院(系):湖南工业大学 专业:机械设计制造及其自动化 班级:机设1003班 学号:10405100205 指导老师:贺兵 时间:2013年12月27日

目录 一、课程设计的目的 (1) 二、设计内容与步骤 (1) 1、设计内容 (1) 2.设计步骤 (2) 三、设计要求 (2) 四、设计指导 (3) 1、概述 (3) 2、基本参数 (6) 3、设计步聚 (7) 1)确定驱动方案 (7) 2)确定e (8) 3)确定h (8) 4)确定α (8) 5)确定δ (8) 6)求算b1、b2 (9) 7)设计凸轮廊线 (10) 8)检验压力角 (11) 五、参数优化 (13) 六、结论 (14) 七、参考文献 (14) 八、附图 (15)

摘要 包装设计课程设计是在完成机械设计课程学习后,一次重要的实践性教学环节。是高等工科院校大多数专业学生第一次较全面的设计能力训练,也是对机械设计课程的全面复习和实践。其目的是培养理论联系实际的设计思想,训练综合运用机械设计和有关选修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关机械设计方面的知识。 本次设计的题目是直动式固定凸轮与连杆机构的设计。根据题目要求和机械设计的特点作者做了以下几个方面的工作:①根据有关参数进行计算或编写有关设计计算程序; ②利用程序设计的方法输出结果并自动生成图形;③画出装配图及其主要零件图;④完成设计计算说明书。 正文要求:宋体四号首行缩进两个字符;一级目录不缩进(二号字体),二级目录缩进0.5个字符(三号字体);三级目录缩进两个字符(小三字体);正文在目录下首行缩进两个字符。

第九章 凸轮机构及其设计要点

第九章凸轮机构及其设计 1 什么是凸轮的理论轮廓曲线、实际轮廓曲线?两者之间有什么关系? 2 在凸轮机构设计中有哪几种常用的从动件运动规律?这些运动规律各有什么特点以及适用场合?在选择从动件运动规律时应考虑哪些主要因素? 3 发生刚性冲击的凸轮机构,其运动线图上有什么特征?如发生柔性冲击时又有什么特征? 4 用反转法设计盘形凸轮的廓线时,应注意哪些问题?移动从动件盘形凸轮机构和摆动从动件盘形凸轮机构的设计方法各有什么特点? 4 何谓凸轮机构的“失真”现象?失真现象在什么情况下发生?如何避免失真现象的发生? 6 一凸轮机构滚子从动件已损坏,要调换一个新的滚子从动件,但没有与原尺寸相同的滚子。试问用该不同尺寸的滚子行吗?为什么? 7 何谓凸轮机构的压力角?其在凸轮机构的设计中有何重要意义?一般是怎样处理的? 8 设计直动推杆盘形凸轮机构时,在推杆运动规律不变的条件下,要减小推程压力角,可采用哪两种措施? 9 图中两图均为工作廓线为圆的偏心凸轮机构,试分别指出它们的理论廓线是圆还是非圆,运动规律是否相同。 10 凸轮机构从动件按余弦加速度规律运动时,在运动开始和终止的位置,有突变,会产生冲击。 11根据从动件凸轮廓线保持接触方法的不同,凸轮机构可分为力封闭和几何形状封闭两大类型。写出两种几何形状封闭的凸轮机构和。12为了使凸轮廓面与从动件底面始终保持接触,可以利用,,或依靠凸轮上的来实现。 13 凸轮机构的主要优点为,主要缺点为。14为减小凸轮机构的推程压力角,可将从动杆由对心改为偏置,正确的偏置方向是将从动杆偏在凸轮转动中心的侧。 15凸轮机构的从动件按等加速等减速运动规律运动,在运动过程中,将发生突变,从而引起冲击。 16 当凸轮机构的最大压力角超过许用压力角时,可采取以下措施来减小压力角。 17凸轮基圆半径是从到的最短距离。18平底垂直于导路的直动杆盘形凸轮机构,其压力角等于。

凸轮机构及其设计(简)

第九章凸轮机构及其设计(Cam Mechanisms and Synthesis) §9-1凸轮机构的应用和分类 §9-2推杆的运动规律 §9-3凸轮轮廓曲线的设计 §9-4凸轮机构基本尺寸的确定

§9-1凸轮机构的应用和分类 结构: 作用: 应用: 分类:1)按凸轮形状分 2)按推杆形状分 3)按推杆运动分 4)按保持接触方式分

§9-2 推杆的运动规律 凸轮机构设计的基本任务: 1)根据工作要求选定凸轮机构的形式;2)推杆运动规律; 3)合理确定结构尺寸;4)设计轮廓曲线。 δ’0δ’ o t δ s 名词术语: 一、推杆的常用运动规律 基圆推程运动角 基圆半径推程远休止角 回程运动角回程近休止角 r 0h ωA δ01 δ 01 δ02 δ02 D B B’δ0δ

δ’0δ’0 o t δ s r 0 h ω A δ01 δ01 δ02δ02D B C B’ δ0δ0运动规律:推杆在推程或回程时,其位移S 、速度V 、 和加速度a 随时间t 的变化规律。 形式:多项式、三角函数。 s =s(t)v=v (t)a=a (t) 位移曲线

推程运动方程:s=hδ/δ0 v=hω/δ0s δδ v δa δ h +∞ -∞刚性冲击 回程运动方程: s=h(1-δ/δ0′) v=-hω/δ0′ a=0 a=0 1.一次多项式(等速运动规律) (rigid impulse)

3δ a h/2δ h/2 等减速段推程运动方程为: s =h -2h(δ0–δ)2/δ20 1δ s v =-4hω(δ0-δ)/δ20 a =-4hω2/δ20 25 462h ω/δ 柔性冲击4h ω2/δ 20 等加速段推程运动方程为: s=2hδ2/δ20 v=4hωδ/δ20 a=4hω2/δ20 δ v 2.二次多项式(等加速等减速运动规律)

凸轮机构练习题35248

1与连杆机构相比,凸轮机构最大的缺点是() A.惯性力难以平衡B.点、线接触,易磨损C.设计较为复杂D.不能实现间歇运动2与其他机构相比,凸轮机构最大的优点是() A.可实现各种预期的运动规律B.便于润滑 C.制造方便,易获得较高的精度D.从动件的行程可较大 3.可使从动杆得到较大的行程() A.盘形凸轮机构B移动凸轮机构C.圆柱凸轮机构 4,承载能力很大的场合采用的从动件形式为( ) A,尖顶式B,滚子式C,平底式D,不能确定 5,要求从动件灵敏,轻载低速时宜采用的凸轮机构为( ) A,尖顶式凸轮机构B,滚子式凸轮机构 C,平底式凸轮机构D,曲面式凸轮机构 6,与凸轮接触面积较大,易于形成油膜,所以润滑较好,磨损较小的是( ) A,尖顶式从动杆B,滚子式从动杆 C,平底式从动杆D,直动式从动杆 7.凸轮机构从动件的运动规律取决于凸轮的() A.大小B.形状C.厚度D.表面质量 8、传动要求速度不高,承载能力较大的场合常应用的从动件型式为() A、尖顶式; B、滚子式; C、平底式; D、曲面式。 9、组成凸轮机构的基本构件有()个。 A.2个 B.3个 C.4个 10、与平面连杆机构相比,凸轮机构的突出优点是(A)。 A.能严格的实现给定的从动件运动规律 B.能实现间歇运动 C.能实现多种运动形式的变换 D.传力性能好 11、与连杆机构相比,凸轮机构最大的缺点是(B.)。 A.惯性力难以平衡 B.点、线接触,易磨损 C.设计较为复杂 D.不能实现间歇运动 12、凸轮机构中通常用作主动件的是(A)。 A、凸轮 B、从动杆 C、轨道 D、固定机架 13、等加速等减速运动规律的位移曲线是(B)。 A、斜直线 B、抛物线 C、双曲线 D、直线 14,(A)从动杆的行程不能太大。 A、盘形凸轮机构 B、移动凸轮机构 C、圆柱凸轮机构 15,自动车床横刀架进给机构采用的凸轮机构是(A) A、圆柱凸轮机构 B、移动凸轮机构 C、盘形凸轮机构 D、球面凸轮机构 (C)的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。 A、尖顶从动件 B、滚子从动件 C、平底从动件 16.、多用于传力小,速度低,传动灵敏场合的是(A)。 A、尖顶从动件 B、滚子从动件 C、平底从动件 D、曲面从动件 17、从动件预定的运动规律取决于(C) A、凸轮转速 B、凸轮形状 C、凸轮轮廓曲线 D、凸轮的基圆 18、摩擦阻力小,传力能力大应选用(A)

凸轮机构及其设计(8学时)(精)

凸轮机构及其设计(8学时)(精)

第四章 凸轮机构及其设计(8学时) 一、教学目的和教学要求 1、 教学目的:使学生掌握凸轮机构设计的基础知识,并能根据生产实 际需要的运动规律设计凸轮机构。 2、 教学要求 1)了解凸轮机构的分类和应用 2)了解推杆常用的运动规律及推杆运动规律的选择原则。由于现代机器 的速度提高,几种常用的运动规律已不能满足实际工作需要,因此, 除常用运动规律外,应简单介绍一些改进型的运动规律。 3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题(包括压力角对 尺寸的影响,压力角对凸轮受力状况、效率和自锁的影响) 4)能根据选定的凸轮类型和推杆的运动规律设计凸轮的轮廓曲线。设计 时应以解析法为主。 二、本章重点教学内容及教学难点 重点1、推杆常用运动规律的特点及其选择原则; 2、凸轮机构运动过程的分析; 3、凸轮轮廓曲线的设计; 4、凸轮机构压力角与机构基本尺寸的关系。 难点 1、凸轮机构设计的基本方法 凸轮设计的基本方法是反转法,所依据的是相对运动原 理。其求解的关键是确定推杆在复合运动中其尖顶的位置。确 定时应注意以下几点: 1)要注意推杆反转方向。先要明确凸轮的实际转向,然 后在图上用箭头及“-ω”标出推杆的反转方向,以 避免搞错反转方向。 2)要正确确定推杆在反转运动中占据的位置。推杆反转 前后两位置线的夹角应等于凸轮的转角δ。 3)要正确确定推杆的位移s 。推杆在复合运动中,对应的 位移量s 应在对应的反转位置上从基圆上开始向外量 取。 2、凸轮机构的运动分析方法 反转法不仅是凸轮机构设计的基本方法,而且是凸轮机构分 析常用的方法。凸轮机构分析常涉及的问题,如给定一凸轮机构, 即已知凸轮机构的尺寸及其位置、凸轮角速度大小及方向,求解 推程角0δ、远休止角01δ、回程角0 δ'、近休止角02δ以及推杆行程h ;或求解当凸轮转过某一个δ角时,推杆所产生的相应位移s 、 速度v 等运动参数及凸轮与从动件在该位置接触时的压力角α 等。这时,如果让凸轮转过δ角后来求解,显然是很不方便的。 即利用反转法求解,这实际上与凸轮设计的反转法原理相同。 三、教学过程思路 (一)、凸轮机构的应用与分类

相关文档
最新文档