排列组合题以及公式

排列组合题以及公式
排列组合题以及公式

排列与组合的共同点是从n个不同的元素中,任取m(m≤n)个元素,而不同点是排列是按照一定的顺序排成一列,组合是无论怎样的顺序并成一组,因此“有序”与“无序”是区别排列与组合的重要标志.下面通过实例来体会排列与组合的区别.

【例题】判断下列问题是排列问题还是组合问题?并计算出种数.

(1)高二年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?

(2)高二数学课外活动小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?

(3)有2、3、5、7、11、13、17、19八个质数:①从中任取两个数求它们的商,可以有多少个不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

(4)有8盆花:①从中选出2盆分别给甲、乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?

【思考与分析】(1)①由于每两人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关,是排列;②由于每两人互握一次手,甲与乙握手、乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.

解:(1)①是排列问题,共通了=110(封);②是组合问题,共需握手==55(次)(2)①是排列问题,共有=10×9=90(种)不同的选法;②是组合问题,共=45(种)不同的选法;

(3)①是排列问题,共有=8×7=56(个)不同的商;②是组合问题,共有=28(个)不同的积;

(4)①是排列问题,共有=56(种)不同的选法;②是组合问题,共有=28(种)不同的选法.

【反思】区分排列与组合的关键是“有序”与“无序”.

排列与组合的概念与计算公式

1.排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).

2.组合及计算公式

一个组合;从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号

c(n,m) 表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

3.其他排列与组合公式

从n 个元素中取出r 个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n 个元素被分成k 类,每类的个数分别是n1,n2,...nk 这n 个元素的全排列数为

n!/(n1!*n2!*...*nk!).

k 类元素,每类的个数无限,从中取出m 个元素的组合数为c(m+k-1,m). 排列的计算公式:

第一位的可能性×第二位的可能性×....×第N 位的可能性

例如

5个人排队,第三个人的位置不变,那么第一位置的可能性是4,第二位置的可能性是3,第三位置的可能性是1,第四位置的可能性是2,第五位置的可能性是1,那么共有5×4×1×2×1=40种

组合的公式: 我举例来说吧

第一规则:从五个事物里取三种事物组合 与 从五个事物里取二种事物组合是相同的 第二种规则:从五个事物里取三种事物组合的组合数 (5×4×3)÷(3×2×1)

从五个事物里取二种事物组合的组合数 (5×4)÷(2×1)

从十里取八与从十里取二相同

(10×9×8×7...取几个数就依次乘几个数)÷(8的阶乘) 备注:8阶乘就是从8依次乘到1

数学补差(4)———计数原理

1. 将3个不同的小球放入4个盒子中,则不同放法种数有A .81 B .64 C .12 D .14 2.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有

A .33A

B .334A

C .523533A A A -

D .23113

23233A A A A A +

3.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是 A.20 B .16 C .10 D .6

4.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是

A .男生2人女生6人

B .男生3人女生5人

C .男生5人女生3人

D .男生6人女生2人.

5.在8

2

x ? ?的展开式中的常数项是A.7 B .7- C .28 D .28- 6.5

(12)(2)x x -+的展开式中3

x 的项的系数是A.120 B .120- C .100 D .100-

7.22n

x ???展开式中只有第六项二项式系数最大,则展开式中的常数项是

A .180

B .90

C .45

D .360

8.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有 A .60个 B .48个 C .36个 D . 24个

9.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是

A .1260

B .120

C .240

D .720 10.n N ∈且55n <,则乘积(55)(56)(69)n n n ---L 等于

A .5569n n A --

B .1569n A -

C .1555n A -

D .14

69n A - 11.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为

A .120

B .240

C .280

D .60

12.把10

)x -把二项式定理展开,展开式的第8项的系数是

A .135

B .135-

C .-

D .

13.2122n

x x ??+ ??

?的展开式中,2

x 的系数是224,则2

1x 的系数是A.14 B .28C .56 D .112 14.不共面的四个定点到面α的距离都相等,这样的面α共有几个A .3 B .4 C .6 D .7

15.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法.

16.在220

(1)x -展开式中,如果第4r 项和第2r +项的二项式系数相等,则r = ,

4r T = .

17.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这

样的四位数有_________________个.

18.用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则

x = .

19.n 个人参加某项资格考试,能否通过,有 种可能的结果?

20.已知集合{}1,0,1S =-,{}1,2,3,4P =,从集合S ,P 中各取一个元素作为点的坐标,可作出不同的点共有_____个.

21.2

3

4

5

(1)(1)(1)(1)(1)x x x x x ---+---+-的展开式中的3

x 的系数是___________

22.{}1,2,3,4,5,6,7,8,9A =,则含有五个元素,且其中至少有两个偶数的子集个数为_____. 23.8张椅子排成,有4个人就座,每人1个座位,恰有3个连续空位的坐法共有多少种?_______ 24.5

0.991的近似值(精确到0.001)是多少?

25.7个人排成一排,在下列情况下,各有多少种不同排法? (1)甲排头:

(2)甲不排头,也不排尾:

(3)甲、乙、丙三人必须在一起: (4)甲、乙之间有且只有两人: (5)甲、乙、丙三人两两不相邻: (6)甲在乙的左边(不一定相邻):

(7)甲、乙、丙三人按从高到矮,自左向右的顺序: (8)甲不排头,乙不排当中:

26.已知5025001250(2),a a x a x a x =++++L 其中01250,,,a a a a L 是常数,计算

220245013549()()a a a a a a a a ++++-++++L L

15、8640 16、1530

204,C x - 17、840 18、2 19、n

2

20、 23 21、15 22、105 23、480 24、0.956

25.解:(1)甲固定不动,其余有66720A =,即共有6

6720A =种;

(2)甲有中间5个位置供选择,有1

5A ,其余有66720A =,即共有16563600A A =种;

(3)先排甲、乙、丙三人,有3

3A ,再把该三人当成一个整体,再加上另四人,相当

于5人的全排列,即55A ,则共有53

53720A A =种;

(4)从甲、乙之外的5人中选2个人排甲、乙之间,有25A ,甲、乙可以交换有2

2A , 把该四人当成一个整体,再加上另三人,相当于4人的全排列,

则共有224

524960A A A =种;

(5)先排甲、乙、丙之外的四人,有4

4A ,四人形成五个空位,甲、乙、丙三人排

这五个空位,有35A ,则共有34

541440A A =种;

(6)不考虑限制条件有7

7A ,甲在乙的左边(不一定相邻),占总数的一半, 即

7

7125202

A =种; (7)先在7个位置上排甲、乙、丙之外的四人,有4

7A ,留下三个空位,甲、乙、丙

三人按从高到矮,自左向右的顺序自动入列,不能乱排的,即4

7840A =

(8)不考虑限制条件有77A ,而甲排头有66A ,乙排当中有6

6A ,这样重复了甲排头,

乙排当中55A 一次,即765

76523720A A A -+=

6.解:设50

()(2)f x =-,令1x =,得5001250(2a a a a ++++=L

令1x =-,得5001250(2a a a a -+-+=L

220245013549()()a a a a a a a a ++++-++++=L L

50500125001250()()(2(21a a a a a a a a ++++-+-+==L L

4.已知21n

x x ??- ???展开式中的二项式系数的和比7

(32)a b +展开式的二项式系数的和大128,

求21n

x x ?

?- ??

?展开式中的系数最大的项和系数量小的项.

5.(2)

n

?

?

的展开式奇数项的二项式系数之和为128, 则求展开式中二项式系数最大项。

(数学选修2--3) 第一章 计数原理

[综合训练B 组]

一、选择题 二、填空题 [提高训练C 组]

一、选择题

4.设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则T S

的值为A.

20128 B .15128 C .16128 D .21128

5.若423401234(2x a a x a x a x a x =++++,则22

02413()()a a a a a ++-+的值为

A.1 B .1- C .0 D .2 二、填空题

2.在△AOB 的边OA 上有5个点,边OB 上有6个点,加上O 点共个点,以这12个点为顶点的三角形有 个.

5.若2222

345363,n C C C C ++++=L 则自然数n =_____.

三、解答题

1.6个人坐在一排10个座位上,问(1)空位不相邻的坐法有多少种?(2) 4个空位只有3个相邻的坐法有多少种?(3) 4个空位至多有2个相邻的坐法有多少种?

2.有6个球,其中3个黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?

数学选修2-3 第一章 计数原理 [基础训练A 组]

一、选择题

1.B 每个小球都有4种可能的放法,即44464??=

2.C 分两类:(1)甲型1台,乙型2台:1

2

45C C ;(2)甲型2台,乙型1台:2

1

45C C

1221

454570C C C C +=

3.C 不考虑限制条件有55A ,若甲,乙两人都站中间有2333A A ,523

533A A A -为所求 4.B 不考虑限制条件有25A ,若a 偏偏要当副组长有14A ,21

5416A A -=为所求 5.B 设男学生有x 人,则女学生有8x -人,则213

8390,x x C C A -=

即(1)(8)30235,3x x x x --==??=

6.A 14888883

3

18

8811()((1)()(1)()222r r r r r r r r r r r r r x T C C x

C x ------+==-=- 令68667841

80,6,(1)()732

r r T C --

===-= 7.B 5553322

55(12)(2)2(12)(12)...2(2)(2)...x x x x x C x xC x -+=-+-=+-+-+ 2333

55(416)...120...C C x x =-+=-+

8.A 只有第六项二项式系数最大,则10n =,

55102110

1022()2r r

r

r r r r T C C x x --+==,令2

310550,2,41802

r r T C -==== 二、填空题

1.(1)10 3510C =;(2) 5 4

55C =;(3)14 446414C C -=

2.8640 先排女生有46A ,再排男生有44A ,共有44

648640A A ?=

3.480 0既不能排首位,也不能排在末尾,即有14A ,其余的有55A ,共有15

45480A A ?=

4.1890 10110(r r

r r T C x -+=,令466510106,4,91890r r T C x x -==== 5.1530204,C x - 411152151530

2020162020,41120,4,()r r C C r r r T C x C x -+=-++===-=- 6.840 先排首末,从五个奇数中任取两个来排列有25A ,其余的27A ,共有22

57840A A ?= 7.2 当0x ≠时,有4

424A =个四位数,每个四位数的数字之和为145x +++

24(145)288,2x x +++==;当0x =时,288不能被10整除,即无解

8.11040 不考虑0的特殊情况,有32555512000,C C A =若0在首位,则314

544960,C C A = 325314

5555441200096011040C C A C C A -=-=

三、解答题

1.解:(1)①是排列问题,共通了211110A =封信;②是组合问题,共握手2

1155C =次。

(2)①是排列问题,共有21090A =种选法;②是组合问题,共有2

1045C =种选法。 (3)①是排列问题,共有2856A =个商;②是组合问题,共有2

828C =个积。 2.解:(1)甲固定不动,其余有66720A =,即共有6

6720A =种;

(2)甲有中间5个位置供选择,有1

5A ,其余有66720A =,即共有16563600A A =种;

(3)先排甲、乙、丙三人,有3

3A ,再把该三人当成一个整体,再加上另四人,相当

于5人的全排列,即55A ,则共有53

53720A A =种;

(4)从甲、乙之外的5人中选2个人排甲、乙之间,有25A ,甲、乙可以交换有2

2A , 把该四人当成一个整体,再加上另三人,相当于4人的全排列,

则共有224

524960A A A =种;

(5)先排甲、乙、丙之外的四人,有4

4A ,四人形成五个空位,甲、乙、丙三人排

这五个空位,有35A ,则共有34

541440A A =种;

(6)不考虑限制条件有7

7A ,甲在乙的左边(不一定相邻),占总数的一半, 即

7

7125202

A =种; (7)先在7个位置上排甲、乙、丙之外的四人,有4

7A ,留下三个空位,甲、乙、丙

三人按从高到矮,自左向右的顺序自动入列,不能乱排的,即4

7840A =

(8)不考虑限制条件有77A ,而甲排头有66A ,乙排当中有6

6A ,这样重复了甲排头,

乙排当中55A 一次,即765

76523720A A A -+=

3.解:43

212143(1)140(21)2(21)(22)140(1)(2)

x x x x A A x N x x x x x x x ++≥??≥?=??∈??+--=--?

23(21)(21)35(2)3435690x x N

x x x x x N

x x ≥??

?∈??+-=-??≥?

?∈??-+=?

得3x =

22122122

311222122

(2),(1)

,2,4

2

n n n n n n n n

n n

C C C C C C C C n n C

C n n +++++++=+++=+-=+==

4.解:7

22128,8n

n -==,8

21x x ??- ??

?的通项281631881()()(1)r r r r r r

r T C x C x x --+=-=-

当4r =时,展开式中的系数最大,即4

570T x =为展开式中的系数最大的项; 当3,5r =或时,展开式中的系数最小,即7

2656,56T x T x =-=-为展开式中

的系数最小的项。

5.解:(1)由已知得25

7n n C C n =?=

(2)由已知得1351

...128,2128,8n n n n C C C n -+++===,而展开式中二项式

系数最大项是44

4

418(70T C x +==

6.解:设50

()(2)f x =-,令1x =,得5001250(2a a a a ++++=L

令1x =-,得5001250(2a a a a -+-+=L

220245013549()()a a a a a a a a ++++-++++=L L

50500125001250()()(2(21a a a a a a a a ++++-+-+==L L

数学选修2-3 第一章 计数原理 [综合训练B 组]

一、选择题

1.C 个位12A ,万位1

3A ,其余33A ,共计11323336A A A = 2.D 相当于3个元素排10个位置,3

10720A =

3.B 从55n -到69n -共计有15个正整数,即15

69n A -

4.A 从,,,c d e f 中选2个,有2

4C ,把,a b 看成一个整体,则3个元素全排列,3

3A

共计23

4336C A =

5.A 先从5双鞋中任取1双,有15C ,再从8只鞋中任取2只,即2

8C ,但需要排除

4种成双的情况,即284C -,则共计12

58(4)120C C -=

6.D 7

377810)()T C x =-=,系数为

7.A 22221221(2)

(

)22r n r

r n r r n r

r n n T C x C x x

---+==,令222,1n r r n -==-

则2

11222224,56,4n n n

n

C

C

n --===,再令3286214

822,5,4C r r T x x

--=-===

8.D 310103105255

1010(1)(1)(1)(1)()...207...x x x x x C C x x -+=+-+=-+=+

二、填空题

1.2n 每个人都有通过或不通过2种可能,共计有22...2(2)2n

n ???=个

2.60 四个整数和为奇数分两类:一奇三偶或三奇一偶,即1331

545460C C C C += 3.23 112

342123C C A -=,其中(1,1)重复了一次

4.3 1,2n k ==

5.51- 5

1()1x x ??+- ???

的通项为551()(1),r r

r C x x -+-其中51()r x x -+的通项为

'

'

525r r r r C x

---,所以通项为'

'

5255(1)r r r

r r r C C x ----,令'

520r r --= 得'

52

r r -=

,当1r =时,'2r =,得常数为30-;当3r =时,'

1r =,得常数为20-; 当5r =时,'

0r =,得常数为1-;30(20)(1)51∴-+-+-=-

6.4186 3件次品,或4件次品,3241

4464464186C C C C +=

7.15 原式56(1)[1(1)](1)(1)1(1)x x x x x x

-+--+-==+-,6(1)x -中含有4

x 的项是

24246(1)15C x x -=,所以展开式中的3

x 的系数是15

8.105 直接法:分三类,在4个偶数中分别选2个,3个,4个偶数,其余选奇数,

233241454545105C C C C C C ++=;间接法:5541

9554105C C C C --=

三、解答题

1.解:A B U 中有元素710413+-=

333

1363286201265C C C --=--=。

2.解:(1)原式32

3

33333

101100

100

101

101

101

1013331()16A C

C A C A A A A =+÷=÷=÷=÷=。

(2)原式34444444

35465111011330C C C C C C C C =+-+-++-==L 。 另一方法: 433333

44510510C C C C C C =++++=+L L 原式 433434

6610101011330C C C C C C =+++==+==L L

(3)原式111111m m m m m n n n n n

m m m m n

n n n C C C C C C C C C ----+=-=+-=

3.证明:左边!!(1)!!()!(1)!(1)!

n m n n m n m n n m n m n m ?-+?+?=

+=--+-+

1(1)![(1)]!

m

n n A n m ++=

==+-右边

所以等式成立。

4.解:6

33(1)1(2)x x x x

-+-=,在6

(1)x -中,3x 的系数336(1)20C -=- 就是展开式中的常数项。 另一方法:

6=原式,3

346

(1)20T C =-=- 5.解:抛物线经过原点,得0c =,

当顶点在第一象限时,00,0,0

2a b a b a

>?

>?即,则有11

34C C 种; 当顶点在第三象限时,00,0,0

2a b a b a >?>-

>?即,则有2

4A 种; 共计有112

34424C C A +=种。

6.解:把4个人先排,有4

4A ,且形成了5个缝隙位置,再把连续的3个空位和1个空位

当成两个不同的元素去排5个缝隙位置,有25A ,所以共计有42

45480A A =种。

数学选修2-3 第一章 计数原理 [提高训练C 组]

一、选择题

1.B

!!

6,34,7(3)!(4)!4!

n n n n n n =?-==--?

2.D 男生2人,女生3人,有2

3

3020C C ;男生3人,女生2人,有3

2

3020C C

共计2332

30203020C C C C +

3.A 甲得2本有26C ,乙从余下的4本中取2本有24C ,余下的22C ,共计22

64C C 4.B 含有10个元素的集合的全部子集数为10

2S =,由3个元素组成的子集数

为3

10T C

=,

3

1010152128

C T S == 5.A 22

024130123401234()()()()a a a a a a a a a a a a a a a ++-+=++++-+-+

44

(2(21=+?-=

6.D 分三种情况:(1)若仅7T 系数最大,则共有13项,12n =;(2)若7T 与6T 系数相

等且最大,则共有12项,11n =;(3)若7T 与8T 系数相等且最大,则共有14项,

13n =,所以n 的值可能等于11,12,13

7.D 四个点分两类:(1)三个与一个,有1

4C

(2)平均分二个与二个,有2

4

2

C 共计有2

14

4

72

C C += 8.

D 复数,(,)a bi a b R +∈为虚数,则a 有10种可能,b 有9种可能,共计90种可能 二、填空题

1.9 分三类:第一格填2,则第二格有1

3A ,第三、四格自动对号入座,不能自由排列;

第一格填3,则第三格有1

3A ,第一、四格自动对号入座,不能自由排列; 第一格填4,则第撕格有1

3A ,第二、三格自动对号入座,不能自由排列;

共计有1

339A =

2.165 333

1267165C C C --=

3.180,30 0a ≠,111665180C C C =;2

60,30b A ==

4.4 3999219

9()((1))2r r r r r

r r r r a T C a C x x ---+==-,令393,82

r r -==

8

88999

(1),42164

aC a a -=== 5.13 322223222

33454453631,364,n n C C C C C C C C C +++++=+++++=L L 3223

551...364,13n n C C C C n ++++====L

6.28

25!6!77!

,23420!(5)!!(6)!10!(7)!

m m m m m m m m -=?-+=---

而05m ≤≤,得2

882,28m m C C ===

7.0.956

5520.991(10.009)150.00910(0.009)...10.0450.000810.956=-=-?+?+≈-+≈

8.2- 设()(12)n

f x x =-,令1x =,得70127(12)1a a a a ++++=-=-L

令0x =,得01a =,127012a a a a +++=--=-L 三、解答题

1.解:6个人排有6

6A 种, 6人排好后包括两端共有7个“间隔”可以插入空位.

(1)空位不相邻相当于将4个空位安插在上述7个“间隔”中,有4

735C =种插法, 故空位不相邻的坐法有6

46725200A C =g

种。 (2)将相邻的3个空位当作一个元素,另一空位当作另一个元素,往7个“间隔”里插

有27A 种插法,故4个空位中只有3个相邻的坐法有62

6730240A A =种。

(3) 4个空位至少有2个相邻的情况有三类:

①4个空位各不相邻有4

7C 种坐法;

②4个空位2个相邻,另有2个不相邻有1

2

76C C 种坐法; ③4个空位分两组,每组都有2个相邻,有27C 种坐法.

综合上述,应有64122

67767()118080A C C C C ++=种坐法。

2.解:分三类:若取1个黑球,和另三个球,排4个位置,有4

424A =;

若取2个黑球,从另三个球中选2个排4个位置,2个黑球是相同的,

自动进入,不需要排列,即有22

3436C A =;

若取3个黑球,从另三个球中选1个排4个位置,3个黑球是相同的,

自动进入,不需要排列,即有11

3412C A =;

所以有24361272++=种。

3.解:5454

(12)(13)(21)(31)x x x x -+=--+

514413

54[(2)(2)...][(3)(3)...]x C x x C x =--+++

5443

(3280...)(81108...)x x x x =--+++

98898

(2592818032108...)25923024...

x x x x x =--?+?+=-++

4.解:22

113

89989(81)89n n n n n n +++--=--=+--

01112111111011211110112111188888964(88)8(1)18964(88)

n n n n n n n n n n n n n n n n n n n n n n C C C C C n C C C n n M M C C C +-++++++---+++---+++=+++++--=++++++--=?=+++L L L 记 M Q 为整数,6464M ∴能被整除.

5.证明:01223...(1)n

n n n n C C C n C +++++

01212(...)(2...)n n

n n n n n n n C C C C C C nC =++++++++

121

1111

2(1...)

22

n n n n n n n n C C C n -----=+++++=+?

6.解:(1)3

1

2*(1)(2)

7,

7,3400,86

n n n n n C C n n n n N n --==--=∈=由,得;

(2)523443243

7772,213570,0C a C a C a a a a a +=+=≠

得2

510301a a a -+=?=; (3)44lg 44(1lg )

28(2)()1120,1,lg lg 0x x C x x x

x x +==+= 得lg 0x =,或lg 1x =- 所以1

1,10

x x ==

或。

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

高中数学排列组合公式大全_高中数学排列组合重点知识.doc

高中数学排列组合公式大全_高中数学排列 组合重点知识 高中数学排列组合公式大全_高中数学排列组合重点知识 高中数学排列组合公式大全 1.排列及计算公式 从n个不同元素中,任取m(m n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(m n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2) (n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标)) Pnm=n (n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 高中数学排列组合公式记忆口诀 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。 高中数学排列组合重点知识 1.计数原理知识点 ①乘法原理:N=n1 n2 n3 nM (分步) ②加法原理:N=n1+n2+n3+ +nM (分类) 2. 排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3) (n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m!

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

排列组合公式推导2014

排列和组合基本公式的推导,定义 先从「排列」开始。「排列」的最直观意义,就是给定n个「可区别」(Distinguishable,亦作「相异」)的物件,现把这n个物件的全部或部分排次序,「排列」问题就是求不同排列方式的总数。为了区别这些物件,我们可不妨给每个物件一个编号:1、2 ... n,因此「排列」问题实际等同於求把数字1、2 ... n的全部或部分排次序的方式总数。「排列」问题可分为「全排列」和「部分排列」两种,当我们把给定的n个数字1 、2 ... n全部排次序,求有多少种排法时,就是「全排列」问题。我们可以把排序过程分解为n个程序:第一个程序决定排於第一位的数字,第二个程序决定排於第二位的数字...第n个程序决定排於第n位的数字。在进行第一个程序时,有n个数字可供选择,因此有n种选法。在进行第二个程序时,由於在前一程序已选定了一个数字,现在可供选择的数字只剩下n-1个,因此有n-1种选法。在进行第三个程序时,由於在前一程序已选定了一个数字,现在可供选择的数字只剩下n-2个,因此有 n-2种选法。如是者直至第n个程序,这时可供选择的数字只剩下1个,因此只有1种选择。由於以上各程序是「各自独立」的,我们可以运用「乘法原理」求得答案为n×(n-1)×(n-2)×...2×1。在数学上把上式简记为n!,读作「n 阶乘」(n-factorial)。 例题1:把1至3这3个数字进行「全排列」,共有多少种排法?试列出所有排法。 答1:共有3! = 3 × 2 × 1 = 6种排法,这6种排法为1-2-3;1-3-2;2-1-3;2-3-1; 3-1-2;3-2-1。 当然,给定n个数字,我们不一定非要把全部n个数字排序不可,我们也可只抽取部分数字(例如r个,r < n)来排序,并求有多少种排法,这样的问题就是「部分排列」问题。我们可以把「部分排列」问题理解成抽东西的问题。设在某袋中有n个球,每个球都标了编号1、2 ... n。现从袋中抽r个球出来(抽出来之后不得再放回袋中),并把球上的数字按被抽出来的顺序记下,这r个数字的序列实际便等同於一个排序。「部分排列」问题的解答跟「全排列」问题非常相似,只不过现在我们是把排序过程分解为r个而非n个步骤。进行第一个程序时,有n个数字可供选择,因此有n种选法。在进行第二个程序时,由於在前一程序已选定了一个数字,现在可供选择的数字只剩下n-1个,因此有n-1种选法。在进行第三个程序时,由於在前一程序已选定了一个数字,现在可供选择的数字只剩下n-2个,因此有n-2种选法。如是者直至第r个程序,这时可供选择的数字只剩下n-r+1个,因此只有n-r+1种选择。最后,运用「乘法原理」求得答案为n×(n-1)×(n-2)×...(n-r+1)。 我们可以把上式改写为更简的形式n! / (n-r)!,为甚麼可以这样改写?这要用到n!的定义和乘法的结合律。举一个简单的例子,由於 5! = 5 × 4 × 3 × 2 × 1 = 5 × (4 × 3 × 2 × 1) = 5 × 4!。同样由

排 列 组 合 公 式 及 排 列 组 合 算 法

排列组合n选m,组合算法——0-1转换算法(巧妙算法)C++实现 知识储备 排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示计算公式: 注意:m中取n个数,按照一定顺序排列出来,排列是有顺序的,就算已经出现过一次的几个数。只要顺序不同,就能得出一个排列的组合,例如1,2,3和1,3,2是两个组合。 组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。 计算公式: 注意:m中取n个数,将他们组合在一起,并且顺序不用管,1,2,3和1,3,2其实是一个组合。只要组合里面数不同即可 组合算法 本算法的思路是开两个数组,一个index[n]数组,其下标0~n-1表示1到n个数,1代表的数被选中,为0则没选中。value[n]数组表示组合

的数值,作为输出之用。 ? 首先初始化,将index数组前m个元素置1,表示第一个组合为前m 个数,后面的置为0。? 然后从左到右扫描数组元素值的“10”组合,找到第一个“10”组合后将其变为?“01”组合,同时将其左边的所有“1”全部移动到数组的最左端。一起得到下一个组合(是一起得出,是一起得出,是一起得出)重复1、2步骤,当第一个“1”移动到数组的n-m的位置,即m个“1”全部移动到最右端时;即直到无法找到”10”组合,就得到了最后一个组合。 组合的个数为: 例如求5中选3的组合: 1 1 1 0 0 --1,2,3? 1 1 0 1 0 --1,2,4? 1 0 1 1 0 --1,3,4? 0 1 1 1 0 --2,3,4? 1 1 0 0 1 --1,2,5? 1 0 1 0 1 --1,3,5? 0 1 1 0 1 --2,3,5? 1 0 0 1 1 --1,4,5? 0 1 0 1 1 --2,4,5? 0 0 1 1 1 --3,4,5 代码如下:

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有3 4A 由分步计数原理得1 1 3434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5 2 2 522480A A A =种不同的排法 C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排列组合公式(全)教程文件

排列组合公式(全)

排列组合公式 排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用

(1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9!

排 列 组 合 公 式 及 排 列 组 合 算 法 ( 2 0 2 0 )

字符串的排列组合算法合集 全排列在笔试面试中很热门,因为它难度适中,既可以考察递归实现,又能进一步考察非递归的实现,便于区分出考生的水平。所以在百度和迅雷的校园招聘以及程序员和软件设计师的考试中都考到了,因此本文对全排列作下总结帮助大家更好的学习和理解。对本文有任何补充之处,欢迎大家指出。 首先来看看题目是如何要求的(百度迅雷校招笔试题)。一、字符串的排列 用C++写一个函数, 如 Foo(const char *str), 打印出 str 的全排列,如 abc 的全排列: abc, acb, bca, dac, cab, cba 一、全排列的递归实现 为方便起见,用123来示例下。123的全排列有123、132、213、231、312、321这六种。首先考虑213和321这二个数是如何得出的。显然这二个都是123中的1与后面两数交换得到的。然后可以将123的第二个数和每三个数交换得到132。同理可以根据213和321来得231和312。因此可以知道——全排列就是从第一个数字起每个数分别与它后面的数字交换。找到这个规律后,递归的代码就很容易写出来了: view plaincopy #includeiostream?using?namespace?std;?#includeassert.h?v oid?Permutation(char*?pStr,?char*?pBegin)?{?assert(pStr?pBe

gin);?if(*pBegin?==?'0')?printf("%s",pStr);?else?{?for(char *?pCh?=?pBegin;?*pCh?!=?'0';?pCh++)?{?swap(*pBegin,*pCh);?P ermutation(pStr,?pBegin+1);?swap(*pBegin,*pCh);?}?}?}?int?m ain(void)?{?char?str[]?=?"abc";?Permutation(str,str);?retur n?0;?}? 另外一种写法: view plaincopy --k表示当前选取到第几个数,m表示共有多少个数?void?Permutation(char*?pStr,int?k,int?m)?{?assert(pStr); ?if(k?==?m)?{?static?int?num?=?1;?--局部静态变量,用来统计全排列的个数?printf("第%d个排列t%s",num++,pStr);?}?else?{?for(int?i?=?k;?i?=?m;?i++)?{?swa p(*(pStr+k),*(pStr+i));?Permutation(pStr,?k?+?1?,?m);?swap( *(pStr+k),*(pStr+i));?}?}?}?int?main(void)?{?char?str[]?=?" abc";?Permutation(str?,?0?,?strlen(str)-1);?return?0;?}? 如果字符串中有重复字符的话,上面的那个方法肯定不会符合要求的,因此现在要想办法来去掉重复的数列。二、去掉重复的全排列的递归实现 由于全排列就是从第一个数字起每个数分别与它后面的数字交换。我们先尝试加个这样的判断——如果一个数与后面的数字相同那么这二个数就不交换了。如122,第一个数与后面交换得212、221。然后122中第二数就不用与第三个数交换了,但对212,它第二个数

排列组合方法归纳大全

排列组合方法归纳大全 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为

四.定序问题倍缩空位插入策略 例人排队,其中甲乙丙3人顺序一定共有多少不同的排法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 练习题: 1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 六.环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法练习题:6颗颜色不同的钻石,可穿成几种钻石圈 七.多排问题直排策略 例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是

高中排列组合知识点汇总和典型例题[全]

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计 数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

排列组合公式排列组合计算公式----高中数学!

排列组合公式/排列组合计算公式 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每

名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4证明. 证明左式

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1.学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 m种不完成一件事,有几类办法,在第一类办法中有1.分类计数原理(加法原理):1mm种不同的方法,类型办法中有种不同的方法……在第n同的方法,在第2类办法中有n2N?m?m?...?m 种不同的方法.那么完成这件事共有n12m种不步有个步骤,做第12.分步计数原理(乘法原理):完成一件事,需要分成n1mm种不同的方法;那么完成这步有种不同的方法……,做第同的方法,做第2步有n n2N?m?m?...?m种不同的方法.件事共有n12特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n m?nm?n 时叫做全排列. 时叫做选排列,排列个不同元素中取出m个元素的一个,4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同m P. 个元素的排列数,用符号表示元素中取出m n n!?m)?Nmn(m?)...()(1n?2n?m1)??,n、?(?Pnn5.排列数公式: n(n?m)!1mmm?mPPP??排列数具有的性质:nn1?n特别提醒: 规定0!=1 1 6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合. 7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个m C. 个不同元素的组合数,用符号表示不同元素中取出m nm Pn(n?1)(n?2)...(n?m?1)n!mn???C.组合数公式:8 nm)!m!(n?m!mP mmn?mmmm?1C?CC?C?C;②组合数的两个性质:①nnnnn?1特别提醒:排列与组合的联系与区别. 联系:都是从n个不同元素中取出m个元素. 区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.

排列组合公式_排列组合计算公式

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n 分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-08 13:30 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如 9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

排列组合问题经典题型(含解析)

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

排列组合公式

排列组合公式 1.分类计数原理(加法原理) 12n N m m m =+++ . 2.分步计数原理(乘法原理) 12n N m m m =??? . 3.排列数公式 m n A =)1()1(+--m n n n =!! )(m n n -.(n ,m ∈N*,且m n ≤). 注:规定1!0=. 4.排列恒等式 (1)1 (1)m m n n A n m A -=-+; (2) 1 m m n n n A A n m -= -; (3) 1 1m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5)11m m m n n n A A mA -+=+. (6) 1!22!33!!(1)!1n n n +?+?++?=+- . 5.组合数公式 m n C =m n m m A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 6.组合数的两个性质 (1)m n C =m n n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定 10 =n C . 7.组合恒等式 (1) 1 1m m n n n m C C m --+= ;

(2) 1 m m n n n C C n m -= -; (3) 1 1m m n n n C C m --= ; (4)∑=n r r n C =n 2; (5) 1121++++=++++r n r n r r r r r r C C C C C . (6)n n n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9) r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)n n n n n n n C C C C C 22222120)()()()(=++++ . 8.排列数与组合数的关系 m m n n A m C =?! . 9.单条件排列 以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位” ①某(特)元必在某位有11--m n A 种; ②某(特)元不在某位有11---m n m n A A (补集思想)1 111---=m n n A A (着眼位置)1 1111----+=m n m m n A A A (着眼元素)种. (2)紧贴与插空(即相邻与不相邻) ①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k m k n k k A A --种. ②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 1 1+-+-种. 注:此类问题常用捆绑法; ③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的 一组互不能挨近的所有排列数有 k h h h A A 1+种. (3)两组元素各相同的插空

相关文档
最新文档