人教中考数学二次函数(大题培优 易错 难题)

人教中考数学二次函数(大题培优 易错 难题)
人教中考数学二次函数(大题培优 易错 难题)

一、二次函数真题与模拟题分类汇编(难题易错题)

1.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

【答案】(1)b=﹣2a,顶点D的坐标为(﹣1

2

,﹣

9

4

a);(2)

27327

48

a

a

--;(3)

2≤t<9

4

【解析】

【分析】

(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;

(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;

(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.

【详解】

解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),

∴a+a+b=0,即b=-2a,

∴y=ax2+ax+b=ax2+ax-2a=a(x+1

2

)2-

9

4

a

∴抛物线顶点D 的坐标为(-

1

2

,-94a ); (2)∵直线y=2x+m 经过点M (1,0), ∴0=2×1+m ,解得m=-2, ∴y=2x-2,

则2

222y x y ax ax a -??+-?

==, 得ax 2+(a-2)x-2a+2=0, ∴(x-1)(ax+2a-2)=0, 解得x=1或x=

2

a

-2, ∴N 点坐标为(

2a

-2,4

a -6),

∵a <b ,即a <-2a , ∴a <0,

如图1,设抛物线对称轴交直线于点E ,

∵抛物线对称轴为122

a x a =-=-, ∴E (-

1

2

,-3), ∵M (1,0),N (

2a

-2,4

a -6),

设△DMN 的面积为S ,

∴S=S △DEN +S △DEM =

12

|( 2a -2)-1|?|-94a -(-3)|=274?3a ?278a ,

(3)当a=-1时,

抛物线的解析式为:y=-x 2-x+2=-(x+

12

)2+94,

22

2

y x x

y x

?=--+

?

=-

?

-x2-x+2=-2x,

解得:x1=2,x2=-1,

∴G(-1,2),

∵点G、H关于原点对称,

∴H(1,-2),

设直线GH平移后的解析式为:y=-2x+t,-x2-x+2=-2x+t,

x2-x-2+t=0,

△=1-4(t-2)=0,

t=9

4

当点H平移后落在抛物线上时,坐标为(1,0),

把(1,0)代入y=-2x+t,

t=2,

∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<9

4

【点睛】

本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.

2.如图1,对称轴为直线x=1的抛物线y=1

2

x2+bx+c,与x轴交于A、B两点(点A在点B

的左侧),且点A坐标为(-1,0).又P是抛物线上位于第一象限的点,直线AP与y轴交于

点D,与抛物线对称轴交于点E,点C与坐标原点O关于该对称轴成轴对称.

(1)求点B 的坐标和抛物线的表达式;

(2)当AE:EP=1:4 时,求点E 的坐标;

(3)如图 2,在(2)的条件下,将线段 OC 绕点 O 逆时针旋转得到OC ′,旋转角为α(0°<

α<90°),连接C ′D、C′B,求

C ′B+

2

3

C′D 的最小值.

【答案】(1)B(3,0);抛物线的表达式为:y=1

2

x2-x-

3

2

;(2)E(1,6);(3)C′B+

2 3C′D

4

10

3

【解析】

试题分析:(1)由抛物线的对称轴和过点A,即可得到抛物线的解析式,令y=0,解方程可得B的坐标;

(2)过点P作PF⊥x轴,垂足为F.由平行线分线段弄成比例定理可得

AE AP =

AG

AF

=

EG

PF

=

1

5

,从而求出E的坐标;

(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,得到D(0,3).

如图,取点M(0,4

3

),连接MC′、BM.则可求出OM,BM的长,得到

△MOC′∽△C′OD.进而得到MC′=2

3

C′D,由C′B+

2

3

C′D=C′B+MC′≥BF可得到结论.

试题解析:解:(1)∵抛物线y=1

2

x2+bx+c的对称轴为直线x=1,∴-1

2

2

b

=1,∴b=-1.

∵抛物线过点A(-1,0),∴1

2

-b+c=0,解得:c=-

3

2

即:抛物线的表达式为:y=1

2

x2-x-

3

2

令y=0,则1

2

x2-x-

3

2

=0,解得:x1=-1,x2=3,即B(3,0);

(2)过点P作PF⊥x轴,垂足为F.

∵EG∥PF,AE:EP=1:4,∴AE

AP =

AG

AF

=

EG

PF

=

1

5

又∵AG=2,∴AF=10,∴F(9,0).

当x=9时,y=30,即P(9,30),PF=30,∴EG=6,∴E(1,6).

(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,则D(0,3).∵原点O与点C关于该对称轴成轴对称,∴EG=6,∴C(2,0),∴OC′=OC=2.

如图,取点M(0,4

3

),连接MC′、BM.则OM=

4

3

,BM=22

4

3()

3

+=

97

4

2

3

'23

OM

OC

==,

'2

3

OC

OD

=,且∠DOC′=∠C′OD,∴△MOC′∽△C′OD.∴

'2

'3

MC

C D

=,

∴MC′=2

3C′D,∴C′B+

2

3

C′D=C′B+MC′≥BM=

4

10

3

,∴C′B+

2

3

C′D的最小值为

4

10

3

点睛:本题是二次函数的综合题,解答本题主要应用了待定系数法求二次函数的解析式,相似三角形的性质和判定,求得AF的长是解答问题(2)的关键;和差倍分的转化是解答问题(3)的关键.

3.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.

【答案】(1)21248355y x x =

--,顶点D (2,63

5

-);(2)C (10±0)或(5222±0)或(9710,0);(3)75

2

【解析】 【分析】

(1)抛物线的顶点D 的横坐标是2,则x 2b

a

=-=2,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入函数表达式,即可求解; (2)分AB =AC 、AB =BC 、AC =BC ,三种情况求解即可;

(3)由S △PAB 1

2

=?PH ?x B ,即可求解. 【详解】

(1)抛物线的顶点D 的横坐标是2,则x 2b

a

=-

=2①,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3②,联立①、②解得:a 125=

,b 485=-,c =﹣3,∴抛物线的解析式为:y 125=

x 248

5

-x ﹣3. 当x =2时,y 635=-

,即顶点D 的坐标为(2,63

5

-); (2)A (0,﹣3),B (5,9),则AB =13,设点C 坐标(m ,0),分三种情况讨论: ①当AB =AC 时,则:(m )2+(﹣3)2=132,解得:m 10,即点C 坐标为:(10,0)或(﹣10,0);

②当AB =BC 时,则:(5﹣m )2+92=132,解得:m =5222±,即:点C 坐标为(5222+,0)或(5﹣220);

③当AC =BC 时,则:5﹣m )2+92=(m )2+(﹣3)2,解得:m =

97

10

,则点C 坐标为

97

10

,0). 综上所述:存在,点C 的坐标为:(±410,0)或(5222±,0)或(

97

10

,0); (3)过点P 作y 轴的平行线交AB 于点H .设直线AB 的表达式为y =kx ﹣3,把点B 坐标代入上式,9=5k ﹣3,则k 125=

,故函数的表达式为:y 12

5

=

x ﹣3,设点P 坐标为(m ,125m 2485-m ﹣3),则点H 坐标为(m ,125m ﹣3),S △PAB 12=?PH ?x B 5

2

=(125-

m 2+12m )=-6m 2+30m =2575

6()22m --+,当m =52

时,S △PAB 取得最大值为:752

. 答:△PAB 的面积最大值为

752

【点睛】

本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.

4.一座拱桥的轮廓是抛物线型(如图所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.

(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是2y ax c =+的形式.请根据所给的数据求出a ,c 的值. (2)求支柱MN 的长度.

(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.

【答案】(1)y=-350

x 2

+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车. 【解析】

试题分析:(1)根据题目可知A .B ,C 的坐标,设出抛物线的解析式代入可求解. (2)设N 点的坐标为(5,y N )可求出支柱MN 的长度.

(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.做GH 垂直AB 交抛物线于H 则可求解.

试题解析: (1) 根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0).

将B 、C 的坐标代入2

y ax c =+,得 6,

0100.c a c =??=+?

解得3

,650

a c =-

=. ∴抛物线的表达式是2

3650

y x =-+. (2) 可设N (5,N y ), 于是23

56 4.550

N y =-

?+=. 从而支柱MN 的长度是10-4.5=5.5米.

(3) 设DE 是隔离带的宽,EG 是三辆车的宽度和, 则G 点坐标是(7,0)(7=2÷2+2×3).

过G 点作GH 垂直AB 交抛物线于H ,则23176335050

H y =-

?+=+>. 根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.

5.如图,抛物线212222

y x x =-++与x 轴相交于A B ,两点,(点A 在B 点左侧)与y 轴交于点C.

(Ⅰ)求A B ,两点坐标.

(Ⅱ)连结AC ,若点P 在第一象限的抛物线上,P 的横坐标为t ,四边形ABPC 的面积为S.试用含t 的式子表示S ,并求t 为何值时,S 最大.

(Ⅲ)在(Ⅱ)的基础上,若点,G H 分别为抛物线及其对称轴上的点,点G 的横坐标为m ,点H 的纵坐标为n ,且使得以,,,A G H P 四点构成的四边形为平行四边形,求满足条件的,m n 的值.

【答案】(Ⅰ)(2,0),2,0)A B ;(Ⅱ)22

2)42(022)S t t =-+<<,当2t =

时,42S =最大;(Ⅲ)满足条件的点m n 、的值为:23

24

m n =-

=,或521524m n =

=-,或321

24

m n =-= 【解析】 【分析】

(Ⅰ)令y=0,建立方程求解即可得出结论;

(Ⅱ)设出点P 的坐标,利用S=S △AOC +S 梯形OCPQ +S △PQB ,即可得出结论;

(Ⅲ)分三种情况,利用平行四边形的性质对角线互相平分和中点坐标公式建立方程组即可得出结论. 【详解】

解:(Ⅰ)抛物线212

222

y x x =-++, 令0y =,则212202x x -

++=, 解得:2x =-22x = ∴((2,0,22,0A B - (Ⅱ)由抛物线212

222

y x x =-

++,令0x =,∴2y =,∴()0,2C , 如图1,点P 作PQ x ⊥轴于Q , ∵P 的横坐标为t ,∴设(),P t p ,

∴2122,22,22

p t t PQ p BQ t OQ t =-++==-=, ∴()()

111

22222222

AOC

PQB

OCPQ S S

S S

p t t p =++=??++?+?-?梯形 11

222222

t pt p pt p t =++

+-=++ 212

2222t t t ??=-++++ ? ?? ()

2

2

242(022)2

t t =-

-+<<,

∴当2t =时,42S =最大;

(Ⅲ)由(Ⅱ)知,2t =,

∴)

2,2P

∵抛物线21222y x x =-

++的对称轴为2

x =

∴设212

2,2,222G m m m H n ????-++ ? ? ? ?????

以,,,A G H P 四点构成的四边形为平行四边形,()

2,0A , ①当AP 和HG 为对角线时,

∴()21121112

22,2022

2222m m n ???=++=-+++ ? ?????, ∴23

4

m n ==, ②当AG 和PH 是对角线时,

∴(()2112112122,20222222m m n ??=-++=+ ? ????

∴5215

,24

m n =

=-, ③AH 和PG 为对角线时, ∴

()

()2121112122,2202222222

m m m n ????-+=+-+++=+ ? ? ? ?????, ∴321

,24

m n =-

=, 即:满足条件的点m n 、的值为:

23,24m n =-

=,或5215

,24

m n ==-,或321,24m n =-= 【点睛】

此题是二次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,梯形的面积公式,平行四边形的性质,中点坐标公式,用方程的思想解决问题是解本题的关键.

6.(10分)(2015?佛山)如图,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数y=﹣x 2+4x 刻画,斜坡可以用一次函数y=x 刻画.

(1)请用配方法求二次函数图象的最高点P 的坐标; (2)小球的落点是A ,求点A 的坐标;

(3)连接抛物线的最高点P 与点O 、A 得△POA ,求△POA 的面积;

(4)在OA 上方的抛物线上存在一点M (M 与P 不重合),△MOA 的面积等于△POA 的面积.请直接写出点M 的坐标.

【答案】(1)(2,4);(2)(,);(3);(4)(,

).

【解析】

试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P 的坐标;

(2)联立两解析式,可求出交点A 的坐标;

(3)作PQ ⊥x 轴于点Q ,AB ⊥x 轴于点B .根据S △POA =S △POQ +S △梯形PQBA ﹣S △BOA ,代入数值计算即可求解;

(4)过P 作OA 的平行线,交抛物线于点M ,连结OM 、AM ,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA 的面积等于△POA 的面积.设直

线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛

物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.

试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,

故二次函数图象的最高点P的坐标为(2,4);

(2)联立两解析式可得:,解得:,或.

故可得点A的坐标为(,);

(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.

S△POA=S△POQ+S△梯形PQBA﹣S△BOA

=×2×4+×(+4)×(﹣2)﹣××

=4+﹣

=;

(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于

△POA的面积.

设直线PM的解析式为y=x+b,

∵P的坐标为(2,4),

∴4=×2+b,解得b=3,

∴直线PM的解析式为y=x+3.

由,解得,,

∴点M 的坐标为(,

).

考点:二次函数的综合题

7.在平面直角坐标系xOy 中(如图),已知抛物线y =x 2-2x ,其顶点为A . (1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况; (2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点” ①试求抛物线y =x 2-2x 的“不动点”的坐标;

②平移抛物线y =x 2-2x ,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.

【答案】(l)抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的;(2)①(0,0)、(3,3); ②新抛物线的表达式是y =(x +1)2-1. 【解析】 【分析】 (1)

10a =>,故该抛物线开口向上,顶点A 的坐标为()1,1-;

(2)①设抛物线“不动点”坐标为(),t t ,则22t t t =-,即可求解;②新抛物线顶点B 为

“不动点”,则设点(),B m m ,则新抛物线的对称轴为:x m =,与x 轴的交点(),0C m ,四边形OABC 是梯形,则直线x m =在y 轴左侧,而点()1,1A -,点(),B m m ,则

1m =-,即可求解. 【详解】

(l)10a =>,

抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),

抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的. (2)①设抛物线y =x 2-2x 的“不动点”坐标为(t ,t). 则t =t 2-2t ,解得t 1=0,t 2=3.

所以,抛物线y =x 2-2x 的“不动点”的坐标是(0,0)、(3,3). ②∵新抛物线的顶点B 是其“不动点”,∴设点B 的坐标为(m ,m) ∴新抛物线的对称轴为直线x =m ,与x 轴的交点为C(m ,0) ∵四边形OABC 是梯形, ∴直线x =m 在y 轴左侧. ∵BC 与OA 不平行 ∴OC ∥AB.

又∵点A 的坐标为(1,一1),点B 的坐标为(m ,m),

∴m =-1.

∴新抛物线是由抛物线y =x 2-2x 向左平移2个单位得到的, ∴新抛物线的表达式是y =(x +1)2-1. 【点睛】

本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.

8.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC = (1)求抛物线的解析式及其对称轴;

(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形

ACDE 的周长的最小值;

(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.

【答案】(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小值为10131++;(3)12(4,5),(8,45)P P -- 【解析】 【分析】

(1)OB=OC ,则点B (3,0),则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a ,即可求解;

(2)CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,即可求解; (3)S △PCB :S △PCA =12EB×(y C -y P ):1

2

AE×(y C -y P )=BE :AE ,即可求解. 【详解】

(1)∵OB=OC ,∴点B (3,0),

则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a , 故-3a=3,解得:a=-1,

故抛物线的表达式为:y=-x 2+2x+3…①; 对称轴为:直线1x =

(2)ACDE 的周长=AC+DE+CD+AE ,其中AC=10、DE=1是常数, 故CD+AE 最小时,周长最小,

取点C 关于函数对称点C (2,3),则CD=C′D , 取点A′(-1,1),则A′D=AE ,

故:CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,

四边形ACDE 的周长的最小值

10101013

(3)如图,设直线CP交x轴于点E,

直线CP把四边形CBPA的面积分为3:5两部分,

又∵S△PCB:S△PCA=1

2

EB×(y C-y P):

1

2

AE×(y C-y P)=BE:AE,

则BE:AE,=3:5或5:3,

则AE=5

2

3

2

即:点E的坐标为(3

2

,0)或(

1

2

,0),

将点E、C的坐标代入一次函数表达式:y=kx+3,

解得:k=-6或-2,

故直线CP的表达式为:y=-2x+3或y=-6x+3…②

联立①②并解得:x=4或8(不合题意值已舍去),

故点P的坐标为(4,-5)或(8,-45).

【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A′点来求最小值,是本题的难点.

9.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,

∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.

(1)求A、B两点的坐标;

(2)求抛物线的解析式;

(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC 于点D,求△DMH周长的最大值.

【答案】(1)(﹣1,0)(2)y=﹣x2+x+(3)

【解析】

试题分析:(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;

(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;

(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.

试题解析:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,

∴B(3,0),C(0,),

∴OB=3,OC=,

∴tan∠BCO==,

∴∠BCO=60°,

∵∠ACB=90°,

∴∠ACO=30°,

∴=tan30°=,即=,解得AO=1,

∴A(﹣1,0);

(2)∵抛物线y=ax2+bx+经过A,B两点,

∴,解得,

∴抛物线解析式为y=﹣x2+x+;

(3)∵MD∥y轴,MH⊥BC,

∴∠MDH=∠BCO=60°,则∠DMH=30°,

∴DH=DM,MH=DM,

∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,

∴当DM有最大值时,其周长有最大值,

∵点M是直线BC上方抛物线上的一点,

∴可设M(t,﹣t2+t+),则D(t,﹣t+),

∴DM=﹣t2+t+),则D(t,﹣t+),

∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,

此时DM=×=,

即△DMH周长的最大值为.

考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想

10.空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.

(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;

(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.

【答案】(1)利用旧墙AD的长为10米.(2)见解析.

【解析】

【分析】

(1)按题意设出AD,表示AB构成方程;

(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系.

【详解】

(1)设AD=x米,则AB=100

2

x

依题意得,

(100)

2

x x

=450

解得x1=10,x2=90

∵a=20,且x≤a ∴x=90舍去

∴利用旧墙AD 的长为10米.

(2)设AD=x 米,矩形ABCD 的面积为S 平方米 ①如果按图一方案围成矩形菜园,依题意 得:

S=

2(100)1

(50)125022x x x ---+=,0<x <a ∵0<a <50

∴x <a <50时,S 随x 的增大而增大

当x=a 时,S 最大=50a-

12

a 2

②如按图2方案围成矩形菜园,依题意得 S=

22(1002)[(25)](25)244x a x a a x =+---+++,a≤x <50+2

a

当a <25+

4a <50时,即0<a <1003

时, 则x=25+4a 时,S 最大=(25+4a )2=2

1000020016

a a ++,

当25+

4a ≤a ,即1003

≤a <50时,S 随x 的增大而减小 ∴x=a 时,S 最大=

(1002)2a a a +-=2

1502

a a -,

综合①②,当0<a <1003时,21000020016a a ++-(21502a a -)=2

(3100)16

a ->0

2

1000020016

a a ++>21502a a -,此时,按图2方案围成矩形菜园面积最大,最大面积

为2

1000020016

a a ++平方米

100

3

≤a <50时,两种方案围成的矩形菜园面积最大值相等. ∴当0<a <

100

3

时,围成长和宽均为(25+4a )米的矩形菜园面积最大,最大面积为

2

1000020016

a a ++平方米;

1003

≤a <50时,围成长为a 米,宽为(50-2a

)米的矩形菜园面积最大,最大面积为

(2

1502

a a -)平方米.

【点睛】

本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

一次函数培优训练经典题型

第十讲一次函数(1) 一【一次函数解析式】 1.画图,并求出与x轴、y轴交点 (1)y=x+2 (2)y=-3x+4 2.求一次函数解析式: (1)直线l过(-1,2)和(3,4);(2)直线l与直线y=2x-1平行且过(0,4)(3)直线l与直线y=3x-6交于x轴上同一点,且过(-1,4) (4)y与x成正比,且当x=9时,y=16. 3.如图,一次函数y=kx+b的图像经过A、B两点,与x轴交于点C,求: (1)一次函数的解析式;(2)△AOC的面积. 二【一次函数图象及性质】 4.作函数y=2x-4的图象,根据图象填空:(1)当-2≤x≤4,则y的取值范围是_____________,(2)当x_________时,y<0;当x_________时,y>0;当x_________时,y=0. 5.已知直线y=(4m+1)x-(m+1),m________时,y随x的增大而减小;m________时,直线与y轴的交点在x轴下方;m________时,此一次函数也是正比例函数;若m=2时,图象与x 轴的交点坐标是_______,与y轴的交点坐标是________. 6.不画函数 1 4 3 y x =-+的图象,回答下列问题: (1)点 7 (3,3),(5,) 3 P Q-是否在这个图象上?(2)若点A(a,1),B(0,b)在这个函数 图象上,求a、b的值;(3)若函数y=x+m的图象与已知图象交于点(n,2)求m、n的值.

7.已知一次函数y=(2k+4)x+(3-b): (1)k、b是什么数时,y随x的增大而增大; (2)k、b是什么数时,函数图象与y轴的交点在x轴下方; (3)k、b是什么数时,函数图象过原点; (4)若k=-1,b=2时,求一次函数图象与两个坐标轴交点坐标,并画出图象; (5)若图象经过一、二、三象限,则k__________,b___________. 三【利用函数图象解决实际问题】 8.为了缓解用电紧张的矛盾,电力公司制订了新的用电收费标准,每月用电量x(千瓦时)与应付电费y(元)的关系如图 (1)根据图象求出y与x的函数关系式; (2)请回答该电力公司的收费标准是什么? 9.客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需购买行李票,行李费用y(元)是行李重量x(千克)的一次函数,其图象如图所示,则按规定旅客免费携带的行李为多少千克? 四【一次函数与几何结合】 10.如图,直线 1 1 3 y x =+与坐标轴交于A、B两点,直线24 y x =+与坐标轴交于C、 (1)求A、B、C、D的坐标;(2)求两直线交点M的坐标;(3)求S四OCMB的大小.

全国中考数学二次函数的综合中考真题汇总及答案解析

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式; (2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由. 【答案】(1) y=﹣23 4x +94x+3;(2) 有最大值,365 ;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为( 73,256)或(173,﹣253). 【解析】 试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣ 34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣ 34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365 ,求L 的最大值即可; (3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94 n+3),则D (n ,﹣34n+3),G (0,﹣34 n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析: (1)由OC=3OA ,有C (0,3), 将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:

(完整版)一次函数培优经典.docx

一次函数培优 1、已知一个正比例函数与一个一次函数的图象交于点 A (3,4),且 OA=OB (1)求两个函数的解析式;(2)求△AOB 的面积; 4 A 3 2 1 01234 B 2、已知直线 m 经过两点( 1,6)、(-3, -2),它和 x 轴、 y 轴的交点式 B、 A ,直线 n 过点( 2, -2), 且与 y 轴交点的纵坐标是 -3,它和 x 轴、 y 轴的交点是 D、C; (1)分别写出两条直线解析式,并画草图; (2)计算四边形 ABCD 的面积; (3)若直线 AB 与 DC 交于点 E,求△BCE 的面积。 y 4 A B O D -26x C -3 E F 3、如图, A 、B 分别是 x 轴上位于原点左右两侧的点,点P(2,p) 在第一象限,直线 PA 交 y 轴于点 C( 0,2),直线 PB 交 y 轴于点D,△ AOP 的面积为 6; (1)求△COP 的面积; (2)求点 A 的坐标及 p 的值; (3)若△BOP 与△DOP 的面积相等,求直线 BD 的函数解析式。 y D E P (2,p) C A O F B x

4、已知: l 1:y=2x+m; 经过点( -3,-2),它与 x 轴,y 轴分别交于点 B、A ,直线 l 2=kx+b 经过点( 2,-2),且与 y 轴交于点 C(0,-3),它与 x 轴交于点 D (1)求直线 l1,l2的解析式; (2)若直线与 l2交于点 P,求 S ACP:S ACD的值 5、如图,已知点 A( 2, 4), B(-2, 2),C( 4, 0),求△ABC 的面积。 1 6、如图,在平面直角坐标系xOy 中,已知直线l 1:y= x 与直线 l 2: y=-x+6 相交于点 M ,直线 l2与 x 轴相交于点 N. (1)求 M ,N 的坐标.(2)矩形 ABCD 中,已知 AB=1 ,BC=2,边 AB 在 x 轴上,矩形自左向右以每秒 1 个单位长度的速度移动,设矩形ABCD 与△ OMN 的重叠部分的面积为间为 t(从点 B 与点 O 重合时开始计时,到点 A 与点 N 重合时计时开始结束).直接写出ABCD 沿 x 轴S,移动的时S 与自变量 t 之间的函数关系式. (3)在( 2)的条件下,当t 为何值时, S 的值最大?并求出最大值.

一次函数专题培优(一)

一次函数专题培优(一) 【知识提要】 一.函数 1.定义:在某一变化过程中有两个变量x、y,如 果 ,那么我们称y是x的函数,x是自变量。 2.函数的表示法:函数有三种表示方法: (1) ,(2), (3) . 3. 函数的图像:在一个函数中,如果将x、y的每一对对应值分别作为点的横坐标和纵坐标,都可以在坐标平面内描出一个点,所有这样的点便形成一个图形,那么这个图形就叫做这个函数的图像。 画函数图象三步骤:(1) , (2) , (3). 二.一次函数 1.定义:在某一变化过程中有两个变量x、y,如果y与x的关系可以表示为,则称y是x的一次函数。 注意:⑴ ⑵ 特别地,如果b=0,则一次函数y=kx+b 就成为y=kx,此时又称y是x 的。 可见是的特殊情况。 2.图像 (1)正比例函数y=kx的图像:正比例函数y=kx 的图像是一条经过(0, )、(1,)的直线。我们称之为直线y=kx。 当k>0时,直线y=kx经过第象限,y随着x的增大而; 当k<0时,直线y=kx经过第象限,y随着x的增大而; (2)一次函数y=kx+b的图像:函数y=kx+b的图像是一条经过(0,)且平行于直线的直线,我们称之为直线。其中b叫做直线y=kx+b在y轴上的。 直线y=kx+b通常有两种画法: ①; ②。3. 性质:对于一次函数y=kx+b(k≠0) 当k>0时,y随x的增大而, 当k< 0时,y随x的增大而。 注意:①对于一次函数y=kx+b(k≠0),x每增加1,y的值就增加。 ②正比例函数中有正比例关系,但正比例关系不一定能够确定正比例函数。如y=3(x-4), 其中有正比例关系,却不是正比例函数。 ③经过点(0,k)且平行于x轴的直线叫做直线y=k,经过点(k ,0)且平行于y轴的直线叫做直线x=k. ④对于直线 111 :l y k x b =+和 222 : l y k x b =+ 当 1 l∥ 2 l时, 12 k k =; 当 12 l l ⊥时, 12 1 k k=-. ⑤一次函数y=kx+b的值,在a≤x≤b这一范围内既有最大值,也有最小值(要看k的正负)。【基础训练】 1. 已知23 (2)2 k y k x- =--,当k 时,y是x的一次函数。 2.已知一次函数3 (3)2 k y k x- =--, y随x 的增大而减小,则k的值为 3. 已知2 (2 y k x k =-+,y是x的正比例函数,则y随x的增大而 4.已知直线y=2x-3经过点(m,m+1), 则m的值为 5.已知y与x+3成正比例,且当x=2时y=4,则当x=-2是y的值为 6. 已知一次函数y=kx+5的图象经过点(-1,2),则k=。 7.一次函数y=kx+2图像与x轴交点到原点的距离为4,那么k的值为__ ___。

2018中考数学专题二次函数

2018中考数专题二次函数 (共40题) 1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G. (1)求抛物线y=﹣x2+bx+c的表达式; (2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标; (3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标; ②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值. 2.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D. (1)写出C,D两点的坐标(用含a的式子表示); (2)设S△BCD:S△ABD=k,求k的值; (3)当△BCD是直角三角形时,求对应抛物线的解析式. 3.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C. (1)求直线y=kx+b的函数解析式; (2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;

(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值. 4.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1 (1)求此抛物线的解析式以及点B的坐标. (2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒. ①当t为何值时,四边形OMPN为矩形. ②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由. 5.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点. (1)求抛物线的解析式; (2)在第二象限取一点C,作CD垂直X轴于点D,AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值; (3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存

人教【数学】数学 二次函数的专项 培优练习题及详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D. (1)求抛物线的解析式; (2)求点P在运动的过程中线段PD长度的最大值; (3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由. 【答案】(1)y=x2﹣4x+3;(2)9 4 ;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣ 3). 【解析】 试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解; (2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答; (3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可; (4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可. 试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0), ∴ 930 10 b c b c ++= ? ? ++= ? ,解得 4 3 b c =- ? ? = ? ,∴抛物线解析式为y=x2﹣4x+3; (2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣ (x﹣3 2 )2+ 9 4 .∵a=﹣1<0,∴当x= 3 2 时,线段PD的长度有最大值 9 4 ;

一次函数压轴题经典培优

一次函数压轴题训练 典型例题 题型一、A卷压轴题 一、A卷中涉及到的面积问题 例1、如图,在平面直角坐标系xOy中,一次函数 12 2 3 y x =-+与x轴、y轴分别相交于点 A和点B,直线 2 (0) y kx b k =+≠经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分. (1)求△ABO的面积; (2)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式。

练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :1 2 1 +=x y 与x 轴交于点C ,两直线1l ,2l 相交于点B 。 (1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。 2、如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运 动(0y 2 (2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式. (3)当x 为何值时,直线m 平分△COB 的面积(10分) A B C O D x y 1 l 2 l

二、A 卷中涉及到的平移问题 例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。 ①直线y=43x-8 3经过点C ,且与x 轴交与点E ,求四边形AECD 的面积; ②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式, ③若直线1l 经过点F ?? ? ??- 0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位 交x 轴于点M ,交直线1l 于点N ,求NMF ?的面积.

八年级数学培优练习题及答案大全

八年级数学培优练习题及答案大全 1.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=?14,?AC=19,则MN的长为. A. B.2.C.D.3.2.如图,在周长为20cm的□ABCD 中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE 的周长为 4cm 6cm8cm 10cm AE O B C A F M DQ 3题 o B C N 3、如图,在平行四边形 ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45,且

AE+AF=ABCD的周长是 4、如图,已知正方形纸片ABCD,M,N分别是AD,BC 的中点,把BC向上翻折,使点C恰好落在MN上的F点处,BQ为折痕,则∠FBQ= A 0° B 5° C 0° D 15° 5、如图所示,在正方形ABCD中,点E、F、G、H均在其内部,且DE=EF=FG=GH=HB=2,∠E=∠F=∠G=∠H=60°,则正方形ABCD的边长为 A. B.2 C. D.32 6、如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是. 7、已知一组数据10,10,x,8的众数与它的平均数相等,则这组数的中位数是. 8、如图OA、AB分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动 路程和时间,已知甲的速度比乙快,下列说法:①射线BA表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑12米;④秒钟后,甲超过了乙,其中正确的说法是。

中考数学 二次函数知识点总结

中考数学二次函数知识 点总结 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0 a≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0 ,可以为零.二次函数的定义域是 a≠,而b c 全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2 =+的 y ax c 性质:

结论:上加下减。 总结: 3. ()2 =-的性 y a x h 质: 结论:左加右减。 总结: 4.

()2 y a x h k =-+的性质: 总结: 二次函数图象 的平 移 1. 平移步 骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.

二次函数培优经典题

112O x y 培优训练五(二次函数1) 1、如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( ) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =h D .m <n ,k =h 2、已知二次函数y =ax 2+bx +c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a =0;②abc <0;③a ﹣2b +4c <0;④8a +c >0.其中正确的有( ) A . 3个 B . 2个 C . 1个 D . 0个 3、如图,二次函数2y ax bx c =++的图像与y 轴正半轴相交,其顶点坐标 为(1,12 ),下列结论:①0ac <;②0a b +=; ③244ac b a -=;④0a b c ++<.其中正确结论的个数是 A . 1 B . 2 C . 3 D . 4 4、若二次函数c x x y +-=62的图象经过A (-1,y 1)、B (2,y 2)、C (23+,y 3)三点,则关于y 1、y 2、y 3大小关系正确的是 A .y 1>y 2>y 3 B .y 1>y 3>y 2 C .y 2>y 1>y 3 D .y 3>y 1>y 2 5、如图,一次函数)0(1≠+=k n kx y 与二次函数 )0(22≠++=a c bx ax y 的图象相交于A (1-,5)、B (9,2)两点,则关 于x 的不等式c bx ax n kx ++≥+2 的解集为 A 、91≤≤-x B 、91<≤-x C 、91≤<-x D 、1-≤x 或9≥x 6.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、

一次函数培优完美版

一次函数培优讲解 1、已知一次函数y=ax+b的图像经过一,二,三象限,且与x轴交易点(—2,0),则不等式ax大于b的解集为() A. x〉2。 B. x<2。C。x〉-2. D。x〈—2 2、若不等式2|x-1|+3|x—3|≤a有解,则实数a最小值是________ 3、已知实数a,b,c满足a+b+c不等于0,并且a/b+c=b/c+a=c/a+b=k,则直线y=kx-3一定通过哪三个象限? 4、已知一次函数y=ax+b的图象过(0,2)点,它与坐标轴围成的图形是等腰直角三角形,则a的值为________ 5、(2010?上海)一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为________ 6、已知一次函数y=ax+b的图像经过点A(√3,√3+2),B(—1,√3),C(c,2—c),求a—b+c的值. 7、已知一次函数y=ax+b的图像经过点A(√3,√3+2),B(-1,√3),C(c,2-c),求a2+b2+c2—ab-bc-ca的值。 8、在修建某条公路的过程中,需挖通一条隧道,甲、乙两个工程队从隧道两端同时开始挖掘.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直至隧道挖通.图是甲、乙两个工程队所挖隧道的长度y(米)与挖掘时(天)之间的函数图象.请根据图象所提供的信息解答下列问题: (1)求该隧道的长; (2)乙工程队工作多少天时,两队所挖隧道的长度相差18米?

9、某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q5吨,加油飞机的加油油箱余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题: (1)加油飞机的加油油箱中装载了30吨油,将这些油全部加给运输飞机需10分钟. (2)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?请说明理由. 10、一次函数y=(m2-4)x+(1—m)和y=(m+2)x+(m2—3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是 11、已知一次函数y=2x+m与y=(m—1)x+3的图像交点坐标的横坐标为2则m的值 12、一次函数y=kx+b的图像经过点(m,1)和(1,m)两点,且m>1,则k=_____, b的取值范围是____ 13、已知两直线y=4x-2,y=3m-x,的交点在第三象限,则m的取值范围________ 14、如果ab〉0,a/c<0,则直线y=—(a/b)x+c/b不通过() A.第一象限 B.第二象限 C.第三象限 D.第四象限 15、已知关于X的一次函数Y=mx+2m-7在—1≤X≤5上的函数值总是正数,则m的取值范围是. 16、在同一平面直角坐标系中,直线y=kx+b与直线y=bx+k(k、b为常数,且kb≠0)的图象可能是() A B C D

中考数学压轴题专项培优训练:一次函数综合题(附解析)

中考数学压轴题专项培优训练:一次函数综合题 1.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣6,0),点C 在y轴正半轴上,且cos B=,动点P从点C出发,以每秒一个单位长度的速度向D点移动(P点到达D点时停止运动),移动时间为t秒,过点P作平行于y轴的直线l与菱形的其它边交于点Q. (1)求点D坐标; (2)求△OPQ的面积S关于t的函数关系式,并求出S的最大值; (3)在直线l移动过程中,是否存在t值,使S=?若存在,求出t的值; 若不存在,请说明理由.

2.如图,平面直角坐标系中直线l1:y=x与直线l2:y=﹣x+8相交于点A,直线l2与x轴相交于点B,与y轴相交于点C,点D(﹣6,0),点F(0,6),连接DF.(1)如图1,求点A的坐标; (2)如图1,若将△ODF向x轴的正方向平移a个单位,得到△O′D′F′,点D与点B 重合时停止移动,设△O′D′F′与△OAB重叠部分的面积为S,请求出S与a的关系式,并写出a的取值范围; (3)如图2,现将△ODF向x轴的正方向平移12个单位得到△O1D1F1,直线O1F1与直线l2交于点G,再将△O1GB绕点G旋转,旋转角度为α(0°≤α≤360°),记旋转后的三角形为△O1′GB′,直线O1′G与直线l1的交点为M,直线GB′与直线l1的交点为N,是否存在△GMN为等腰三角形?若存在请直接写出MN的值;若不存在,请说明理由.

3.如图,在平面直角坐标系中,OA=OB,△OAB的面积是2. (1)求线段OB的中点C的坐标. (2)连结AC,过点O作OE⊥AC于E,交AB于点D. ①直接写出点E的坐标. ②连结CD,求证:∠ECO=∠DCB; (3)点P为x轴上一动点,点Q为平面内一点,以点A、C、P、Q为顶点作菱形,直接写出点Q的坐标. 4.如图,已知?ABCD边BC在x轴上,顶点A在y轴上,对角线AC所在的直线为y=+6,且AC=AB,若点P从点A出发以1cm/s的速度向终点O运动,同时点Q从点C出发以2cm/s 的速度沿射线CB运动,当点P到达终点O时,点Q也随之停止运动.设点P的运动时间为t(s). (1)直接写出顶点D的坐标(,),对角线的交点E的坐标(,); (2)求对角线BD的长; (3)是否存在t,使S△POQ=S?ABCD,若存在,请求出的t值;不存在说明理由. (4)在整个运动过程中,PQ的中点到原点O的最短距离是cm,(直接写出答案)

一次函数拔高练习题

培优练习十一 一次函数的性质 姓名: 家长签字: 1.已知y 与x+3成正比例,并且x=1时,y=8,那么y 与x 之间的函数关系式为( ) (A )y=8x (B )y=2x+6 (C )y=8x+6 (D )y=5x+3 2.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过( ) (A )一象限 (B )二象限 (C )三象限 (D )四象限 3.若甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y=k 1x+a 1和y=k 2x+a 2,如图,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( ) (A )y 1>y 2 (B )y 1=y 2 (C )y 1a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内,?则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( ) 5.无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 6.要得到y=-32x-4的图像,可把直线y=-32 x ( ). (A )向左平移4个单位 (B )向右平移4个单位 (C )向上平移4个单位 (D )向下平移4个单位 7.若函数y=(m-5)x+(4m+1)x 2(m 为常数)中的y 与x 成正比例,则m 的值为( ) (A )m>-14 (B )m>5 (C )m=-14 (D )m=5 8.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ). (A )k<13 (B )131 (D )k>1或k<13 9.过点P (-1,3)直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( ) (A )4条 (B )3条 (C )2条 (D )1条 10.已知abc ≠0,而且a b b c c a c a b +++===p ,那么直线y=px+p 一定通过( ) (A )第一、二象限 (B )第二、三象限 (C )第三、四象限 (D )第一、四象限 11.当-1≤x ≤2时,函数y=ax+6满足y<10,则常数a 的取值范围是( ) (A )-4

初三数学二次函数所有经典题型

初三数学二次函数经典题型 二次函数单元检测 (A) 姓名___ ____ 一、填空题: 1、函数21(1)21m y m x mx +=--+是抛物线,则m = . 2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大. 4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到. 5.抛物线342++=x x y 在x 轴上截得的线段长度是 . 6.抛物线()4222-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线 相同,又过原点,那么a = ,b = ,c = . 9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 . 10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点 A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题: 11.下列各式中,y 是x 的二次函数的是 ( ) A .21xy x += B . 220x y +-= C . 22y ax -=- D .2210x y -+= 12.在同一坐标系中,作22y x =、22y x =-、212 y x =的图象,它们共同特点是 ( ) 22 3x y -=

二次函数专题培优(含答案)

二次函数专题复习 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,.

经典一次函数培优题(含答案及讲解)

一次函数培优讲解
已知一次函数 y=ax+b 的图像经过一,二,三象限,且与 x 轴交易点(-2,0) ,则不等式 ax 大于 b 的解集为( ) A.x>2. B.x<2. Cx>-2. D.x<-2 此题正确选项为 A 解析:∵一次函数的图像过一、二、三象限 ∴有 a>0 将(-2,0)代入一次函数解析式则 b=2a ∴ax>b 可化为 ax>2a 又 a>0 ∴原不等式的解集为 x>2 在直角坐标系中,纵、横坐标都是整数的点,称为整点.设 k 为整数,当直线 y=x+2 与直 线 y=kx-4 的交点为整点时,k 的值可以取( )个. 因为直线 y=x+2 与直线 y=kx-4 的交点为整点,让这两条直线的解析式组成方程组,求得整 数解即可. 由题意得:{y=x+2y=kx-4, 解得:{x=6k-1y=6k-1+2, ∴k 可取的整数解有 0,2,-2,-1,3,7,4,-5 共 8 个. 若 不 等 式 2|x-1|+3|x-3|≤ a 有 解 , 则 实 数 a 最 小 值 是 ( 考点: 含绝对值的一元一次不等式. 专题: 计算题;分类讨论. 分 析 : 分 类 讨 论 :当 x< 1 或 1≤ x≤ 3 或 x> 3,分 别 去 绝 对 值 解 x 的 不 等 式 ,然 后 根 据 x 对 应 的 取 值 范 围 得 到 a 的 不 等 式 或 不 等 式 组 ,确 定 a 的 范 围 ,最 后 确 定 a 的最小值. )
解 答 : 解 : 当 x< 1, 原 不 等 式 变 为 : 2-2x+9-3x≤ a, 解 得 x≥
< 1, 解 得 a> 6 当 1≤ x≤ 3, 原 不 等 式 变 为 : 2x-2+9-3x≤ a, 解 得 x≥ 7-a, ∴ 1≤ 7-a≤ 3, 解 得 4≤ a≤ 6; 当 x> 3, 原 不 等 式 变 为 : 2x-2+3x-9≤ a, 解 得 x< > 3, 解 得 a> 4; 综 上 所 述 , 实 数 a 最 小 值 是 4. 已知实数 a,b,c 满足 a+b+c 不等于 0,并且 a/b+c=b/c+a=c/a+b=k,则直线 y=kx-3 一定 通过哪三个象限?

2020年中考数学真题汇编 二次函数

中考数学真题汇编:二次函数 一、选择题 1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是() A. ①③ B. ③④ C. ②④ D. ②③ 【答案】B 2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是 () A. B. C. D. 【答案】B 3.关于二次函数,下列说法正确的是() A. 图像与轴的交点坐标为 B. 图 像的对称轴在轴的右侧 C. 当时,的值随值的增大而减小 D. 的最小值为-3 【答案】D 4.二次函数的图像如图所示,下列结论正确是( )

A. B. C. D. 有两个不相等的实数根 【答案】C 5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线 的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A. B. C. D. 【答案】B 6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。已知某定弦抛物线的对 称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点() A. (-3,-6) B. (-3, 0) C. (-3, -5) D. (-3,-1) 【答案】B 7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则 下列说法中正确的是() A. 点火后9s和点火后13s的升空高度相同 B. 点火后24s火箭落 于地面 C. 点火后10s的升空高度为 139m D. 火箭升空的最大高度为145m 【答案】D 8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣ 1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中 正确的个数是()

二次函数培优专题训练

二次函数培优专题训练 一、实际应用专题 例题1某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? 例题2 小华的爸爸在国际商贸城开专卖店专销某种品牌的计算器,进价12元∕只,售价20元∕只.为了促销,专卖店决定凡是买10只以上的,每多买一只,售价就降低0.10元(例如:某人买20只计算器,于是每只降价0.10×(20-10)=1元,就可以按19元∕只的价格购买),但是最低价为16元∕只.(1)顾客一次至少买多少只,才能以最低价购买? (2)写出当一次购买x只时(x>10),利润y(元)与购买量x(只)之间的函数关系式. (3)星期天,小华来到专卖店勤工俭学,上午做成了两笔生意,一是向顾客甲卖了46只,二是向顾客乙卖了50只,记账时小华发现卖50只反而比卖46只赚的钱少.为了使每次卖得越多赚钱越多,在其他促销条件不变的情况下,最低价16元∕只至少要提高到多少?为什么? 例题3(2010?恩施州)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售. (1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式. (2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用) (3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

相关文档
最新文档