BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂
BP神经网络的基本原理_一看就懂

5.4 BP神经网络的基本原理

BP(Back Propagation)网络是1986年由Rinehart和

McClelland为首的科学家小组提出,是一种按误差逆传播算

法训练的多层前馈网络,是目前应用最广泛的神经网络模型

之一。BP网络能学习和存贮大量的输入-输出模式映射关系,

而无需事前揭示描述这种映射关系的数学方程。它的学习规

则是使用最速下降法,通过反向传播来不断调整网络的权值

和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结

构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。

5.4.1 BP神经元

图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本

也是最重要的功能:加权、求和与转移。其中x1、x2…x i…x n分别代表来自神经元1、2…i…n的输入;w j1、w j2…w ji…w jn则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权值;b j为阈值;f(·)为传递函数;y j为第j个神经元的输出。

第j个神经元的净输入值为:

(5.12)

其中:

若视,,即令及包括及,则

于是节点j的净输入可表示为:

(5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出:

(5.14)

式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,

必有一最大值。

5.4.2 BP网络

BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播

时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,

在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达

到最小值,从而完成信息提取和记忆过程。

设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间

的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f1(·),输出层的传递函数为f2(·),则隐层节点的输出为(将阈值写入求和项中):

k=1,2,……q (5.15)输出层节点的输出为:

j=1,2,……m (5.16)至此B-P网络就完成了n维空间向量对m维空间的近似映射。

1)定义误差函数

输入个学习样本,用来表示。第个样本输入到网络后得到输出

(j=1,2,…m)。采用平方型误差函数,于是得到第p个样本的误差E p:

(5.17)式中:为期望输出。

对于个样本,全局误差为:

(5.18)2)输出层权值的变化

采用累计误差BP算法调整,使全局误差变小,即

(5.19)式中:—学习率

定义误差信号为:

其中第一项:

(5.21)第二项:

(5.22)是输出层传递函数的偏微分。

于是:

(5.23)由链定理得:

(5.24)于是输出层各神经元的权值调整公式为:

(5.25)3)隐层权值的变化

(5.26)定义误差信号为:

其中第一项:

(5.28)依链定理有:

(5.29)第二项:

(5.30)是隐层传递函数的偏微分。

于是:

(5.31)由链定理得:

(5.32)从而得到隐层各神经元的权值调整公式为:

(5.33)5.4.3 BP算法的改进

BP算法理论具有依据可靠、推导过程严谨、精度较高、通用性较

好等优点,但标准BP算法存在以下缺点:收敛速度缓慢;容易

陷入局部极小值;难以确定隐层数和隐层节点个数。在实际应用

中,BP算法很难胜任,因此出现了很多改进算法。

1)利用动量法改进BP算法

标准BP算法实质上是一种简单的最速下降静态寻优方法,在修正W(K)时,只按照第K步的负梯度方向进行修正,而没有考虑到以前积累的经验,即以前

时刻的梯度方向,从而常常使学习过程发生振荡,收敛缓慢。动量法权值调整算法的具体

做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为

本次的实际权值调整量,即:

(5.34)

其中:α为动量系数,通常0<α<0.9;η—学习率,范围在0.001~10之间。这种方法所加的动量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,从而改善了收敛

性。动量法降低了网络对于误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小。

2)自适应调整学习速率

标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛太慢;学习率选得太大,则有可能修正过头,导致振荡甚至发散。可采用图 5.5所示的自适应方法调整学习率。

调整的基本指导思想是:在学习收敛的情况下,增大η,以缩短学习时间;当η偏大致使不能收敛时,要及时减小η,直到收敛为止。

3)动量-自适应学习速率调整算法

采用动量法时,BP算法可以找到更优的解;采用自适应学习速率法时,BP算法可以缩短训练时间。将以上两种方法结合起来,就得到动量-自适应学习速率调整算法。

4)L-M学习规则

L-M(Levenberg-Marquardt)算法比前述几种使用梯度下降法的BP算法要快得多,但对于复杂问题,这种方法需要相当大的存储空间。L-M(Levenberg-Marquardt)优化方法的权值调整率选为:

(5.35)

其中:e—误差向量;J—网络误差对权值导数的雅可比(Jacobian)矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式变成了Gauss-Newton法,在这种方法中,μ也是自适应调整的。

综合考虑,拟采用L-M学习规则和动量法分别作为神经网络的训练函数和学习函数。

5.5 BP神经网络的训练策略及结果

本文借助于MATLAB神经网络工具箱来实现多层前馈BP网络(Multi-layer feed-forward backpropagation network)的颜色空间转换,免去了许多编写计算机程序的烦恼。神经网

络的实际输出值与输入值以及各权值和阈值有关,为了使实际输出值与网络期望输出值相

吻合,可用含有一定数量学习样本的样本集和相应期望输出值的集合来训练网络。训练时

仍然使用本章 5.2节中所述的实测样本数据。

另外,目前尚未找到较好的网络构造方法。确定神经网络的结构和权系数来描述给定的映

射或逼近一个未知的映射,只能通过学习方式得到满足要求的网络模型。神经网络的学习

可以理解为:对确定的网络结构,寻找一组满足要求的权系数,使给定的误差函数最小。

设计多层前馈网络时,主要侧重试验、探讨多种模型方案,在实验中改进,直到选取一个

满意方案为止,可按下列步骤进行:对任何实际问题先都只选用一个隐层;使用很少的隐

层节点数;不断增加隐层节点数,直到获得满意性能为止;否则再采用两个隐层重复上述

过程。

训练过程实际上是根据目标值与网络输出值之间误差的大小反复调整权值和阈值,直到此

误差达到预定值为止。

5.5.1 确定BP网络的结构

确定了网络层数、每层节点数、传递函数、初始权系数、学习算法等也就确定了BP网络。确定这些选项时有一定的指导原则,但更多的是靠经验和试凑。

1)隐层数的确定:

1998年Robert Hecht-Nielson证明了对任何在闭区间内的连续函数,都可以用一个隐层的BP网络来逼近,因而一个三层的BP网络可以完成任意的n维到m维的映照。因此我们从含有一个隐层的网络开始进行训练。

2) BP网络常用传递函数:

BP网络的传递函数有多种。Log-sigmoid型函数的输入值可取任意值,输出值在0和1之间;tan-sigmod型传递函数tansig的输入值可取任意值,输出值在-1到+1之间;线性传递函数purelin的输入与输出值可取任意值。BP网络通常有一个或多个隐层,该层中的神

经元均采用sigmoid型传递函数,输出层的神经元则采用线性传递函数,整个网络的输出

可以取任意值。各种传递函数如图 5.6所示。

只改变传递函数而其余参数均固定,用本章 5.2节所述的样本集训练BP网络时发现,传递函数使用tansig函数时要比logsig函数的误差小。于是在以后的训练中隐层传递函数改

用tansig函数,输出层传递函数仍选用purelin函数。

3)每层节点数的确定:

使用神经网络的目的是实现摄像机输出RGB颜色空间与CIE-XYZ色空间转换,因此BP网络的输入层和输出层的节点个数分别为3。下面主要介绍隐层节点数量的确定。

对于多层前馈网络来说,隐层节点数的确定是成败的关键。若数量太少,则网络所能获取

的用以解决问题的信息太少;若数量太多,不仅增加训练时间,更重要的是隐层节点过多

还可能出现所谓“过渡吻合”(Overfitting)问题,即测试误差增大导致泛化能力下降,

因此合理选择隐层节点数非常重要。关于隐层数及其节点数的选择比较复杂,一般原则是:在能正确反映输入输出关系的基础上,应选用较少的隐层节点数,以使网络结构尽量简单。

本论文中采用网络结构增长型方法,即先设置较少的节点数,对网络进行训练,并测试学

习误差,然后逐渐增加节点数,直到学习误差不再有明显减少为止。

5.5.2 误差的选取

在神经网络训练过程中选择均方误差MSE较为合理,原因如下:

①标准BP算法中,误差定义为:

(5.36)

每个样本作用时,都对权矩阵进行了一次修改。由于每次权矩阵的修改都没有考虑权值修

改后其它样本作用的输出误差是否也减小,因此将导致迭代次数增加。

②累计误差BP算法的全局误差定义为:

(5.37)

这种算法是为了减小整个训练集的全局误差,而不针对某一特定样本,因此如果作某种修

改能使全局误差减小,并不等于说每一个特定样本的误差也都能同时减小。它不能用来比

较P和m不同的网络性能。因为对于同一网络来说,P越大,E也越大; P值相同,m越大E也越大。

③均方误差MSE:

(5.38)

其中:—输出节点的个数,—训练样本数目,—网络期望输出值,—网络实际输出值。均方误差克服了上述两种算法的缺点,所以选用均方误差算法较合理。

5.5.3 训练结果

训练一个单隐层的三层BP网络,根据如下经验公式选择隐层节点数[125]:

(5.39)

式中:n为输入节点个数,m为输出节点个数,a为1到10之间的常数。针对本论文n1取值范围为3~13。训练结果如表 5.1所示。

表5.1 隐层节点数与误差的关系

隐层神经元个数训练误差测试误差

3 1.25661 1.1275

4 0.797746 0.8232

5 0.631849 0.7278

6 0.570214 0.6707

7 0.552873 0.6895

8 0.445118 0.6575

9 0.385578 0.6497

10 0.259624 0.4555

11 0.185749 0.6644

12 0.183878 0.48

13 0.168587 0.6671

由上表可以看出:

①增加隐层节点数可以减少训练误差,但超过10以后测试误差产生波动,即泛化能力发生变化。综合比较隐层节点数为10与12的训练误差和测试误差,决定隐层节点数选用12。

②训练误差和测试误差都很大,而且收敛速度极慢(训练过程如图 5.7所示),这个问题可以通过对输出量进行归一化来解决。

根据Sigmoid型传递函数输入和输出的范围,对输入变量不进行归一化处理,只对输出变

量进行归一化,这是因为在输出数据要求归一化的同时,对输入数据也进行归一化的话,

权值的可解释性就更差了。目标值按下式进行变化:

(5.40)

使目标值落在0.05~0.95之间,这样靠近数据变化区间端点的网络输出值就有一波动范围,

网络的性能较好。用新生成的训练样本与测试样本对隐层节点数为12的网络进行训练,得到的训练误差为9.89028×10-5,测试误差为 1.9899×10-4,达到了预定的目标(训练过程

如图5.8所示)。

5.6 最终训练后的神经网络结构

采用三层BP网络实现摄像机输出RGB颜色空间与CIEXYZ色空间转换,其中隐层含有12个节点,传递函数采用tansig函数;输出层传递函数选用purelin函数。经过测试后结果满意,可以认为该神经网络可以用来实现这个关系映射。网络的结构如图 5.9所示:

得到的BP神经网络的权值和阈值为:5.7 本章小结

1)定量地分析了用线性关系转换摄像机RGB空间到CIE-XYZ空间数据后产生的均方误差,表明CCD摄像机与标准观察者之间有比较明显的差别,也就是说RGB与CIE-XYZ间的转换是非线性的。

2)采用MATLAB 中神经网络工具箱实现多层前馈BP网络的RGB到CIEXYZ颜色空间转换,用经过归一化的训练样本与测试样本对隐层节点数为12的三层网络进行训练,得到的训练误差为9.89028×10-5,测试误差为 1.9899×10-4,结果表明经过训练的多层前馈BP网络可以满足RGB空间向CIEXYZ颜色空间转换要求,达到了预定目标。

3)确定了用于RGB和XYZ颜色空间转换的BP网络结构,并求出了该神经网络的权值和阈值。使用该网络可以定量表达食品颜色,定量比较高压加工食品颜色的变化,可以使食品

颜色测定和控制实现定量化,而不再是主观性很强的模糊描述。

神经网络动态系统辨识与控制

神经网络动态系统的辨识与控制 摘要: 本论文表明神经网络对非线性动态系统进行有效的辨识与控制。本论文的侧重点是辨识与控制模型,并论述了动态反向传播以及静态反向传播方法在参数调节中的作用。在所介绍的模型中,加法器与重复网络结构的内部相连很独特,所以很有必要将他们统一起来进行研究。由仿真结果可知辨识与自适应控制方案的提出是可行的。整篇论文中都介绍到基本的概念和定义,也涉及了必须提出的学术性问题, 简介 用数学系统理论处理动态系统的分析与合成在过去的五十年里已经被列为应用广泛的权威科学原理了。权威系统理论最先进的地方定义于基于线性代数以及复合变量理论的先进技术线性操作器以及线性常微分方程。由于动态系统的设计技术与它们的稳定特性密切相关,线性时间不变系统的充分必要条件在上世纪已经产生了,所以已经建立了动态系统的著名设计方法。相反,只要在系统对系统基础上就可以基本上建立非线性系统的稳定性,因此对于大部分系统没有同时满足稳定性、鲁棒性以及良好动态响应的设计程序并不希奇。 过去三十年来,对线性、非时变和具有不确定参数的对象进行辨识与自适应控制的研究已取得了很大的进展。但是在这些研究中辨识器和控制器的结构选取和保证整个系统全局稳定性的自适应调参规律的构成等,都是建立在线性系统理论基础上的[1]。在本论文中,我们感兴趣的是神经网络非线性动态系统的控制与辨识。由于很少有可以直接应用的非线性系统理论结果存在,所以必须密切关注这个问题以及辨识器和控制器结构的选择和调整参数适应性规则的通用性问题。 在人工神经网络领域里,有两类网络今年来最引人注目:它们是(1)多层神经网络(2)回归神经网络。多层神经网络被证实在解决模式辨识问题[2]-[5]上非常成功。而回归神经网络则经常用于联想记忆以及制约优化问题的解决[[6]-[9]。从系统理论的观点来看,多层网络呈现静态非线性映射,而回归网络则通过非线性动态反馈系统显现。尽管两种网络存在外观上的不同外,但是很有必要将他们用统一成更一般化的网络。事实上,笔者确信将来会越来越多的用到动态因素以及反馈,这导致包括两种网络的复杂系统的产生。这样,将两个网络统一起来就成为必要。在本文的第三章,这个观点会得到进一步的阐述。 本文用了三个主要目标。第一个也是最重要的一个目标是在未知非线性动态系统中为自适应控制利用神经网络提出辨识以及控制器结构。当未知参数线性系

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

基于神经网络模型的最新系统辨识算法

基于神经网络模型的最新系统辨识算法 摘要:神经网络具有大规模并行分布式结构、自主学习以及泛化能力,因此可以利用神经网络来解决许多传统方法无法解决的问题。神经网络应用在非线性系统的辨识中有良好的结果。本文在阅读大量参考文献的基础上,对最新的基于神经网络的系统辨识算法进行总结。 关键字:神经网络;系统辨识;辨识算法 The latest algorithm about identification system based on neural network model Abstract: Neural network has large parallel distributed structure, learning by itself and has generalization ability. So neural network is used to solve many questions which traditional method cannot. Neural network is well applied to nonlinear system which has got good achievements in identification system. Based on most of documents, the paper summaries the latest algorithm about identification system based on neural network model. Keywords:Neural network, identification system, identification algorithm 0 前言 在国内,系统辨识也取得了许多成绩,尽管成果丰硕,但传统辨识法仍存在不少局限:传统辨识法较适用于输入端中扰动水平比较低的控制系统,对于具有外界干扰的控制系统,就会出现计算量大、鲁棒性不够好的问题;最小二乘法及其相关改进算法一般利用梯度算法进行信息搜索,容易陷入局部极小值。鉴于此,神经网络控制在系统辨识中得到了新的应用。本文在阅读大量文献后,针对国内基于神经网络的结合其他算法的最新辨识算法进行综述分析。 1 神经网络的应用优势 神经网络的吸引力在于:能够充分逼近任意复杂的非线性关系,能够学习适应不确定性系统的动态特性;所有定量或定性的信息都分布储存于网络内的各个神经元,所以有很强的鲁棒性和容错性;采用并行分

智能控制之神经网络系统辨识的设计

四、神经网络系统辨识分析(25分) 用BP 神经网络进行系统在线逼近的原理框图如图3所示 ) (k y n (k u (k y 图3 图4 假设某控制对象的模型为2 3 )1(1) 1()()(-+-+ =k y k y k u k y ,采样时间取t=1ms ,输入信号 t)sin(650.)u(π=k 。采用的BP 神经网络结构如图4所示,权值ij w 和2j w 的初值取 [-1,+1] 之间的随机值,权值采用δ学习算法,学习速率η取0.50,动量因子α取0.05。试分析神经网络在线逼近的运行过程,并作Matlab 仿真。 题目四、需要阐述清楚BP 网络逼近控制对象的工作原理和学习过程 BP 算法的基本思想是:对于一个输入样本,经过权值、阈值和激励函数运算后,得到一个输出y n (k),然后让它与期望的样本y(k)进行比较,若有偏差,则从输出开始反向传播该偏差,进行权值、阈值调整,使网络输出逐渐与希望输出一致。 BP 算法由四个过程组成:输入模式由输入层经过中间层向输出层的“模式顺传播”过程,网络的希望输出与网络的实际输出之间的误差信号由输出层经过中间层向输入层逐层修正连接权的“误差逆传播”过程,由“模式顺传播”与“误差逆传播”的反复交替进行的网络“记忆训练”过程,网络趋向于收敛即网络的全局误差趋向极小值的 “学习收敛”过程。 BP 网络(Back Propagation ),该网络是一种单向传播的多层前向网络。误差 反向传播的BP 算法简称BP 算法,其基本思想是梯度下降法。它采用梯度搜索技术,以期使网络的实际输出值与期望输出值的误差均方值为最小。 BP 网络特点: (1)是一种多层网络,包括输入层、隐含层和输出层; (2)层与层之间采用全互连方式,同一层神经元之间不连接; (3)权值通过δ学习算法进行调节;

系统辨识综述

系统辨识课程综述 作者姓名:王瑶 专业名称:控制工程 班级:研硕15-8班

系统辨识课程综述 摘要 系统辨识是研究建立系统数学模型的理论与方法。虽然数学建模有很长的研究历史,但是形成系统辨识学科的历史才几十年在这短斩的几十年里,系统辨识得到了充足的发展,一些新的辨识方法相继问世,其理论与应用成果覆盖了自然科学和社会科学的各个领域。而人工神经网络的系统辨识方法的应用也越来越多,遍及各个领域。本文简单介绍了系统辨识的基本原理,系统辨识的一些经典方法以及现代的系统辨识方法,其中着重介绍了基于神经网络的系统辨识方法:首先对神经网络系统便是方法与经典辨识法进行对比,显示出其优越性,然后再通过对改进后的算法具体加以说明,最后展望了神经网络系统辨识法的发展方向。 关键字:系统辨识;神经网络;辨识方法 0引言 辨识、状态估计和控制理论是现代控制理论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。所以说系统辨识是自动化控制的一门基础学科。 图1.1系统辨识、控制理论与状态估计三者之间的关系 随着社会的进步 ,越来越多的实际系统变成了具有不确定性的复杂系统 ,经典的系统辨识方法在这些系统中应用 ,体现出以下的不足 : (1) 在某些动态系统中 ,系统的输入常常无法保证 ,但是最小二乘法的系统辨

神经网络系统辨识综述

神经网络系统辨识综述 目前,国内外有许多利用神经网络来模拟设备性能、预测负荷的成功例子。1993 年,美国的Mistry和Nair成功开发了一个用来决定预期平均满意率(PMV)和温湿度参数的神经网络模型。1994 年,Curtiss利用神经网络模型成功地模拟了一台往复压缩式的冷水机组和其它暖通空调设备的性能。随后,Darred和Curtiss利用神经网络模型成功地预测了冷水机组的冷负荷和耗电量。在国内,也有利用神经网络对暖通空调优化控制、对空调器进行仿真研究的成功例子。神经网络之所以能够在国内外得到如此广泛的应用是因为: a)神经网络具有模拟高度非线性系统的优点; b)神经网络具有较强的学习能力、容错能力和联想能力; c)神经网络具有较强的自适应能力。 例如可通过重新训练网络进行设备特性的动态校准功能,这也是它优于其它控制方法的主要特点。此外,神经网络模型还具有建模时间短、易于进行计算机模拟的优点。对于智能建筑,其热动力学参数模型本质上为分布参数系统,应用系统辨识也很难获得其精确的数学模型,控制效果可想而知,而人工神经网络允许在模型理论不完善的情况下,构成一种具有自学习、自适应的体系结构,在与外界信息的交互作用中,形成一种非线性映射或线性动力学系统,以正确反映输入和输出关系而不必预先知道这种关系的精确数学模型。 神经网络在线性系统辨识中的应用 自适应线性(Adaline-Mada Line)神经网络作为神经网络的初期模型与感知机模型相对应,是以连续线性模拟量为输入模式,在拓扑结构上与感知机网络十分相似的一种连续时间型线性神经网络。这种网络模型是美国学者Widrow和Hoff

基于Elman神经网络的非线性动态系统辨识

2007,43(31)神经网络辨识器 被辨识系统 y(k)e (k)y !(k)u (k)- +图1系统辨识原理框图 1引言 动态系统的控制通常需要在无需预先知道精确的对象和 环境知识时便能实现,因此寻求适当的方法以解决不确定性的、高度复杂的动态系统辨识是控制理论研究的一个重要分支。神经网络是由大量处理单元广泛互连而成的网络,具有大规模并行模拟处理能力和很强的自适应、自组织、自学习能力,因而近年来在系统建模、辨识与控制中受到普遍重视。在自动控制领域,基于线性系统理论对被控系统进行辩识并修正参数的方法能较好地应用于线性系统,但很难推广到复杂的非线性系统。神经网络所具有的非线性变换特性和高度并行运算能力为系统辨识,尤其是非线性系统的辨识提供了有效的方法。 目前,系统辩识中应用最多的是多层前向网络,多层前向网络具有逼近任意连续非线性函数的能力,但这种网络结构一般是静态的,而人们更关心控制系统的动态特性,这恰恰是BP神经网络等前馈网络所缺乏的。与静态前馈型神经网络不同,动态递归网络通过存储内部状态,使其具备映射动态特征的功能,从而使系统具有适应时变特性的能力,更适合于非线性动态系统的辩识。动态递归神经网络是控制系统建模和辨识中极具发展潜力的网络,本文利用改进的动态递归Elman神经网络实现对非线性动态系统的辨识。 2神经网络非线性系统辨识原理 假定拟辨识对象为非线性离散时间系统,或者可以离散化 为这样的系统,用NARMA模型来描述: y(k)=f(y(k-1),…,y(k-n),u(k-1),…,u(k-m))(1) 式中,n、m分别为模型输出y(t)和输入u(t)的阶次,f(? )是非线性函数。 如果f(? )未知时,不确定系统的辨识问题可以描述为寻求一数学模型,使得模型的输出y!(?)和被辨识系统的输出y(?) 尽量接近。神经网络具有通过恰当选择网络层次和隐层单元数,能够以任意精度逼近任意连续非线性函数的特性,因此可作为辨识模型,用来对非线性系统进行辨识。 由图1所示的系统辨识原理可以看出,辨识模型和被辨识 系统具有相同的输入,定义误差e(k)=y!(k)-y(k),用于对神经 网络进行学习和修正。 基于Elman神经网络的非线性动态系统辨识 高钦和1,2,王孙安1 GAOQin-he1,2,WANGSun-an1 1.西安交通大学机械工程学院,西安7100282.第二炮兵工程学院,西安710025 1.SchoolofMechanicalEngineering,Xi’anJiaotongUniversity,Xi’an710028,China2.SecondArtilleryEngineeringCollege,Xi’an710025,ChinaE-mail:gao202@yahoo.com.cn GAOQin-he,WANGSun-an.IdentificationofnonlineardynamicsystembasedonElmanneuralnetwork.Computer EngineeringandApplications,2007,43 (31):87-89.Abstract:Thetheoryandmethodofdynamicsystemidentificationbydynamicrecurrentneuralnetworkarestudied.Animproved Elmanneuralnetworkissuccessfullyusedtoidentifythenonlineardynamicsystemeventhoughwithoutanypriorinformationofidentifiedsystem.SimulationresultsshowthattheElmanneuralnetworkhashigherlearningspeedandbettergeneralizationabilitythanthefeedforwardneuralnetwork,andthatitissuitableforthenonlineardynamicsystemidentification. Keywords:nonlinearsystemidentification;dynamicsystem;dynamicrecurrentneuralnetwork;Elmanneuralnetwork 摘 要:研究了应用动态递归神经网络实现动态系统辨识的原理和方法,在没有被辨识对象的先验知识情况下,通过改进的El- man网络实现了非线性动态系统的辨识。 仿真结果表明,与前馈网络相比,Elman网络具有学习速度快、泛化能力强的特点,可用较小的网络结构实现高阶系统的辨识,适用于具有本质非线性动态系统的辨识。关键词:非线性系统辨识;动态系统;动态递归神经网络;Elman网络文章编号:1002-8331(2007)31-0087-03 文献标识码:A 中图分类号:TP183 作者简介:高钦和(1968-),男,西安交通大学博士后,第二炮兵工程学院副教授,主要研究方向为发射系统仿真与自动检测;王孙安(1957-),男, 教授,博士,主要研究方向为机电系统与工业过程的计算机智能监控。 ComputerEngineeringandApplications计算机工程与应用87

相关文档
最新文档