水泥强度凝结时间的技术要求

水泥强度凝结时间的技术要求
水泥强度凝结时间的技术要求

水泥强度:

凝结时间:

细度:≤10%

比表面积:>300

T0502—2005 水泥细度检验方法(80μmm筛筛析法)

1、调节负压至4000Pa~6000Pa范围内。称取25g。

2、水筛法时,喷头底面和筛网之间距离为35mm~75mm.。称取25g,水压为0.05MPa±

0.02MPa的喷头连续冲洗3min。

3、试验筛使用10次后要进行清洗。Rsg

水泥试样筛余百分数计算式:F = ——————× 100 (保留0.1%)

m

式中:F --------- 水泥试样筛余百分数

Rs --------- 水泥筛余物的质量

M ---------- 水泥试样的质量

取两次的结果为筛析结果。若两次结果的绝对误差大于0.5%时(大于0.5%时可放至1%)应再作一次,取相近两次的平均值为最终结果。

试验筛修正按下式进行: C = F n/ F t

C ---------- 修正系数,计算精确至0.01。C在0.80~1.20范围内可用,否则试验筛该淘汰。

F n --------- 标准样品的筛余标准值(%)

F t ---------- 为标准样品在负压筛上的筛余值

T0503—2005 水泥密度测定方法

仪器设备:李氏瓶、恒温水槽、天平、温度计、滤纸

水泥过0.9mm的筛。称取60g,精确至0.01 g,,两次恒温均为30min.。恒温水槽温差不超过0.20C。

水泥密度计算式:P

ρ= ——————× 1000 (精确至10kg/m3)

v

式中:ρ--------- 水泥密度

P --------- 装入密度瓶的水泥质量

v ---------- 在试验所确定温度条件下被水泥所排出的液体体积,即李氏密度瓶第二次读数减去第一次读数(cm3)

取两次实验结果的平均值。两次之差不超过20kg/m3

硅酸盐水泥的密度一般为3100Kg/m3 ~ 3200Kg/m3,普通硅酸盐水泥的密度在3100Kg/m3左右。矿渣水泥的密度一般为2600Kg/m3 ~ 3000Kg/m3

T0504—2005 水泥比表面积测定方法(勃氏法)

仪器设备:透气仪、穿孔板、捣器、压力计、抽气装置、滤纸、天平、秒表、烘箱、干燥箱、毛刷。

试料层体积的标定:

水银称量精确至0.05g,水泥约3.3克。重复几次,直到水银称量值相差小于0.05克为止。计算式:V = 10-6 × ( P1 - P2 ) / ρ水银

V --------试料层体积【(m3)。精确到5×10-9 m3】

P1-------未装水泥时,充满圆筒的水银质量

P2 -------装水泥后,充满圆筒的水银质量

ρ水银-------试验温度下水银密度(g/cm3)

至少应进行两次,每次单独压实。若两次数值相差不超过5 ×10-9 m3。取平均值。精确至10-10 m3

水泥过0.9mm的筛

T0505—2005 水泥标准稠度用水量、凝结时间、安定性测定方法仪器设备:水泥净浆搅拌机、标准法维卡仪、代用法维卡仪、沸煮箱、雷氏膨胀仪、量水仪、天平、湿气养护箱、雷氏夹膨胀值测定仪、秒表。

水泥过0.9mm的筛。试样500g。试验温度200C±20C、相对湿度大于50%。

一、标准稠度用水量

1、标准稠度用水量:整个操作在1.5min内完成,以试杆距底板6mm±1mm

初凝时间:每隔5min测定一次。当试针沉至距底板4mm±1mm

终凝时间:每隔15min测定一次。当试针沉入试件0.5mm时,即环形附件开始不能在试件上留下痕迹时。

2、标准稠度用水量(代用法):

A、用不变水量法时:整个操作在1.5min内完成,用水量为142.5ml,水量精确到0. 5ml。

试锥停止下沉或释放试锥30s时,记录下沉深度。

B、用调整水量法时:试锥下沉28mm±2mm时为标准稠度用水量。

用不变水量法时:P = 33.4 - 0.185s

P --------- 标准稠度用水量(%)

S --------- 试锥下沉深度(mm)

当试锥下沉深度小于13 mm时,改用调整水量法测定。

二、安定性

1、水没过试件,在30min±5min内水能沸腾。脱去玻璃板取下试件,量雷氏夹指针间距离A,精确至0.5 mm,放入,指针朝上,加热在30min±5min内水能沸腾,恒沸3h±5min.取出到室温量指针尖端距离C,精确至0.5 mm,两试件增加距离(C - A)的平均值不大于5.0 mm时合格;当两个试件的(C - A)相差4.0 mm时,重做,仍如此,水泥不合格。

2、安定性(代用法)【试饼法省略】

T0506—2005 水泥胶砂强度测定方法

水泥标准稠度用水量的测定(精)

水泥标准稠度用水量的测定 一、目的 标准稠度用水量是指水泥净浆以标准方法测定,在达到统一规定的浆体可塑性时,所需加的用水量,水泥的凝结时间和安定性都和用水量有关,因而此测定可消除试验条件的差异,有利于比较,同时为进行凝结时间和安定性试验作好准备。 二、标准法 1、主要仪器设备 标准稠度仪(滑动部分的总重量为300±1g)(见图I-5)、装净浆用试模、净浆搅拌机 等; 2、试验方法与步骤 (1)试验前准备 试验前必须检查稠度仪的金属棒能否自由滑动,调整指至试杆接触玻璃板时,指针应对准标尺的零点,搅拌机运转正常。 (2)试验方法及步骤 ①用湿布擦抹水泥净浆搅拌机的筒壁及叶片; ②称取500g水泥试样; ③量取拌和水(按经验确定),水量精确至0.1mL,倒入搅拌锅; ④5s~10s内将水泥加入水中; ⑤将搅拌锅放到搅拌机锅座上,升至搅拌位置,开动机器,同时徐徐加入拌和水,慢速搅拌120s,停拌15s,接着快速搅拌120s后自动停机。 ⑥拌和完毕,立即将净浆一次装入玻璃板上的试模中,用小刀插捣并轻轻振动数次,刮去多余净浆,抹平后迅速将其放到稠度仪上,将试杆恰好降至净浆表面,拧紧螺丝1s ~2s后,突然放松,让试杆自由沉入净浆中,到30s时,记录试杆距玻璃板距离,整个操作过程应在搅拌后1.5min内完成。 3、试验结果的确定 调整用水量以试杆沉入净浆并距底板6mm±1mm时的水泥净浆为标准稠度净浆,此拌和用水量即为水泥的标准稠度用水量(按水泥质量的百分比计)。如超出范围,须另称试样,调整水量,重做试验,直至达到6mm±1mm时为止。 三、代用法 1、主要仪器设备 标准稠度仪(滑动部分的总重量为300±2g)(见图Ⅰ-5)、装净浆用锥模(见图I-6b)、净浆搅拌机等。 2、试验方法与步骤

水泥标准稠度用水量试验报告

水泥标准稠度用水量试验报告 6月3日星期二 试验目的水泥的凝结时间、安定性均受水泥浆稠稀的影响,为了不同水泥具有可比性,水泥必须订一个标准稠度,通过此项试验测定水泥浆达到标准稠度时的用水量,作为凝结时间和安定性试验用水量的标准。 用水量第一次取200.0ml 第二次145.0ml 水泥量500g 水灰比第一次水灰比W/C=0..40 第二次W/C=0.29 试验条件室温25℃,相对湿度大于50% 试验仪器 和工具 水泥净浆搅拌机、维卡机、装净浆用锥模、量水器、称 试验步骤(标准法) 1、称取500g水泥试样,我组第一次用量筒量取200.0ml水(精确至0.1ml),并用湿布擦抹水泥净浆搅拌机的筒壁和叶片; 2、将拌合水倒入搅拌锅内,随后加入水泥(在5至10s内); 3、将搅拌锅座上升至搅拌位置开动机器低速搅拌120s,停拌15s,接着再快速搅拌120s后停机; 4、搅拌完毕,立即将水泥净浆一次装入模具中,用小刀插捣并振实,刮去多余净浆,抹平后放置在维卡仪底座上,将刻度调与0刻度线处,将试杆降至净浆表面,拧紧螺钉,之后松开试杆使其自由沉入净浆中,30s后记录读数为S=45mm。试验失败 5、然后第二次量取145.0ml水,重复上述步骤,测得S=29mm,在误差允许范围内,则完成实验。 试验结果 (固定水量) 结果得出水量适宜为145ml 试验分析可能试验用的水泥不合格,有水分,导致的试验不合格。 第一小组戴宇波

砂的筛分析试验报告 6月4日星期三试验目的通过试验测定砂的颗粒级配,计算砂的细度模数,评定砂的粗细程度砂用量取两份500g的砂 试验条件室温25℃ 试验所需仪 器 标准筛、摇筛机,由于机器故障,采用手工 试验步骤1、准确称取试样500g(两份),精确到1g; 2、将标准筛按孔径由大到小的顺序叠放,加底盘后,将称好的试样倒入最上层的4.75mm筛内,加盖; 3、由于机器故障,我们采取人工摇筛,摇约10min; 4、按筛孔大小顺序再逐个用手筛,筛至每分钟通过量小于试样总量0.1%为止。通过的颗粒并入下一号筛中,并和下一号筛中的试样一起过筛,按此顺序进行,直至各号筛全部筛完为止; 5、称取筛余量 试验结果第 一 次 筛孔尺寸/mm 4.75 2.36 1.18 0.60 0.30 0.15 筛底筛余质量/g 18 23 26 51 275 133 13 分计筛余量 a/(%) 3.3 4.3 4.8 9.5 51.0 24.7 2.4 累计筛余量 A(%) 3.3 7.6 12.4 21.9 72.9 97.6 100 细度模数=2.03 第 二 次 筛孔尺寸/mm 4.75 2.36 1.18 0.60 0.30 0.15 筛底筛余质量/g 34 36 36 66 182 134 9 分计筛余量 a/(%) 6.8 7.2 7.2 13.3 36.6 27.0 1.9 累计筛余量 A(%) 6.8 14.0 21.2 34.5 71.1 98.1 100 细度模数=2.20

水泥标准稠度用水量、凝结时间、安定性检验方法

标题:水泥标准稠度用水量、凝结时间、安定性检验 方法 修改概要

水泥标准稠度用水量、凝结时间、安定性检验方法 本方法适用于硅酸盐水泥、普通水泥、矿渣水泥、火山灰水泥、粉煤灰水泥以及指定采用本方法的其它品种水泥。 1.0仪器设备: 1.1水泥净浆搅拌机(简称搅拌机):用于水泥净浆的搅拌,主要由搅拌锅、搅拌叶片、传动机构和控制系统组成;搅拌叶片在搅拌锅内作旋转方向相反的公转和自转,并可在竖直方向进行调节;搅拌锅可以升降,传动结构保证搅拌叶片按规定的方向和速度运转,控制系统具有按程序自动控制与手动人工控制两种功能。 搅拌叶片转速如下表示 搅拌机拌和一次的自动控制程序为:慢速120±3s,停拌15s,快速120±3s。搅拌叶片与搅拌锅用钢材制成,搅拌锅内径160mm,深度139mm,壁厚约1mm,搅拌叶片宽111.0mm;搅拌时,搅拌叶片与锅底、锅壁的最小间隙为2±1mm。 1.2净浆标准稠度与凝结时间测定仪(简称锥形稠度仪):用于水

泥净浆标准稠度与凝结时间的测定;该仪器由铁座与可以自由滑动的φ12金属圆棒构成,松紧螺丝用以调整金属棒的高低,金属棒上附有指针,利用量程0~70mm的标尺指示金属棒下降距离;测定标准稠度时,棒下装一金属空心试锥,锥底直径40mm,高50mm,装净浆用的锥模,上口内径60mm,锥模工作高度75mm,锥模总高度80mm。 测定凝结时间时,取下试锥,换上试针;试针直径 1.1±0.04mm,长约50mm,试针要用硬质钢丝制成,不得弯曲;滑动部分的重量,即试杆装上试锥或试针后的总重量,均为300±2g;装净浆用的圆模,上部内径为65±0.5mm,下部内径为75±0.5mm,高度为40±0.5mm。 1.3沸煮箱:用于水泥安定性试验,其有效容积为410×240×310mm;内设蓖板,蓖板与加热器之间距离大于50mm,箱的内层由不易锈蚀的金属材料制成,能在30±5min内将箱内的试验用水由室温升至沸腾,并可保持沸腾状态3小时以上,整个试验过程不需补充水量。 1.4雷氏夹:用于水泥安定性试验,该仪器由铜质材料制成,当一根指针的根部先悬挂在一根金属丝或尼龙丝上,另一根指针的根部再挂上300g的砝码时,两根指针的针尖距离的增加应在17.5± 2.5mm的范围内,即2x=17.5±2.5mm;当去掉砝码后,针尖的距离能恢复至挂砝码前的状态。 1.5量水器:最小刻度为0.1mm,精度为1%。 1.6天平:能准确称量至1g。 1.7湿气养护箱:应能使温度控制在20±3℃,湿度大于90%。 1.8雷氏夹膨胀值测定仪:标尺最小刻度为1mm。 2.0标准稠度用水量的测定: 2.1标准稠度用水量可用调整水量和不变水量两种方法中的任何一种进行测定,如发生争议时,以调整水量方法为准。

水泥标准稠度用水量凝结时间安定性的测定实验报告

水泥标准稠度用水量、凝结时间、安定性的测定 一、实验目的 1.熟悉并掌握各种测试仪器的构造和使用方法。 2.掌握水泥标准稠度用水量、凝结时间、安定性测定方法和影响因 素的关系。 二、实验设备 实验设备主要包括:水泥净浆搅拌机、净浆标准稠度与凝结时间测定仪、沸煮箱、雷氏夹。水泥净浆搅拌机的主要由搅拌锅、搅拌叶、传动机构和控制系统组成。水泥净浆标准稠度与凝结时间测定仪构造如图1所示。它由铁座1与可以自由滑动的金属圆棒2构成。松紧螺丝3可以调节金属棒的高低。金属棒上附有指针4,利用量程0~75mm的标尺5指示金属棒下降距离。沸煮箱要求能在30min±5min内将箱内的试验用水由室温升至沸腾并可保持沸腾状态3h以上,整个实验过程中不需补充水量。雷氏夹由铜质材料构成,其结构如图2所示。当一根指针的根部先悬挂在一根金属丝或尼龙丝上,另一根指针的根部再挂上300g 质量的砝码时,两根指针的针尖距离增加应在17.5mm±2.5mm范围以内,计2x=17.5±2.5mm,当去掉砝码后针尖的距离能恢复至挂砝码前的状态。 图1 标准稠度与时间测定仪图2 雷氏夹 三、实验方法 实验前必须保证以下条件:水泥试样应充分拌匀,通过0.9mm 方孔筛并记录筛余物情况,但要防止过筛时混进其他水泥。试验用水必须是洁净的淡水,有争议时可采用蒸馏水。试验时温度应在17~25℃,相对湿度大于50%。水泥试样、拌和水、仪器和用具的温度应与试验室

一致。 各项实验的测量方法及步骤如下: (一)、标准稠度用水量的测定 1)标准稠度用水量可用调整水量和不变水量两种方法中的任意一种测定,如发生争议时以调整水量方法为准。 2)试验前须对仪器进行检查,检查内容为:仪器金属棒应能自由滑动;试锥降至锥模顶面位置时,指针应对准标尺的零点;搅拌机运转正常等。 3)水泥净浆的拌制:水泥净浆用净浆搅拌机搅拌,搅拌锅和搅拌叶片先用湿棉布擦过,将称好的500g水泥试样倒入搅拌锅内。拌和时,先将锅放到搅拌机锅座上,升至搅拌位置,开动机器,同时徐徐加入拌和水,慢速搅拌120s后停拌15s,接着快速搅拌120s后停机。采用调整水量方法时拌和水量按经验找水,采用不变水量方法时拌和水量用142.5mL水,水量准确至0.5mL。 4)标准稠度的测定: (1)拌和结束后,立即将拌好的净浆装入锥模内,用小刀插捣、振动数次,刮去多余净浆,抹平后迅速放到试锥下面固定位置上,将试锥降至净浆表面拧紧螺丝,然后突然放松,让试锥自由沉入净浆中,到试锥停止下沉时记录试锥下沉深度。整个操作应在搅拌后 1.5min内完成。 (2)用调整水量方法测定时,以试锥下沉深度28mm±2mm时的净浆为标准稠度净浆。其拌和水量为该水泥的标准稠度用水量(P),

gbt1346-2011水泥标准稠度用水量、凝结时间、安定性

1、范围 本标准规定了水泥标准稠度用水量、凝结时间和由游离氧化钙造成的体积安定性检验方法的原理、仪器设备、材料、试验条件和测定方法。 本标准适用于硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥,火山灰质硅酸盐水泥,复合硅酸盐水泥以及指定采用本方法的其他品种水泥。 2、规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本试用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)试用于本文件。 JC/T 727 水泥净浆标准稠度与凝结时间测定仪 JC/T 729 水泥净浆搅拌机 JC/T 955 水泥安定性试验用沸煮箱 3、原理 水泥标准稠度 水泥标准稠度净浆对标准试杆(试锥)的沉入具有一定助力。通过试验不同含水量水泥净浆的穿透性,以确定水泥标准稠度净浆中所需加入的水量。

凝结时间 试针沉入水泥标准稠度净浆至一定深度所需的时间。 安定性 雷氏夹是通过测定水泥标准稠度净浆至雷氏夹中煮沸后试针的相对位移表征其体积膨胀的程度。 试饼法是通过观测水泥标准稠度净浆试饼煮沸后的外形变化情况表征其体积安定性。 4、仪器设备 水泥净浆搅拌机 符合JC/T 729的要求。 注:通过减小搅拌机和搅拌锅之间间隙,可以制备更加均匀的净浆。标准法维卡仪 代用维卡仪 符合JC/T 727的要求。 雷氏夹 由铜质材料制成,其结构如图2.当一根指针的根部先悬挂在一根金属丝或尼龙丝上,另一根指针的根部再挂上300g质量砝码时,两根指针针尖的距离增加应在±范围内,

即2x=±,当去掉砝码后针尖的距离能恢复至挂砝码前的状态。 煮沸箱 符合JC/T 955的要求。 雷氏夹膨胀测定仪 量筒或滴定管 精度±. 天平 最大称量不小于1000g,分度值不大于1g。 5、材料 试验用水应是洁净的饮用水,如有争议时应以蒸馏水为准。 6、试验条件 试验室温度为20℃±2℃,相对湿度应不低于50%;水泥试样、拌和水、仪器和用具的温度应与实验室一致; 湿气养护箱的温度为20℃±1℃,相对湿度应不低于90%. 7水泥标准稠度用水量测定方法(标准法)

混凝土拌合物凝结时间差检验细则

混凝土拌合物凝结时间差检验细则 一、依据标准:《混凝土外加剂》(GB 8076-1997)。 二、仪器设备:贯入阻力仪,仪器精度为5N。 三、试验步骤: 将混凝土拌合物用5mm(圆孔筛)振动筛筛出砂浆,拌匀后装入上口内径为160mm,下口内径为150mm,净高150mm的刚性不渗水的金属圆筒,试样表面应低于筒口约10mm,用振动台振实(约(3~5s),置于20±3℃的环境中,容器加盖。一般基准混凝土在成型后3h~4h,掺早强剂的成型后1h~2h,掺缓凝剂的在成型后4h~6h开始测定,以后每0.5h或1h测定一次,但在临近初、终凝时,可以缩短测定间隔时间。每次测点应避开前一次测孔,其净距为试针直径的2倍,但至少不小于15mm,试针与容器边缘之距离不小于25mm。测定初凝时间用截面积为100mm2的试针,测定终凝时间用20mm2的试针。 贯入阻力按下式计算: R=P/A

式中:R――贯入阻力值,MPa; P――贯入深度达25mm时所需的净压力,N; A――贯入仪试针的截面积,mm2。 根据计算结果,以贯入阻力值为纵坐标,测试时间为横坐标,绘制贯入阻力值与时间关曲线,求出贯入阻力值达到3.5MPa时对应的时间作为初凝时间及贯入阻力值达到28MPa时对应的时间作为终凝时间。凝结时间从水泥与水接触时开始计算。 试验时,每批混凝土拌合物取一个试样,凝结时间取三个试样的平均值。若三批试验的最大值或最小值之中有一个与中间值之差超过30min时,则把最大值与最小值一并舍去,取中间值作为该组试验的凝结时间。若两测值与中间值之差均超过30min时,该组试验结果无效,则应重做。 四、结果计算: 凝结时间差△T=T t-T c 式中:△T――凝结时间差,min; T t――掺外加剂混凝土的初凝或终凝时间,min;

水泥标准稠度用水量试验

水泥标准稠度用水量试验 1,原理 水泥标准稠度净浆对标准杆的沉入具有一定的阻力。通过试验不同含水量的水泥净浆的穿透性以确定水泥标准稠度净浆所需加入的水量。 2,仪器设备 标准维卡仪 标准稠度试杆由有效长度为50mm±1mm直径为10mm±0.05mm的圆柱形耐磨腐蚀金属制成,初凝针有效长度为50mm±1mm,终凝针为30mm±1mm直径1.13mm ±0.05mm,滑动部分的总质量为300g±1g 盛装水泥净浆的试模深为40mm±0.2mm顶内径为65±0.5mm,底内径为75mm ±0.5mm的截圆锥体。 每个试模应配备一个边长或直径为100mm厚度4mm-5mm的平板玻璃底板或金属底板。 3,试验步骤 (1)试验前的准备工作,维卡仪的滑动杆能自由滑动试模和玻璃底板用湿布擦拭,将试模放在底板上,调整至试杆接触玻璃板时指针对准零点, 搅拌机正常运行。 (2)水泥净浆用水泥净浆搅拌机搅拌搅拌机先用湿布擦过,将拌合水倒入搅拌锅内然后再5-10s内将称好的500g水泥加入水中,防止水和水泥 溅出,低速搅拌120s停15s同时将叶片和锅壁上的水泥净浆刮入锅中 间,接着高速搅拌120s停机。 (3)拌合结束后立即取适量的水泥净浆一次性将其装入已置于玻璃底板上的试模中,浆体超过试模上端用宽约25mm的直边刀轻轻拍打超出试模 部分的浆体5次,以排除浆体中的孔隙,然后再试模表面约1/3处略

倾斜于试模分别向外轻轻锯掉多余净浆,再从试模边沿轻抹顶部一次,使净浆表面光滑,在锯掉多余净浆和抹平的操作过程中注意不要压实净浆,抹平后将试模和底板移到维卡仪上,并将其中心定在试杆下,降低试杆直至与水泥净浆表面接触,拧紧螺丝1-2s后突然放松,使试杆垂直自由的沉入水泥净浆中。在试杆停止沉入或释放30s时记录试杆距离底板之间的距离升起试杆后立即擦净。整个操作过程应在搅拌后1.5min内完成以试杆沉入水泥净浆并距底板6mm±1mm的水泥净浆为标准稠度净浆。其拌合水量为水泥标准稠度用水量。按水泥质量的百分比计。

水泥标准稠度凝结时间测定仪操作规程

水泥标准稠度凝结时间测定仪操作规程 水泥标准稠度及凝结时间测定仪操作规程 ①使用前需将滑动部分注入少许润滑油,并检查是否能上下自由滑动。 ②标准稠度的测定:将拌制好的水泥净浆装入已置于玻璃板上的试模中,用小刀插捣,轻轻振动数次,刮去多余的净浆,抹平后迅速将试模和底板移到维卡仪上,并将其中心定在试杆下,降低试杆直至与水泥净浆表面接触,拧紧螺丝后,突然防松,使试杆垂直自由的沉入水泥净浆中。在试杆停止沉入或释放试杆30S时记录试杆距底板之间的距离,升起试杆后,立即擦净,整个操作应在搅拌后1.5min 内完成。以试杆沉入净浆并距离底板6mm士1mm的水泥净浆为标准稠度净浆。 ③初凝结时间的测定:试件在湿气养护箱中养护至加水后30min时进行第一次测定。测定时,从湿气养护箱中取出圆模放到试针下,降低试针与水泥净浆表面接触,拧紧螺丝后。突然放松,试针垂直自由地沉入水泥净浆。观察试针停止下沉或释放试针30S时指针的读数当试针沉至距离底板4mm士1mm时,为水泥达到初凝状态,由水泥全部加入水中至初凝状态的时间为水泥的初凝时间。 ④终凝时间的测定:为了准确观测试针沉入的状况,在终凝针上安装了一个环行附件。在完成初凝时间测定后,立即将试模连同浆体以水平移动的方法从玻璃板取下翻转1800,直径大端向上,小端向下放在玻璃板上,在放入湿气养护箱中继续养护,临近终凝时间每隔15min 测定一次,当试针沉入试体0.5mm时,即环行附件开始不能在试体上留下痕迹时,为水泥达到终凝状态,由水泥全部加入水中至终凝状态的时间为水泥的终凝时间。 ⑤测定应注意:在最初测定的操作时应轻轻扶持金属柱。使其徐徐下降,以防试针撞弯,但结果以自由为准,在整个测试过程中试针沉入的位置至少要距试模内壁10mm,临近处凝时间每隔5min测定一次,临近终凝时间每隔15mm测定一次,达到初凝或终凝时应立即重复测一次,当两次结论相同时才能定为到达初凝或终凝状态。每次测定不能让试针落入原针孔,每次测试完毕须将试针擦净并将试模放回湿气养护箱内,整个测试过程要防止试模受振。 感谢您的阅读!

水泥混凝土拌合物凝结时间试验方法

T 0527-2005 水泥混凝土拌合物凝结时间试验方法 1、目的、适用范围和引用标准 本方法规定了测定水泥混凝土拌合物凝结时间的方法,以控制现场施工流程。 本方法适用于各通用水泥和常见外加剂以及不同水泥混凝土配合比、坍落度值不为零的水泥混凝土拌合物的凝结时间测定。 引用标准: GB/T50080-2002 《普通混凝土拌合物性能试验方法标准》 GB/T6005-1997 《试验筛金属丝编织网、穿孔板和电成型薄板筛孔的基本尺寸》 JG 3021-1994 《水泥混凝土坍落度仪》 T 0521-2005 《水泥混凝土拌合物的拌和与现场取样方法》 2、仪器设备 (1)贯入阻力仪:最大测量值不小于1000N,刻度盘分度值为10N。 (2)测针:长约100mm,平面针头圆面积为100mm2、50mm2和20mm2三种,在距离贯入端25mm处刻有标记。 (3)试模:上口径为160mm,下口径为150mm,净高150mm的刚性容器,并配有盖子。 (4)捣棒:直径16mm,长650mm,符合JG 3021的规定。 (5)标准筛:孔径4.75mm,符合GB/T6005-1997《试验筛金属丝编织网、穿孔板和电成型薄板筛孔的基本尺寸》规定的金属方孔筛。 (6)其他:铁制拌合板、吸液管和玻璃片。 3、试样制备 3.1 取混凝土拌合物代表样,用 4.75mm筛尽快地筛出砂浆,再经人工翻拌后,装入一个试模。每批混凝土拌合物取一个试样,共取三个试样,分装三个试模。 3.2 对于坍落度不大于70mm的混凝土宜用振动台振实砂浆,振动应持续到表面出浆为止且应避免过振;对于坍落度大于70mm的宜用捣棒人工捣实,沿螺旋方向由外向中心均匀插捣25次,然后用橡皮锤轻击试模侧面以排除在捣实过程中留下的空洞。进一步整平砂浆的表面,使其低于试模上沿约10mm,砂浆试样筒应立即加盖。

水泥标准稠度用水量测定

水泥标准稠度用水量测定操作指导书一.试验原理及方法. 水泥净浆对标准试杆的沉入具有一定的阻力,通过试验含有不同水量的水泥净浆对试杆阻力的不同,可确定水泥净浆达到标准稠度时所需要的水量。 二.试验目的 通过试验测定水泥净浆达到标准稠度的需水量,作为水泥凝结时间,安定性试验的用水量标准。 三.主要试验仪器 标准稠度仪、水泥净浆搅拌机、天平、量筒、插刀 四.实验步骤及注意事项 (1).仪器设备的检查。 维卡仪的金属滑杆能自由滑动 将试杆旋转接在金属滑杆下部,调整滑杆式锥尖接触锥模顶面式指针对准零点 搅拌机运转正常 (2).水泥净浆拌制 采用调整水量法,水量按经验确定;采用不变水量法,拌和水量

用142.5mL。用湿抹布润湿水泥浆浆接触的仪器表面及用具,将拌和水倒入搅拌锅中,在5~10s内将称好的500g水泥加人水中,放置在搅拌机锅座上,升至搅拌位置,启动搅拌机,低速搅120s,停15s,高速搅120s停机。 (3).标准稠度用水量的测定。 将拌制好的试样装入锥模中,用小刀插捣,轻轻振动数次,刮去多余的净浆;抹平后迅速放到维卡仪上的固定位置上。将试杆降至锥尖与净浆表面接触,拧紧螺丝1~2s后,突然放松,使试杆自由沉入净浆。到试杆停止下沉或释放试杆30s时记录试杆到底板的距离S(mm),S为6±1mm时的水泥砂浆为标准稠度净浆。 注:a.整个操作过程应在搅拌后1.5min内完成 b.用调整水量法,以试杆下沉深度(28±2)mm时的净 浆为标准稠度净浆 c.用不变水量法则规定时,按时(12.9)计算标准稠度 用水量,若试杆下沉深度小于13mm,应改用调整水量 法测定。 五.试验数据计算与评定。 用标准法和调整水量法测定时,水泥的标准稠度用水量P以水泥质量的百分数计。按式(12.8)计算: P=M1/M2*100% (M1——————水泥净浆达到标准稠度时的拌和用水量;M2—————水

水泥标准稠度用水量检验细则

水泥标准稠度用水量检验细则 一、依据标准:《水泥标准稠度用水量、凝结时间、安定性检验方法》(GB/T 1346—2011)。 二、原理:水泥净浆对标准试杆的沉入有一定的阻力,通过试验不同含水量水泥净浆的穿透性,以确定水泥标准稠度净浆中所需加入的水量。 三、试验步骤:1、检查锥卡仪的金属棒能否自由滑动,调整至试杆接触玻璃板时指针对准零点,检查搅拌机运行是否正常。2、水泥浆的拌制:用水泥净浆搅拌机搅拌,搅拌锅和搅拌口十片先用湿布擦过,将拌和水倒入搅拌锅内,然后在5~10s内小心将称好的500g水泥加入水中,防止水和水泥溅出,拌和时,先将锅放在锅座上,升至搅拌位置,启动搅拌机,低速搅拌120s,停15s,同时将叶片和锅壁上的水泥刮入锅中间,接着高速搅拌120s,停机。3、标准稠度用水量的测量:拌合结束后,立即取适量水泥浆一次性将其装入已置于玻璃底板上的试模中,浆体超过试模上端,用宽约25mm的直边刀轻轻拍打超出试模部分的浆体5次以排除

浆体中的空隙,然后在试模上表面约1/3处,略倾斜于试模分别向外轻轻锯掉多余净浆,再从试模边沿轻抹顶部一次,使净浆表面光滑。在锯掉多余净浆和抹平的操作过程中,注意不要压实净浆;抹平后迅速将试模和底板放到维卡仪上,并将其中心敲在试杆下,降低试杆直到与水泥净浆表面接触,拧紧螺丝1s-2s后,突然放松,使试杆垂直自由地沉入水泥净浆中,在试杆停止沉入或释放试杆30s时记录试杆距底板之间的距离,升起试杆后,立即擦净,整个操作过程应在搅拌后的1.5min完成,以试杆沉入净浆并距底板6mm±1mm 的水泥净浆为标准稠度净浆。 四、结果计算:标准稠度净浆拌合水量为该水泥的标准稠度用水量(P), 按水泥质量的百分比计算。

水泥标准稠度测试

实验二、水泥标准稠度测试 一、实验目的 1 必要性:确定标准稠度的目的是为了在进行水泥凝结时间和安定性试验时,对水泥净浆在标准稠度的条件下测定,使不同的水泥具有可比性。 2 重要性:从《水泥标准稠度用水量、凝结时间、安定性检验方法》(GB /T1346-2001)的内容中可看出,本实验具有先导性。 3 适用性:GB /T1346-2001规程适用于硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰质硅酸盐水泥、复合硅酸盐水泥以及指定采用本方法的其他品种水泥。 4 普遍性:进一步认识标准的双重性,实验方法的标准性和实验手段的标准性,及国家标准与国际标准的趋同性,标准法和代用法的现实互补性。 二、实验原理 1 基本原理:水泥标准稠度净浆对标准试杆(或试锥)的沉入具有一定的阻力。通过试验不同含水量水泥净浆的穿透性,以确定水泥标准稠度净浆所需加入的水量。 2 规程规定:关于标准稠度用水量,标准法规定为试杆沉入净浆并距底板6mm±1mm 时的拌和用水量,代用法规定为试锥下沉深度为(28±2)mm 时的拌和用水量。 三、实验器材 1 水泥净浆搅拌机:符合JC/T 729的要求。 2 标准法维卡仪:如图2-1所示,标准稠度测定用试杆有效长度为50mm±1mm 、由直径为?10mm±0.05mm 的圆柱形耐腐蚀金属制成。测定凝结时间时取下试杆,用试针代替试杆。试针由钢制成,其有效长度初凝针为50mm±1mm 、终凝针为30mm±1mm 、直径为?1.13mm±0.05mm 的圆柱体。滑动部分的总质量为300g±1g 。与试杆、试针联结的滑动杆表面应光滑,能靠重力自由下落,不得有紧涩和旷动现象。 盛装水泥净浆的试模应由耐腐蚀的、有足够硬度的金属制成。试模为深40mm±0.2mm 、顶内径?65mm±0.5mm 、底内径75mm±0.5mm 的截顶圆锥体。每只试模应配备一个大于试模、厚度≥2.5mm 的平板玻璃底板。 3 代用法维卡仪:符合JC/T 727要求。 4 量水器:最小刻度为0.1mL ,精度1%。 5 天平:最大称量不小于1000g ,分度值不大于1g 。 四、实验条件 1 试验室温度为20?C ±2oC ,相对湿度应不低于50%;水泥试样、拌和水、仪器和用具的温度应与试验室一致; 2 湿气养护箱的温度为20?C ±1oC ,相对湿度不低于90%; 3 试验用水必须是洁净的饮用水。(如有争议时应以蒸馏水为准) 五、实验步骤 1 标准法 (1)试验准备:① 维卡仪金属棒能自由滑动;②调整至试杆接触玻璃板时指针对准零点;③搅拌机运行正常。 (2) 水泥净浆的拌制:用水泥净浆搅拌机搅拌,搅拌锅和搅拌叶片先用湿布擦过,将拌和水倒入搅拌锅内,然后在5s~10s 内小心将称好的500g 水泥加入水中,防止水和水泥溅出;拌和时,先将锅放在搅拌机的锅座上,升至搅拌位置,启动搅拌机,低速搅拌120s ,停15s ,同时将叶片和锅壁上的水泥浆刮入锅中间,接着高速搅拌120s 停机。 (3) 标准稠度用水量的测定步骤 拌和结束后,立即将拌制好的水泥净浆装入已置于玻璃底板上的试模中,用小刀插捣,轻轻振动数次,刮去多余的净浆;抹平后迅速将试模和底板移到维卡仪上,并将其中心定在试杆下,降低试杆直至与水泥净浆表面接触,拧紧螺丝1s~2s 后,突然放松,使试杆垂直自由地沉入水泥净浆中。在试杆停止沉入或释放试杆30s 是记录试杆距底板之间的距离,升起试杆后,立即擦净;整个操作应在搅拌后1.5min 内完成。以试杆沉入净浆并距底板6mm±1mm 的水泥净浆为标准稠度净浆。其拌和水量为该水泥的标准稠度用水量(P ),按水泥质量的百分比计。 2 代用法(1)试验准备;(2)称样、进样:采用调整水量方法时、拌和用水量是先按经验确定一个水量,然后逐次改变用水量,直至达到标准稠度为止;采用不变水量方法时,拌和用水量为142.5mL (准确至0.5mL );(3)水泥净浆的拌制(同上);(4)装模测试。 六、注意事项: 1.用调整水量方法测定时,以试锥下沉深度(28士2)mm 时的净浆为标准稠度净浆:其拌和水量为该水泥的标准稠度用水量(占水泥质量的百分比)。如下沉深度超出范围,须另称试样,调整水量(P —100500 W %),重新试验,直至达到(28士2)mm 时为止。 2.用不变水量方法测定时,根据测得的试锥下沉深度S ,计算得到标准稠度用水量P (%)=33.4-0.185S 。 试锥下沉深度小于13mm 时,应改用调整水量方法测定。 3.为使不变水量和调整水量两种方法测定得到的标准稠度用水量不发生争议,可以用不变水量法计算得到的标准稠度用水量重复试验方法3和4,再按调整水量法,以试锥下沉深度为(28士2)mm 时的拌和用水量为该水泥的标准稠度用水量P 。

水泥标准稠度用水量与凝结时间试验

水泥标准稠度用水量与凝结时间试验 ( T 0505 - 2005 ) 一、目的、适用范围与引用标准 本方法规定了水泥标准稠度用水量、凝结时间和体积安定性的测试方法。 本方法适用于硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰硅酸盐水泥、复合硅酸盐水泥、道路硅酸盐水泥及指定采用本方法的其它品种水泥。二、仪 器设备 1、水泥净浆搅拌机:符合JC/T 729的要求。 2、标准法维卡仪:标准稠度测定用试秆有效长度50㎜±1㎜的圆柱形耐用腐蚀金属制成。测定凝结时间时取下试杆,用试杆代替试杆。试杆由钢制成,其有效长度初凝针为50㎜±1㎜、终凝针为30㎜±1㎜、直径为 1.13±0.05㎜的圆柱体。滑动部分的总质量为300±0.05g。 与试杆、试针联结的滑动杆表面应光滑,能靠重力自由下落,不得有羞涩和旷动现象。 盛装水泥净浆的试模应由耐腐蚀的、有足够硬度的金属制成。试模深40㎜±0.2㎜、顶内径65±0.5㎜、底内径75±0.5㎜的截面圆锥体,每只试模应配备一个大于试模、厚度大于等 于2.5㎜的平板玻璃底版。 3、沸煮箱:有效容积约为410㎜×240㎜×310㎜,箅板结构应不影响试验结果。 4、雷氏夹膨胀仪:由铜制材料制成。 5、量水器:分度值为0.1mL,精度1%。 6、天平:量程1000g,感量1g。 7、湿气养护箱:应能使温度控制在20℃±1℃,相对湿度大于90%。 8、雷氏夹膨胀值测定仪:标尺最小刻度0.5㎜。 9、秒表:分度值1s。三、试样及用水 1、水泥试样应充分拌匀,通过0.9 ㎜方孔筛并记录筛余物情况,但要防止过筛时混进其它 水泥。 2、试验用水必须是洁净的淡水,如有争议时可用蒸馏水。四、实验室温度、相对湿度 1、实验室的温度为20℃±2℃,相对湿度大于50%。 2、水泥试样、拌和水、仪器和用具的湿度应与实验室内室温保持一致。五、标准稠度用水 量测定(标准法) 1、试验前必须做到 ⑴维卡仪的金属棒能够自由滑动。 ⑵调整至试杆接触玻璃板时指针对准零点。 ⑶水泥净浆搅拌机运行正常。 2、水泥净浆拌制 用水泥净浆搅拌机搅拌,搅拌锅和搅拌叶片先用湿布擦过,将拌和水倒入搅拌锅中,然后5s~10 s内小心将称好的500g水泥加入水中,防止水和水泥渐出;拌和时,先将锅放在搅拌机的锅座上,升至搅拌机,低速搅拌120s,停15s,同时将叶片和锅壁上的水泥浆刮入锅 中间,接着高速搅拌120 s停机。 3、标准稠度用水量测定步骤 (1)拌合结束后,立即将拌制好的水泥净浆装入已放在玻璃板上的试模中,用小刀插捣,轻 轻振动数次,刮去多余的净浆。 (2)抺平后迅速将试模和底板移到维卡仪上,并将其中心定在试杆上,降低试杆直到与水泥净浆表面接触,拧紧螺丝1s~2 s后,突然放松,使试杆垂直自由地沉入水泥净浆中。在试杆停止沉入或释放试杆30s时记录试杆到底板的距离,升起试杆后,立即擦净。(3)整个操作应在搅拌后1.5min内完成。以试杆沉入净浆并距底板6mm±1mm的水泥净浆

水泥标准稠度用水量

水泥标准稠度用水量( T 0505 - 2005 ) 一、目的、适用范围与引用标准 本方法规定了水泥标准稠度用水量、凝结时间和体积安定性的测试方法。 本方法适用于硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰硅酸盐水泥、复合硅酸盐水泥、道路硅酸盐水泥及指定采用本方法的其它品种水泥。 二、仪器设备 1、水泥净浆搅拌机:符合JC/T 729的要求。 2、标准法维卡仪:标准稠度测定用试秆有效长度50㎜±1㎜的圆柱形耐用腐蚀金属制成。测定凝结时间时取下试杆,用试杆代替试杆。试杆由钢制成,其有效长度初凝针为50㎜±1㎜、终凝针为30㎜±1㎜、直径为 1.13±0.05㎜的圆柱体。滑动部分的总质量为300±0.05g。与试杆、试针联结的滑动杆表面应光滑,能靠重力自由下落,不得有羞涩和旷动现象。 盛装水泥净浆的试模应由耐腐蚀的、有足够硬度的金属制成。试模深40㎜±0.2㎜、顶内径65±0.5㎜、底内径75±0.5㎜的截面圆锥体,每只试模应配备一个大于试模、厚度大于等于2.5㎜的平板玻璃底版。 3、沸煮箱:有效容积约为410㎜×240㎜×310㎜,箅板结构应不影响试验结果。 4、雷氏夹膨胀仪:由铜制材料制成。 5、量水器:分度值为0.1mL,精度1%。 6、天平:量程1000g,感量1g。 7、湿气养护箱:应能使温度控制在20℃±1℃,相对湿度大于90%。 8、雷氏夹膨胀值测定仪:标尺最小刻度0.5㎜。 9、秒表:分度值1s。 三、试样及用水 1、水泥试样应充分拌匀,通过0.9 ㎜方孔筛并记录筛余物情况,但要防止过筛时混进其它水泥。 2、试验用水必须是洁净的淡水,如有争议时可用蒸馏水。 四、实验室温度、相对湿度 1、实验室的温度为20℃±2℃,相对湿度大于50%。 2、水泥试样、拌和水、仪器和用具的湿度应与实验室内室温保持一致。 五、标准稠度用水量测定(标准法) 1、试验前必须做到 ⑴维卡仪的金属棒能够自由滑动。 ⑵调整至试杆接触玻璃板时指针对准零点。 ⑶水泥净浆搅拌机运行正常。 2、水泥净浆拌制 用水泥净浆搅拌机搅拌,搅拌锅和搅拌叶片先用湿布擦过,将拌和水倒入搅拌锅中,然后5s~10 s内小心将称好的500g水泥加入水中,防止水和水泥渐出;

水泥混凝土拌和物凝结时间试验方法

水泥混凝土拌和物凝结时间试验方法 ⒈本方法使用于从混凝土拌合物中筛出的砂浆用贯入阻力法来确定塌 落值不为零的混凝土拌合物凝结时间的测定。 ⒉贯入阻力仪应由加荷装置、测针、砂浆试样筒和标准筛组成,可以是 手动的,也可以是自动的。贯入阻力仪应符合下列要求: ⑴加荷装置(灌入阻力仪):最大测量值不小于1000N,精确至±10N。 ⑵测针:长约100㎜,承压面积为100、50 、和20㎜2三种,在距 离贯入端25㎜处刻有一圈标记。 ⑶砂浆试样筒:上口直径为160㎜,下口直径为150㎜,净高150㎜ 的刚性不透水的,并配有盖子。 ⑷捣棒:直径16㎜,长650㎜,符合JG 3021的规定。 ⑸标准筛:孔径4.75㎜,符合GB/T6005-1997《试验筛金属丝编制 网、穿孔板和电成型薄板筛孔的基本尺寸》规定的金属方孔筛。 ⑹其他:铁制板、吸液管和玻璃片。 ⒊凝结时间试验应按下列步骤进行: ⑴取混凝土拌和物代表样,用 4.75㎜筛尽快地筛出砂浆,在经过 人工翻拌均匀后,一次装入一个试模。每批混凝土拌和物取一个 试样,共取三个试样,分装三个试模。对塌落度不大于70㎜的 混凝土宜用振实台振实砂浆,振实应持续到表面出浆为止应避免 过振;对塌落度大于70㎜的混凝土宜用捣棒人工捣实,沿螺旋 方向由外向中心均匀插捣25次,然后用橡皮锤轻击试模侧面以

排除在捣实过程中留下的空洞,进一步整平砂浆的表面,使其低于试模上沿约10㎜,砂浆试样筒应立即加盖。 ⑵砂浆试样制备完毕,编号后应置于温度为20℃±2℃的环境中或现 场同条件下待试,并在以后的整个测试过程中,环境温度应始终保持(20℃±2℃)。现场同条件下测试时,应与现场条件保持一致。 在整个测试过程中,除在吸取泌水或进行贯入试验外。试样筒应始终加盖。 ⑶凝结时间测定从水泥与水接触瞬间开始计时。根据混凝土拌合物 的性能,确定测针试验时间,以后每隔0.5h测试一次,在邻近初、凝时可增加测定次数。 ⑷在每次测试前2 min,将一片20㎜厚的垫块垫入底部,使其倾斜, 用吸管吸取表面的泌水,吸水后平稳地复原。 ⑸测试时将砂浆试样筒置于贯入阻力仪上,测针端部与砂浆表面接 触,然后在(10±2)s内均匀地使测针贯入砂浆(25±2)㎜深度,记录贯入压力,精确至10N;记录测试时间,精确至1min;记录环境温度,精确至0.5℃。 ⑹各测点的间距应大于测针直径的两倍且不小于15㎜,测点与试样 筒壁的距离应不小于25㎜。 ⑺每个试样做贯入阻力测试在0.2~28MP间,应至少进行6次,最 后一次的单位面积贯入阻力应不低于28MP。从加水时算起,常温下普通混凝土3h后开始测定,每次间隔为0.5h;早强混凝土或气温较高的情况下,则宜在2h后开始测定,以后每隔0.5h测一次;

水泥标准稠度用水量对混凝土用水量的影响

水泥标准稠度用水量对混凝土用水量的影响 1 水泥标准稠度用水量的含义 水泥净浆在某一用水量和特定测试方法下达到的稠度,称为水泥的标准稠度;这一用水量即称为水泥的标准稠度用水量,它是水泥净浆需水性的一种反应,用l00克水泥需用水的毫升数(%)表示。 根据文献,水泥标准稠度用水量由以下三部分组成: (1)在诱导期开始前被新生成的水化物结合的结晶水(不足l0%); (2)湿润新生成水化物表面和填充其空隙的水; (3)填充原始水泥颗粒间的空隙和在水泥颗粒表面形成足够厚度的水膜,从而使水泥浆体达到标准稠度的用水量。 前两部分的用水量较小,最大用水量是第3部分的用水量。按此论述,第3部分的用水量主要决定于水泥颗粒空隙和水泥颗粒表面积的多少,以及水膜厚度的大小。 2 水泥标准稠度用水量与混凝土用水量的关系 当其它条件不变时,为达到一定的流动性(坍落度),混凝土用水量将随水泥标准稠度用水量的增大而增大。对普通混凝土,水泥标准稠度用水量每增减1%,要维持混凝土坍落度不变,则每方混凝土用水量相应约增减6~8千克水。 匡楚胜以水泥标准稠度用水量25%作为标准值,得出混凝土用水量随水泥标准稠度用水量增减而变化的经验公式: △w=C(N~0.25)×0.8 式中:△w——每立方米混凝土用水量变化值,kg/m3; C——每立方米混凝土水泥用量,kg/m3; N——水泥标准稠度用水量,%。 由以上讨论可知:欲降低混凝土用水量,必须降低水泥标准稠度用水量。

3 水泥标准稠度用水量对混凝土用水量的影响 若标准稠度用水量越大,则水泥净浆达到标准稠度的用水量、水泥砂浆达到规定流动度的用水量,以及水泥混凝土达到一定坍落度的用水量也都越大,使其净浆、砂浆、混凝土的水灰比越大、其问孔隙越多、密实度越小,从而使水泥及其混凝土的施工性能、力学性能和耐久性能变差。 直观地看,混凝土的配方设计的三个基本参数:水灰比、用水量、砂率。三个参数中,有两个涉及到水,足见水泥标准稠度用水量问题在混凝土中的重要性。 混凝土强度同用水量成反比,故为了提高混凝土强度必须减少用水量。另一方面,理论上要保持混凝土的强度不变,当混凝土的用水量发生变化时,应保持水灰比不变,相应调整水泥用量,但这在实际生产操作中很难做到。由于实验条件和工艺设备的限制,预拌混凝土厂很难根据每批水泥的需水性变化而调整水泥用量。大多数情况下的做法反而是保持水泥用量及砂石等材料用量不变,而根据坍落度值来调整用水量。这样混凝土实际水灰比将随水泥需水性的变化而变化,相应地影响混凝土的强度。故为了稳定混凝土的强度,必须稳定水泥的标准稠度用水量。 4 结束语 (1)对于标准稠度用水量的合适控制范围,文献指出:考虑水泥熟料在比表面积350m2/kg时,标准稠度在24%~25%,即使普通硅酸盐水泥允许有不超过15%的混合材掺入,也必须严格控制水泥的标准稠度用水量≤26%。 (2)降低水泥的标准稠度需水量对降低混凝土单立方用水量,进而提高其强度,降低水泥用量以节约混凝土生产成本具有十分重要的意义。从以上讨论可知:这是一个系统的问题,需要从所涉及到的方面具体分析,找出主要原因并针对性地采取措施方能见效。

混凝土凝结时间

用Excel进行混凝土凝结时间的快速计算 2010-11-14 15:10:07| 分类:知识海洋| 标签:|字号大中小订阅 摘要:利用电脑Excel进行混凝土凝结时间的快速计算,可以减 轻工作上的计算繁琐,提高工作效率和计算精度。 关键词:凝结时间、Excel、快速计算。 我们在日常的混凝土拌合物性能检测中,会遇到在检测混凝土凝结时间的计算上的繁琐,按照GB/T50080-2002标准方法进行计算,计算过程比较复杂,耗时也比较多,更容易在计算精度上产生误差,不利于提高工作效率。我们经过长时期的电脑的Excel进行混凝土凝结时间的快速计算,觉得方便简捷快 速,现介绍如下,抛砖引玉以求得更加完善。 下面例举一组我们的测试的混凝土凝结时间的测定结果,表中的斜体数字是测定的原始数据,正体数字是Excel的计算值。表格外框的A、B、C……和1、2、3……是Excel里的定位。 我们就计算过程作简要的说明如下: 斜体数字是测定的原始数据,只要按照测定的原始数据结果输入就行了。 前面的Excel计算就比较方便进行设置,例如表中的F5我们可以设公式为“=D5-E5”,F6设为“=D6-E6”下同。G5设为“=F5/C5”,G6设为“=F6/C6”,下同。H5设为“(A5*60+B5)

-(C2*60+E2)”,H6设为“(A6*60+B6)-(C2*60+E2)”,下同。ln(fPR)的计算我们用“返回给定数值的自然对数”,即用“LN”,如I5设为“LN(G5),I6设为“LN(G6),下同。ln( t)和上述一样,J5设为“LN(H5),J6设为“LN(H6),下同。这样就完成了表格上半部分的计算。 表格里下半部分的计算首先是涉及到线性回归方程式的计算。根据GB/T50080-2002标准的4.0.4中的第2条:“凝结时间宜通过线性回归方法确定,是将贯入阻力fPR和时间t分别取自然对数ln(fPR)和ln( t),然后把ln(fPR)当作自变量,ln( t)当作因变量作线性回归方程式:ln( t)=A+B ln(fPR)”,我们利用电脑 Excel作如下设定: 线性回归方程式ln( t)=A+B ln(fPR)中的A、B为线性回归系数,我们大家知道要呈线性回归,其要求相关系数r≥0.85,所以我们在表中增设有相关系数r这一栏,以便于同时验证所求线性回归方程式的相关系数 r. 线性回归方程式ln( t)=A+B ln(fPR)中的A值即表格中的B17,我们用公式栏里的“通过一条线性回归拟合返回一个预测值”,即可选用函数“FORECAST”来完成计算,我们把B17设为“= FORECAST(I5:I12, J5:J12)”来得到A值的结果。 线性回归方程式ln( t)=A+B ln(fPR)中的B值即表格中的B18,我们用公式栏里的“返回经过给定数据点的线性回归拟合线方程的斜率”,即可选用函数“SLOPE”来完成计算,我们把B18设为“= SLOPE(I5: I12,J5:J12)”来得到B值的结果。 线性回归方程式的相关系数r 即表格中的B19,我们用公式栏里的“返回两组数值的相关系数”,即可选用函数“COPPEL”来完成计算,我们把B19设为“= COPPEL(I5:I12,J5:J12)”来得到相关系数r值 的结果。 根据GB/T50080-2002标准的4.0.4中的第2条中的当贯入阻力为3.5Mpa时为初凝时间公式为:ts=e(A+Bln3.5), 当贯入阻力为28Mpa时为终凝时间公式为:te=e(A+Bln28),我们分别先计算A+B*ln3.5和A+B*ln28这两个指数值,即在表中我们用的D20和D21,D20设为“B17+B18*LN(3.5)”, D21设为“B17+B18*LN(28)”,这样就可求得这两个指数值。 D22即为:ts=e(A+Bln3.5),我们用“返回e的n次方”,即可选用函数“EXP”来进行计算,我们设D22为“= EXP(D20)”。同样D23即为:te=e(A+Bln28),我们设D23为“= EXP(D21)”。 这样我们就通过Excel得到了混凝土的初凝时间和终凝时间的计算值,其计量单位mim,是我们根据GB/T50080-2002标准把凝结时间就很方便地可化为h:mim,并修约至5 mim即可。 表中的计算值的小数点位数较多,我们根据GB/T50080-2002标准条文说明中4.04中表2所示数据的小数点取位数,在表格设置过程中通过“减少小数位数”来完成设置,以便于和标准所示例表中小数保留位 数相吻合。 通过上述Excel表格的设置,我们在试验中就可以非常方便地使用了,只要我们在上表中的斜体数字的地方,正确输入检测的原始数据,就可以将复杂的计算器的手工计算交给电脑处理,自动得到混凝土的 初凝时间和终凝时间的计算值,即方便又快捷。 只要我们相对熟悉Excel的软件,会运用编辑计算公式,就可以根据自己所在单位的不同情况,设置不同类型的Excel的表格运用于我们的检测工作中去,化繁琐为简捷,提高工作效率。

相关文档
最新文档