纳米酶研究新进展

纳米酶研究新进展
纳米酶研究新进展

自阎锡蕴院士提出模拟酶的概念以来,纳米材料的类酶特性得到了广泛关注。其中纳米金以多种酶活性等独特的优势表现出巨大的应用潜力,特别是在葡萄糖酶解中,其既是一种良好的类葡萄糖氧化酶,又是一种优越的电子传递介质。本文制备了5-60nm的金纳米颗粒,并探究了其尺寸依赖的类葡萄糖氧化酶活性,确认了其催化葡萄糖氧化的过程。

和天然酶相比,金属模拟酶具有价格低、产量高、稳定性好等优点,但由于大多没有特异性结合位点,缺乏选择性以及有限的催化活性始终是模拟酶的通病。本文基于对纳米金类葡萄氧化酶活性的研究,提出了一种酶活性增强的选择性模拟酶的构建方法。选用具有类葡萄糖氧化酶活性的小尺寸金纳米颗粒作为催化中心,负载于惰性聚苯乙烯微球表面。以能够与葡萄糖上的邻位羟基可逆结合的氨基苯硼酸同时作为铆钉分子和聚合单体,特异性识别并捕获葡萄糖分子,并在交联剂存在的条件下诱导其聚集,洗脱掉模板分子后获得带有葡萄糖结合袋的分子印迹壳层。此外,我们还在壳层内包埋了具有高氧溶解性的全氟溴辛烷微液滴作为氧供给池,使得催化活性得到进一步提升,催化效率最高可提升至约270倍。该类酶活性增强的选择性模拟酶被尝试用于常见市售饮料与血糖中葡萄糖的检测,获得了与天然酶相近的较为理想的检测结果。

图1.不同尺寸的金纳米颗粒的TEM照片(a)、光学照片(b)、吸收光谱(c);(d)金纳米颗粒做为葡萄糖氧化酶催化葡萄糖氧化的浓度和尺寸依赖性,类酶活性随纳米颗粒尺寸减小而增加;(e)随着葡萄糖浓度增加,金纳米颗粒催化其产生的葡萄糖酸浓度亦增加;(f)随着时间增加,金纳米颗粒催化葡萄糖消耗氧气,导致溶解氧浓度降低

图2. 基于金纳米颗粒和分子印迹技术构建选择性葡萄糖氧化酶模拟酶(PS:聚苯乙烯微球,BSA:牛血清白蛋白,APBA:氨基苯硼酸,PFOB:全氟溴辛烷,Glu:葡萄糖)

图3. 纳米结构葡萄糖氧化酶模拟酶催化葡萄糖氧化活性随表面分子印迹膜形成(113.40倍)以及PFOB供氧纳米乳(271.22)的引入而增强(酶动力学参数v:反应速度,K

:米氏常数,k cat:催化反应速率常数,k cat/K m催化效率);h和

m

i表示酶催化具有很好的葡萄糖选择性和可重复使用性

欢迎关注东纳生物网站,公司将致力于为您提供先进的微纳米磁性材料,并

致力于推动生物医学纳米材料与技术的应用转化。

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

酶工程的研究进展及前景展望

酶工程的研究进展及前景展望 摘要:概述了21 世纪国际上酶工程研究的新进展和新趋势。本文意在阐述近年来酶工程在分子水平的研究进展,并对其未来前景进行了展望。简单介绍了酶工程研究的进展, 对酶工程的发展前景进行了探讨。介绍了酶工程的应用现状,并对酶工程的作用和发展做出了展望。 关键词: 酶工程; 抗体酶;酶的固定化;开发研究; 进展; Abstract:An overview of the enzyme engineering in the 21st century international research progress and new trends. This paper aims to elaborate in recent years, progress in enzyme engineering research at the molecular level, and its future prospects. Briefly introduced the progress of the study of enzyme engineering, discussed the prospects for the development of enzyme engineering. Introduced the application status of the enzyme works , and the role and development of enzyme engineering to make the outlook. Keywords:Enzyme Engineering; Antibody enzyme; Immobilization; Research and development;Progress 1 前言 跨入21 世纪,人们在20 世纪认识生命本质高度一致性的基础上,迎来了后基因组时代,将有可能从整个基因组及其全套蛋白质产物的结构- 功能机理的角度,进一步阐明生命现象的核心和本质, 并系统整合生物学的全部知识,建立起真

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

纳米氧化锡的研究进展

纳米氧化锡的用途及研究进展 付高辉0909404018 高分子材料与工程 1 前言 氧化锡是一种宽带系半导体材料,带宽范围为 3.6~4.0 eV。它用途广泛,在有机合成中,可用作催化剂。在陶瓷工业中,可作为釉料和搪瓷乳浊剂。由于小尺寸效应及表面效应,纳米氧化锡具有特殊的光电性能、气敏性能、催化性能以及具有化学和机械稳定性,在气敏元件、半导体元件、电极材料、液晶显示器、保护性涂层及太阳能电池等方面有着潜在的应用。是一种重要的半导体金属氧化物功能材料。 鉴于纳米材料的表面原子数与体相原子数之比随颗粒尺寸的减小而急剧增大,从而显示出体积效应、量子尺寸效应、表面效应和宏观量子隧道效应,在光、电、磁、力、化学等方面呈现出一系列独特的性质,人们自然致力研究SnO 纳米 2 材料的制备。[1-3 ] 2 纳米氧化锡的性质 2.1 化学稳定性 纳米氧化锡材料因其也为惰性金属氧化物,不易发生化学反应。因此在好多反应中都保持了自己的性质,这为开发多功能的新型材料提供了保证。 2.2 量子尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射 周边性的边界条件将被破坏,导致声、深度等物理尺寸相当或更小时,纳米SnO 2 光、电、磁、热、力学等性质呈现出新的小尺寸效应。利用这些小尺寸效应,在使用技术方面开辟了一些新的领域。 2.3 宏观量子隧道效应 宏观量子隧道效应即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。而纳米SnO 的宏观量 2 子隧道效应为其在微电子器件发面的发展奠定了良好的基础。

酶工程发展概况及应用前景

酶工程发展概况及应用前景 【摘要】酶的生产和应用的技术过程称为酶工程。其主要任务是通过预先设计,经人工操作而获得大量所需的酶,并利用各种方法使酶发挥其最大的催化功能。本文意在阐述近年来酶工程在分子水平的研究进展,展示酶工程在医药、农业、食品、环境保护等领域的应用进展,并对其未来前景进行了展望。 【关键词】酶工程;概况;应用;前景 酶工程,从定义上来说,是酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶的反应器等方面内容。 酶工程的前景 酶因其反应的专一性,高效性和温和性的特点,已和生物工程,信息科学和材料科学构成了当今的三大前沿科学。而作为生物工程的重要组成部分,将在未来的发展中,在世界科技和经济发展中起着主导和支柱作用。而工业用酶日益广泛地应用于化学,医药,纺织,农业,日化,食品,能源,化妆品以及环保等行业。据报道,到2003年,欧洲工业用酶的市场增加至9亿美元,年增长率达百分之十;而2000年的中国,酶制剂总产量达272吨,同比增长8.8%,可谓发展迅速,前景十分广阔。 酶工程的发展 酶工程的发展,是一部科学的成长史。在二次世界大战后,酶工程发展成为新的工业领域—酶工程工业。酶工程的发展历史从那时算起, 至今已经三十多个年头了。六十年代以后, 由于固定化酶、固定化细胞及固定化活细胞的崛起, 使酶制剂的应用技术面貌一新。七十年代以后,伴随着第二代酶——固定化酶及其相关技术的产生,酶工程才算真正登上了历史舞台。固定化酶正日益成为工业生产的主力军,在化工医药、轻工食品、环境保护等领域发挥着巨大的作用。几十年来酶制剂的品种和应用不断扩大。不仅如此,还产生了威力更大的第三代酶,它是包括辅助因子再生系统在内的固定化多酶系统,它正在成为酶工程应用的主角。近年来, 国际上酶工程技术发展迅速, 硕果累累,主要有基因工程、蛋白质工程、人工合成酶、模拟酶、核酸酶、抗体酶、酶的定向固定化技术、酶化学技术、非水酶学、糖生物学、糖基转移酶、极端环境微生物和不可培养微生物的新品种等。 酶工程的应用 酶工程的发展日新月异,现举几个例子更加形象地说明酶工程地应用: 酶工程在污染处理中的作用:可利用过氧化物酶和聚酚氧化酶处理含酚废水和造纸废水,如辣根过氧化物酶,木质素过氧化物酶,植物来源的过氧化物酶;酪氨酸酶,漆酶等;可利用氰化物酶和氰化物水合酶处理含氰废水;利用蛋白酶,淀粉酶处理食品加工废水;并且,可以通过设计复合代谢途径,拓宽氧化酶的专一性等基因工程的运用,提高微生物的降解速率;拓宽底物的专一性;维持低浓度下的代谢活性;改善有机污染物降解过程中的生物催化稳定性等。酶在废物处理及资源化过程中正在发挥重要作用, 利用基因工程和蛋白质工程扩展酶的代谢途经, 是治理难降解有毒污染物的重要方法。

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

纳米限域研究取得新进展

纳米限域研究取得新进展 分子在纳米孔道限域环境中扩散和反应显示了非常独特的物理化学特性,理论工作者已经进行了大量的计算和模拟。最近,我所包信和研究员带领的“界面和纳米催化”研究组(502组)在自行研制的一套与固体核磁共振仪耦合的动态催化反应系统中,采用激光诱导超极化129Xe技术,首次在模拟催化反应条件下直接观察到了甲醇分子在孔径为0.8nm的CHA分子筛孔道扩散和脱水过程,并精确获得了分子扩散和反应的动力学参数。相关方法和实验结果以研究论文形式(Article)发表在最近一期的《美国化学会志》(J.Am.Chem.Soc.,131(2009)13722-13727),被认为是“一种对纳米孔催化反应研究具有重要意义”的发明。 纳米限域效应在光学、电子器件以及催化反应等领域具有很大的应用前景,分子在纳米限域空间中的吸附和反应动力学一直受到理论和实验研究者的广泛关注。理论研究已经预示,限域在纳米空间中物质将会显示出与自由状态下明显不同的物理化学特性,但是,由于在真实条件下分子的扩散速度很快,而且纳米孔道中分子浓度极低,实验研究需要发展原位-动态和高灵敏的检测手段。该研究组张维萍、包信和研究员和博士研究生徐舒涛等对商用核磁共振“魔角旋转”(Magic Angle)的探头进行改进,自行研制了一套与固体核磁共振仪器相耦合、适合于分子扩散和催化研究的高

温原位-动态研究系统,并将国际上已广泛采用的激光诱导超极化129Xe技术引入动态反应过程的研究,使NMR的检测灵敏度提高了1万多倍,从而使固体核磁采谱时间缩短到10秒以内。将该技术成功用于研究甲醇在CHA纳米分子筛笼内的吸附、扩散和脱水反应过程,首次获得了接近真实反应条件下纳米孔道中活性位在反应过程中的动力学参数,大大加深了对甲醇在分子筛孔道中酸助脱水和转化过程机理的理解和认识。 近年来,该研究组系统地将高灵敏核磁共振技术用于催化反应过程和材料合成过程的原位-动态研究,不断取得重要进展。相关信息: 纳米收音机 纳米科学技术 "纳米"饭,香不? 纳米污染:看不见的子弹

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

纳米材料国内外研究进展

纳米材料国内外研究进展 一、前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)[1]。自20世纪80年代初, 德国科学家 Gleiter[2]提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)[3]。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。 二、国内外研究现状 1984年德国科学家Gleiter首先制成了金属纳米材料, 同年在柏林召开了第二届国际纳米粒子和等离子簇会议, 使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议, 标志着纳米科技的正式诞生;l994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。2004年度纳米科技研发预算近8.5亿美元,2005年预算已达到10亿美元,而且在美国该年度预算的优先选择领域中,纳米名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一[4]。 自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料, 至今已有 30多年的历史, 但真正成为材料科学和凝聚态物理研究的前沿热点是在 80年代中期以后。因此 ,从其研究的内涵和特点来看大致可划分为三个阶段[5]。 第一阶段(1990年以前)主要是在实验室探索,用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。 第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复

酶工程的发展

酶工程的发展 酶工程,从定义上来说,是酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶的反应器等方面内容。 酶工程的前景 酶因其反应的专一性,高效性和温和性的特点,已和生物工程,信息科学和材料科学构成了当今的三大前沿科学。而作为生物工程的重要组成部分,将在未来的发展中,在世界科技和经济发展中起着主导和支柱作用。而工业用酶日益广泛地应用于化学,医药,纺织,农业,日化,食品,能源,化妆品以及环保等行业。据报道,到2003年,欧洲工业用酶的市场增加至9亿美元,年增长率达百分之十;而2000年的中国,酶制剂总产量达272吨,同比增长8.8%,可谓发展迅速,前景十分广阔。 酶工程的发展 酶工程的发展,是一部科学的成长史。在二次世界大战后,酶工程发展成为新的工业领域—酶工程工业。酶工程的发展历史从那时算起, 至今已经三十多个年头了。六十年代以后, 由于固定化酶、固定化细胞及固定化活细胞的崛起, 使酶制剂的应用技术面貌一新。七十年代以后,伴随着第二代酶——固定化酶及其相关技术的产生,酶工程才算真正登上了历史舞台。固定化酶正日益成为工业生产的主力军,在化工医药、轻工食品、环境保护等领域发挥着巨大的作用。几十年来酶制剂的品种和应用不断扩大。不仅如此,还产生了威力更大的第三代酶,它是包括辅助因子再生系统在内的固定化多酶系统,它正在成为酶工程应用的主角。近年来, 国际上酶工程技术发展迅速, 硕果累累,主要有基因工程、蛋白质工程、

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

生物工程的最新研究进展和研究热点

生物工程的最新研究进展和研究热点

生物工程的最新研究进展和研究热点 邓佳艺术与设计学院 15125478 【摘要】农业生物工程研究和产业的现状及其我国发展的策略北京大学副校长陈章良教授从80年代初美国科学家获得第一株转基因植物到现在,短短几十年时间内,农业生物工程迅猛发展,日新月异,成为高新技术领域中进展最快的领域之一。 【关键词】农业生物工程;植物基因工程;转基因农作物;转基因工程;病毒基因组;应用; 【前言】根据“生物多样性公约”规定,生物技术是指“利用生物系统、活生体或者其衍生物为特定用途而生产或改变产品或过程的任何 技术应用”。从广义上讲,生物技术涵盖了当前在农业和粮食生产中普遍采用的多种技术手段;而从狭义上讲,生物技术主要包括涉及繁殖生物学,或以特殊用途为目的处理或利用活生物体遗传物质的技术应用。则该定义涵盖了很大范围的不同技术,如我们学习的分子DNA标记技

术、基因操作、基因转移、无性繁殖、胚胎移植、冻藏(家畜)及三倍体化等。生物技术在农业生产力方面的应用比较难,比医学方面要慢,但农业生物技术现在已经从农业试验室发展到现 场试验了,那么进而达到商业化的阶段;其中包括动物疫苗、微生物农药、抗杀草剂植物等,现在一些专家预测此类产品将引导全中国,甚至全世界,走向另一次农业革命。农业生物技术包括防治动物疾病的疫苗,以及增进农畜产品的品质。另外,包含具有新特性的各类农业生物技术的发展。农业生物技术对传统农业有巨大的影响,农业生物技术的产品已逐渐由农业生物技术试验室进人了农业基地试验。 【正文】生物工程又称生物技术或生物工艺学。它是在生命科学的最新成就与现代工程技术相结合的基础上,利用诸如基因重组、细胞融合、固定化酶、固定化细胞和生物反应器等技术,对生物系统加以调控、加工,从而进行物质生产的综合性科学技术。由于它的相对投资少而效益巨大、适用面广,在、食品、医药、能源、环境保护等方面的应用日趋广泛。科学家们预测,生物

纳米材料研究进展

2011年第4期甘肃石油和化工2011年12月 纳米材料研究进展 李彦菊1,高飞2 (1.河北科技大学化学与制药工程学院,河北石家庄050018; 2.中核第四研究设计工程有限公司,河北石家庄050000) 摘要:纳米材料具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。综述了纳米材料 的分类、特性以及应用领域。 关键词:纳米材料;功能材料;复合材料 1前言 纳米(nm)是一个极小的长度单位,1nm=10-9m。当物质到纳米尺度以后,大约是在1~100nm 这个范围空间,物质的性能就会发生突变,呈现出特殊性能。这种既具有不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。纳米技术正是利用纳米粒子这些特性实现其在各行各业中的特殊应用[1,2]。纳米技术和纳米材料的科学价值和应用前景已逐步被人们所认识,纳米科学与技术被认为是21世纪的三大科技之一。目前世界各国都对纳米材料和纳米科技高度重视,纷纷在基础研究和应用研究领域对其进行前瞻性的部署,旨在占领战略制高点,提升未来10~20年在国际上的竞争地位。我国政府对纳米科技十分重视,先进的纳米产业正在蓬勃发展[3,4]。 2纳米材料的分类 以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1~100nm[5]。在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。广义而言,纳米材料是指在3维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数[6],纳米材料的基本单元可以分为3类:①0维,指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;②1维,指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等; ③2维,指在3维空间中有1维在纳米尺度,如超薄膜、多层膜、超晶格等。按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料[7,8]。按材料物性可分为:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。按应用可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。纳米材料大部分都是人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米固体。例如天体的陨石碎片,人体和兽类的牙齿都是由纳米微粒构成的[9,10]。 3纳米材料的特性[11,12] 3.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面体 收稿日期:2011-07-05 作者简介:李彦菊(1981-),女,河北廊坊人,硕士,已发表论文10余篇,其中SCI2篇。主要从事纳米材料的研究工作。8

酶与酶工程--碳酸酐酶及其研究进展 2

碳酸酐酶及其研究进展 碳酸酐酶( carbonic anhydrase, CA)是一种锌酶。在哺乳动物中, 几乎所有的组织都可检测到CA。CA至少有14种同工酶[1] , 其结构、动力学性质、对抑制剂的敏感性、组织内的分布以及亚细胞的定位都有不同,它能参与机体气体运输、酸碱调节和组织的分泌等功能, 在维持内环境的稳定方面发挥着重要作用。 1933年,人们已从血液中提取出了碳酸酐酶,直到1940年才在动物红细胞研究中确定碳酸酐酶含有锌。它是红细胞中仅次于血红蛋白的蛋白质组分。人和动物血液中的碳酸酐酶相对分子量约30KDa,由单一肽链组成,每个分子含一个Zn(II)离子,酶蛋白约含260个氨基酸残基,其中脯氨酸含量最高,没有二硫键。碳酸酐酶有多种同工酶,它们不仅选择性识别HCO2-和CO2作为催化底物和产物,也不规律地识别磷酸酯|羧酸酯|醛类等分子[2]。. 1、CA的分布 根据碳酸酐酶氨基酸序列的不同, 人们主要将其分为α、β、γ、δ、ε五种不同类型的酶。其中α-CAs存在于脊椎动物、细菌、藻类及绿色植物的胞浆中;β-CAs 存在于高等植物及藻类叶绿体中, 对植物光合作用过程中CO2 的获取及CO2 浓度的维持有着必不可少的作用; γ-CAs则主要存在于太古细菌及一些细菌中;δ-CAs主要存在于海洋硅藻中;ε-CAs是近年来才确定的类型, 主要存在于蓝细菌及一些化能自养型细菌中。多年来人们对碳酸酐酶的研究主要集中在与人类关系密切的α-CAs和β-CAs上。α-CAs 在氨基酸序列上存在20~60% 的同源性, 哺乳动物的几乎所有组织中都含有参与机体多种生命活动的α-CAs。目前的研究表明,α-CAs 至少存在14 种不同的同工酶:CAI III,CA VII 及CA XIII为胞浆酶;CA IV,CA IX,CA XII和CA XIV为膜连接酶;CA V为线粒体酶;CA VI则存在于唾液中;另外还有3 种已知的非催化形式的碳酸酐酶相关蛋白( CA Related Protein,CARP)—CARP VIII,CARPX及CARPXI [3]。 在人体中,CA I, CAII和CAIII为细胞质酶。CAI存在于红细胞、胃黏膜上皮细胞中, 慢收缩骨骼肌细胞中存在CAIII。CAII存在于胃肠道、肾、附睾、快收缩骨骼肌细胞、破骨细胞、脑脉络丛及眼部细胞内。CAIV, CAIX , CAX ,CAXII 锚合于细胞膜, 但酶发挥作用的部位是细胞外。CAIV存在于胃肠道、肾、附睾、输精管、骨骼肌、皮下平滑肌、脑毛细血管上皮细胞、心肌及眼部毛细血管、肝、泪腺等处。在人类组织中CAXII表达于肾[4]、结肠、前列腺、胰腺、卵巢、睾丸、肺、脑中。此外,在哺乳动物肝的线粒体中存在高活性的CA V [5],1987 年从唾液中纯化分泌型酶CA VI,在唾液腺和小脑浦肯野氏细胞可见CA VII。近年来发现肿瘤组织内存在CA 的同工酶[6],不同的肿瘤组织有不同的CA同工酶表达,如CAIX和CAXII在胃癌中表达, 乳腺癌中,CAIX表达与其预后有关[7]。CAII是人类研究最为广泛,也最为深刻的CA同工酶。 2、CA的结构 在CA活性中心存在一个Zn原子, 对于CA的催化活性来说是必需的。在CA I 和, CAII中Zn原子以单体形式存在, 在CAIII中以二硫键相连的二聚体形式存在。 以碳酸酐酶II为例,其含有260 个氨基酸残基、分子量为29246Da,活性中

碳纳米管的研究进展

碳纳米管的研究进展* 王全杰1,2** 王延青1*** (1. 陕西科技大学资源与环境学院,陕西 西安 710021;2. 烟台大学化学生物理工学院, 山东 烟台 264005) 摘要:碳纳米管是由石墨层片卷成的管状结构的一种新型纳米材料,拥有独特的物理化学、电学、热学和机械性能以及十分诱人的应用前景。文章对碳纳米管的制备方法、性质、纯化及应用前景进行了简要的综述。 关键词:碳纳米管;合成;性能;纯化;应用 中图分类号G 311 文献标识码 A Progress of Research for Carbon Nanotubes Wang Quanjie 1,2,Wang Yanqing 1 (1.College of Resource and Environment,Shaanxi University of Science and Technology,Xi’an 710021,China;2. Chemistry and Biology College,Yantai University,Yantai 264005,China)Abstract: Carbon nanotubes are a new class of nano-material with tubular structure formed via rolling-up of coaxial sheets of graphite. They have unique physicochemical, electrical, thermal and mechanical properties, opening up various intriguing possibilities for applications. The preparation methods, properties, methods of purification and application of carbon nanotubes are briefly reviewed. Key words: carbon nanotubes;synthesis;property;purification;application 自1991年日本科学家Lijima发现碳纳米管(Carbon Nanotubes,简称CNTs),1992年Ebbesn等人提出了实验室规模合成碳纳米管的方法后,其独特的结构和物理化学性质受到人们越来越多的关注[1]。碳纳米管因具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等特点,从而使其具有特殊的机械、物化性能,在工程材料、催化、吸附、分离、储能器件电极材料等诸多领域中具有重要的应用前景。 *基金来源:山东省科技攻关项目(2008GG10003020) **第一作者简介:王全杰,男,1950年生,教授 ***通讯联系人

金属纳米材料研究进展

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:………….

金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词: 纳米材料水热合成金属氧化物

Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ;

引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 1.1 纳米材料概述 纳米是长度的度量单位,1纳米=10-9米,1纳米大约为10个氢原子并排起来的长度,仅仅相当于一根头发丝直径的0.1%。纳米材料则是在纳米量级(lnm-100nm)内调控物质结构所制成的具有特殊功能的新材料,其三维尺寸中至少有一维小于100nm,且性质不同于一般的块体材料。 纳米材料是指在三维尺度上至少存在一维处于纳米量级或者由它们作为基本单元所构成的材料,一般将纳米材料分为零维、一维以及二维纳米材料: (1)零维纳米材料,是指在空间三维尺度上都处于纳米量级的纳米材料,如纳米球,纳米颗粒等; (2)一维纳米材料,是指在空间三维尺度上只有两维处于纳米量级,而第三维处于宏观量级的纳米材料,比如纳米棒、纳米管、纳米线/丝等; (3)二维纳米材料,是指在空间三维尺度上只有一维处于纳米量级,而其他两维处于宏观量级的纳米材料,比如纳米片,纳米薄膜等。 1.2纳米粒子基本效应的研究 纳米粒子是尺寸为1-100nm的超细粒子。纳米粒子的表面原子与总原子数之比随着粒径的减小而急剧增大,显示出强烈的体积效应(即小尺寸效应)、量子尺寸效应、表面效应和宏观量子隧道效应。 1.2.1 量子尺寸效应[1] 当粒子尺寸达到纳米量级时,金属费米能级附近的电子能级由准连续变为分立能级的现象称为量子尺寸效应。能带理论表明:金属纳米粒子所包含的原子数有限,能级间距发生分裂。当此能级间隔大于热能、磁能、静电能、静磁能、光子能量或超导态的凝聚能时,纳米粒子的磁、光、声、热、电及超导电性与宏观物体有显著的不同。 1.2.2 体积效应[2] 由于粒子尺寸变小所引起的宏观物理性质的变化称为体积效应。当纳米粒子的尺寸与德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米粒子的表面层附近原子密度减小,导致声、光、电、磁、热力学等特性呈现新的体积效应。例如:磁有序态向磁无序态、超导相向正常相的转变;光吸收显著增加;声子谱发生改变;强磁性纳米粒子(Fe-Co合金,氧化铁等)尺寸为单磁畴临界尺寸时具有很高的矫顽力;纳米粒子的熔点远远低于块状金属;等离子体共振频率随颗粒尺寸改变[3]。 1.2.3 表面效应[4] 表面效应是指纳米粒子的表面原子数与总原子数之比随着粒径减小而急剧增大后引起的性质上改变。随着粒径减小,表面原子数迅速增加,粒子的表面张力和表面能增加。原子配位不足以及高的表面能使原子表面有很高的化学活性,极不稳定,很容易与其他原子结合,这就是活性的原因。表面原子的活性引起了纳米粒子表面输运和构型的变化,也引起了表面原子自旋构象和电子能谱的变化。

纳米凝胶的研究进展

纳米凝胶的研究进展 摘要:纳米凝胶是由亲水性或两亲性高分子链组成的三维网状结构,它能显着的溶胀于水但是不溶解于水,由于水和凝胶网络的亲和性,水可能以键合水、束缚水和自由水等形式存在于高分子网络中而失去流动性,因此纳米凝胶能够保持一定的形状。它们可以作为一种药物载体,而且也可以通过盐键,氢键或者疏水作用自发的结合一些生物活性分子。高分子电解质的纳米凝胶可以稳定地结合带相反电荷的小分子药物和生物大分子,比如寡或多聚核苷酸(siDNA,DNA)和蛋白质。目前的研究表明纳米凝胶在生物医药方面有很广阔的应用前景。 关键词:纳米凝胶药物载体 前言 纳米凝胶通常指的是由物理或者化学交联的聚合物网络组成的水凝胶颗粒, 它是一种纳米尺度的水分散体。按形成的化学键,凝胶分为两种:一种是化学凝胶(聚合物凝胶),这种凝胶是由交联的共价键而形成的三维网络结构,比如PEG-cl-PEI。另一种是物理凝胶,是由非共价键形成的三维网络结构,比如甘露糖类,右旋糖酐等。按溶剂分,则一般分为有机凝胶和水凝胶。 纳米凝胶可以很好的作为药物运输载体是因为它们有很高的负载能力,高的稳定性,更重要的是相对于普通的药物纳米载体,它们对环境敏感,比如离子强度,pH和温度。至从2002年第一篇关于纳米凝胶的合成与应用的综述发表后,这类新颖的纳米结构材料在药物,大分子和显影剂运输方面受到人们越来越大的关注。这篇综述简单介绍了纳米凝胶的合成与应用,尤其是药剂学方面的应用。 没有负载的纳米凝胶含有大量的水而处于一种溶胀的状态。纳米凝胶可以通过生物活性因子与其多聚链基质之间的静电作用,范德华力或者疏水作用自发的负载这些因子。因此,纳米凝胶塌陷而形成稳定的纳米粒子,生物活性因子负载其中。可以在其结构中加入分散的亲水性聚合物比如聚乙二醇来阻止纳米凝胶的聚集。在负载药物的纳米凝胶络合物塌陷的过程中,这类聚合物可以暴露在其表面并形成一个亲水的保护层从而阻止了相分离。纳米凝胶表面的官能团可以进一步的用各种不同的靶向基团修饰以达到靶向输送特定部位的目的。研究表明纳米凝胶可以将其负载送到细胞里面并穿过生物膜。这种纳米凝胶有很好的稳定性并且可以保护生物活性因子不被细胞内代谢系统降解。纳米凝胶在全身性药物输送及提高口服和脑部位的生物利用度方面表现出很大的潜能。 1 纳米凝胶的制备 目前报道的制备纳米凝胶的方法有以下几种:(1)聚合物之间的物理自组装;(2)均相或微小非均相环境下的单体聚合;(3)形成了的聚合物交联;(4)模板辅助。下面详细介绍这几种方法。 许多研究团队用聚合物之间的物理自组装制备了各种不同的纳米凝胶。这种方法通常包括控制亲水性聚合物之间通过疏水作用或者静电作用或者氢键导致的聚集。这种制备纳米凝胶的方法在温和条件和水介质中进行。亲水性聚合物相互作用将生物大分子包裹其中,并且对于制备负载蛋白质的纳米凝胶非常有用。比如Akiyoshi 等人通过胆固醇修饰的淀粉之间的疏水作用制备了负载胰岛素的纳米凝胶(如图1a)【1】。这种纳米凝胶在一个窄的胆固醇∕糖比例(1:40-1:100)

相关文档
最新文档