热量的计算 例题解析

热量的计算 例题解析
热量的计算 例题解析

热量的计算例题解析

例1 甲、乙两物体的质量相等,甲物体温度升高10℃时吸收的热量恰好等于乙物体温度升高20℃时吸收的热量,则甲、乙两物体的比热之比为

[ ] A.1∶2

B.2∶1

C.1∶4

D.4∶1

策略利用甲物体和乙物体吸收热量相等的关系和吸热公式建立等式.求出两物体的比热之比.或者利用已知条件和比热公式求比值.

分析1 根据公式Q甲=c甲mΔt甲Q乙=c乙mΔt乙

由于Q甲=Q乙Δt甲=10℃Δt乙=20℃,则有:

c甲m×10℃=c乙m×20℃则:c甲∶c乙=2∶1.

分析2 根据比热的定义式:c=Q/mΔt得:

c甲=Q甲/m甲Δt甲c乙=Q乙/m乙Δt乙

由于有:Δt甲=10℃Δt乙=20℃Q甲=Q乙m甲=m乙

则有:c甲∶c乙=(Q甲/m甲Δt甲)∶(Q2/m2Δt乙)

=Δt乙∶Δt甲=2∶1

解答B.

总结1.易错分析:本题出错主要有两个原因:一是物体的吸放热公式使用错误,或在公式变形时,将比热的表示式写错,导致解题错误.二是比例方法使用错误.不会利用比例方法求两物体比热之比或约不去能约掉的物理量,或者在计算时出错.

2.同类变式:甲物体的质量是乙物体质量的4倍,当甲的温度从20℃升高到70℃,乙的温度从40℃升高到60℃时,甲、乙两物体吸收的热量之比为5∶1,则甲的比热与乙的比热之比是________.

答案:1∶2 3.思维延伸:有甲、乙两个金属球,它们的比热之比3∶2,吸收的热量之比4∶1,那么甲、乙两金属球的质量之比和升高的温度之比分别是

[ ] A.2∶1,4∶1

B.3∶2,4∶1

C.4∶5,3∶10

D.4∶5,10∶3

答案:D

例 2 铁的比热大于铜的比热,质量相等的铁块和铜块吸收了相等的热量,那么

[ ]

A .铁块的温度升高得多

B .铁块和铜块升高相同的温度

C .铜块的温度升高得多

D .由于初温未知,所以不能判断

策略 根据比热的物理意义,比热不同、质量相同的不同物质吸收相同的热量,比较升高的温度,找出正确答案.或者利用公式变形为Δt

=,分析Δ与的关系而找出正确答案.Q cm

t c 分析 1 根据比热的概念,两个物体的比热不同,表示质量相同的两个物体,它们升高(或降低)相同的温度,吸收(或放出)的热量不同,比热大的吸收(或放出)的热量多,据此判断选项C 正确.

分析2 根据公式Q =cm Δt 得:Δt =Q/cm ,由于铁块和铜块的质量相同,吸收相等的热量,则比热大者,其升高的温度少,比热小者,升高的温度多.

解答 C .

总结 1.易错分析:错选A 是不理解比热所表示的物理意义,错认为,质量相等的不同物质,吸收相同的热量,比热大者温度升高得多,不知道所谓比热大是指吸收相同的热量,温度增加得少,升高相同的温度,吸收热量多.错选B 是不理解比热的概念,不知道物体吸收或放出热的多少与物体的比热有关.错选D 是不知道物体的初温与温度变化量的关系.不知道物体吸收或放出热的多少在比热一定的情况下,与温度的变化量有关,而与物体的初温或末温无关,这是对物体的吸放热公式理解错误.

2.同类变式:将质量相同的铜块和铁块,放入沸水中加热足够长时间,取出让它们放出相同的热量后相互接触,则

[ ]

A .热量从铁块传到铜块

B .铜块和铁块之间不发生热传递

C .热量从铜块传到铁块

D .条件不足,无法判断

答案:A

3.思维延伸:把质量相等的两铁块从沸水中取出,并立即分别放入质量相等、初温相同的酒精和水中,则

[ ]

A .酒精和水温度升高相同

B .酒精的温度升得高

C .水的温度升得高

D .无法判断

答案:B

例3 质量是500克的铝壶里装有5千克的水,把这壶水从15℃加

热到100℃,铝壶吸收的热量占铝壶和水总共吸收热量的百分之几?(铝

的比热c1=8.88×102焦/(千克·℃)

策略根据已知条件,利用吸热公式先分别求出水和壶吸收的热量,再求壶吸收的热量占吸收总热量的百分比.在计算之前一定要统一单位.

解答由题目可知,铝的比热c1=8.88×102焦/(千克·℃),铝壶的质量m1=500克=0.5千克,水的比热为c2=4.2×103焦/(千克·℃),水的质量为m2=5千克,铝壶和水的初温为t0=15℃,末温为t=100℃,根据公式Q吸=cm(t-t0)得铝壶吸热为:

Q1=c1m1(t-t0)

=8.88×102焦/(千克·℃)×0.5千克×(100-15)℃

=3.77×104焦

水吸收的热量为:Q2=c2m2(t-t0)

Q2=4.2×103焦/(千克·℃)×5千克×(100-15)℃

=1.79×106焦

铝壶吸热占铝壶和水总共吸热的百分比为:

Q1/(Q2+Q2)×100%=3.77×104焦/(3.77×104+1.79×106)焦×100%=2.1%

答:铅壶吸收的热量占铝壶和水总共吸收热量的2.1%.

总结1.易错分析:物理量的单位错误.在计算铝壶吸收的热量时,将铝壶的质量m2=500克直接代入公式.不知道在公式Q吸=cm(t-t0)

中质量的单位应该用千克,结果造成计算错误.百分比求错,将铝壶吸收热量与总热量的百分比看成铝壶吸收热量与水吸收热量的百分比,将水吸收的热量看成铝壶和水吸收的总热量,这是在审题时没有看清题目要求,审题不认真所致.

2.同类变式:质量是0.5千克的铝壶中装有10℃的水3千克,要把壶中的水烧到100℃需要多少焦的热量?c水=4.2×103焦/(千克·℃),c铝=0.88×103焦/(千克·℃)

答案:1.1738×106焦

3.思维延伸:质量为1千克的水温度升高50℃需要吸收多少热量?这些热量可使多少千克干泥土的温度也升高50℃?干泥土的比热容为0.84×103焦/(千克·℃)

答案:2.10×105焦,5千克

例4 将200克、80℃的热水和20℃的水相混合,混合后水的温度为40℃,不计热量损失,求:

(1)混合过程中热水放出的热量是多少?

(2)混合时加入的冷水是多少克?

策略根据已知条件,运用吸热公式和放热公式以及热平衡方程建立等式进行求解.在求解之前要统一单位,求解之后按要求换算单位.

解答(1)设热水温度为t1℃,冷水温度为t2℃,混合后的温度为t℃,热水的质量为m1克,冷水的质量为m2克,依题意有:

Q放=cm1(t1-t)

=4.2×103焦/(千克·℃)×0.2千克×(80-40)℃

=3.36×104焦.

(2)根据Q吸=cm2(t-t2),Q吸=Q放,则有:cm2(t-t2)=3.36×104焦

m

2=

×焦×焦

×焦千克·℃×℃℃3361033610

423104020

4

2

4

3

.

()

.

.()()

c t t-

=

-

=0.4千克=400克

答:(1)混合过程中热水放出的热量是3.36×104焦;(2)混合时加入

的冷水是400克.

总结1.易错分析:不会使用物体吸放热的公式.由于在物体吸放热的公式中涉及的物理量比较多,涉及的物理单位比较多,所以在使用公式时,容易出现物理量代入错误和物理量的单位错误.在使用热平衡方程时,出现公式变形错误.热平衡方程共涉及八个物理量,因此在公式变形时,容易出现公式推导错误,使得最后计算结果错误.2.同类变式:取0.1千克的煤油,测得它的温度是20℃,把80克的铁块加热到100℃后投入到煤油里,求混合后的温度是多少?铁的比

热容是0.46×103焦/(千克·℃),煤油的比热容是2.0×103焦/(千克·℃),

热递过程中无热量损失

答案:32.4℃

3.思维延伸:为要测出火炉的温度,将一钢块放入火炉中加热一段时间后取出,立即投入到10℃的水中,结果水的温度升高到50℃;再将钢块取出,第二次加热到130℃,投入到与前次等量的水中,结果水的温度从20℃升高到25℃.求火炉的温度为多少.

答案:890℃

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:(-1) 式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的 值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μs 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 书P55页表4.2给出了各类地区风压沿高度变化系数。位于山峰和山坡地的高层建筑,其风压高系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μz 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。一般取决于建筑建筑物的平面形状等。 计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型或由风洞试验确定。几种常用结构形式的风载体型系数如下图

住宅采暖热负荷计算

住宅采暖热负荷计算 下面以建筑面积为100平方米的住宅为例分析某地区的一般采暖热负荷计算方法: 1. 某市的气象资料(以北京为例): 纬度:北纬40°49′ 冬季采暖室外日平均温度≤8℃的天数:140天 冬季日平均温度≤8℃期间的平均温度:-6.2℃ 冬季室外平均风速:1.6m/s 2.根据人体的舒适性条件选择室内设计温度:18℃ 3.根据围护结构特点选择和计算的传热系数K: 外墙:K1=1/(Rn+Rλ+Rw) 其中查表知 Rn=0.115m2K/w Rw=0.04 m2K/w Rλ=0.76 m2K/w (按空心砖墙450毫米,外抹水泥砂浆,内粉刷白灰) K1=1/(0.115+0.04+0.76)=1.09 w/ m2K 当室内外温差为24.2℃时为防止结露,外墙的最大传热系数为1.47w/ m2K, 因此,取K1=1.09 w/ m2K

外窗(双层钢窗):传热系数K2=3.3w/ m2K 外门(单框木门):传热系数K3=4.65 w/m2K 4.计算的基本传热量和附加耗热量 因建筑平面图不详,故取正方形模型计算各部分面积,房间层高取3米。 建筑面积为100平方米的房间各部分面积如下(外墙面积按总墙面积的50%计算): 外墙:F1=10*4*3*0.5*0.7=42 m2 外窗:F2=10*4*3*0.5*0.3=18 m2 外门:F3=2 m2 Q1=K1*F1*(tn-tw)=1.09*42*(18+6.2)=1108w Q2=K2*F2*(tn-tw)=3.3*18*(18+6.2)=1437w Q3=K3*F3*(tn-tw)=4.65*2*(18+6.2)=225w 5.计算加热渗入空气所需的热量(换气次数法) Q4=0.278*C*V*N*ρ*(tn-tw) C:冷空气比热容,取C=1kJ/kg.K V:建筑物体积,V=100*3=300m3 N:换气次数,取N=1次/小时 ρ;冷空气密度,1.35kg/ m3 Q5=0.278*1*100*3*1*1.35*(18+6.2)*1000/3600=757w

竖向荷载计算--分层法例题详解

例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的 线刚度值( EI i l )。 图1 解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。 图2 二层计算简图

图3 底层计算简图 2、计算修正后的梁、柱线刚度与弯矩传递系数 采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。底 层柱的弯矩传递系数为1 2 ,其余各层柱的弯矩传递系数为 1 3 。各层梁的弯 矩传递系数,均为1 2 。 图4 修正后的梁柱线刚度

图5 各梁柱弯矩传递系数 3、计算各节点处的力矩分配系数 计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如: G节点处: 7.63 0.668 7.63 3.79 G H G H GH GH GD Gj G i i i i i μ==== ++ ∑ GD 3.79 0.332 7.63 3.79 GD GD GH GD Gj G i i i i i μ==== ++ ∑ H节点处: 7.63 0.353 7.63 3.7910.21 HG HG HG HG HE HI Hj H i i i i i i μ==== ++++ ∑ 3.79 0.175 7.63 3.7910.21 HI HI HI HG HE HI Hj H i i i i i i μ==== ++++ ∑ 10.21 0.472 7.63 3.7910.21 HE HE HE HG HE HI Hj H i i i i i i μ==== ++++ ∑ 同理,可计算其余各节点的力矩分配系数,计算结果见图6、图7。

荷载计算题

1.图示简支梁,4000L mm =,受到楼面传来的均布恒荷载标准值7.5/k g kN m = (不含梁自重),均布活荷载标准值8/k q kN m =,梁截面尺寸为250400b h mm mm ?=?,混凝土容重为325/kN m γ=。活荷载的组合值系数为0.7c ψ=,准永久值系数为0.5q ψ=,频遇值系数0.6f ψ=,求该梁跨中处弯矩的基本组合、准永久组合和频遇组合。 ①基本组合: 梁自重线荷载:325/0.250.4 2.5/kN m m m kN m ??= 该梁承受均布荷载标准值 2.57.510/k g kN m =+= 当由可变荷载效应控制时 22 2211 1.2 1.4881 1 1.2104 1.484242 2.446.488G Gk Q Qk k k S S S g L q L kN m γγ=+=??+??=???+???=+=? 当由永久荷载效应控制时 22 2211 1.35 1.40.7881 1 1.35104 1.40.7842715.684 2.6888G Gk Q c Qk k k S S S g L q L kN m γγψ=+=??+???=???+????=+=? 该梁在基本组合下跨中弯矩为46.4kN m ? ②准永久组合 22 122118811 1040.5842082888n Gk qi Qik k q k i S S S g L q L kN m ψψ==+=?+??=??+???=+=?∑ ③频遇组合 22 1122211 881 1 1040.684209.629.688k n G f Q k qi Qik k f k i S S S S g L q L kN m ψψψ==++=?+??=??+???=+=?∑ 2.图示外伸梁,已知该梁受到均布恒荷载标准值10/k g kN m =(含梁自重),均布活荷载标准值

采暖热负荷的计算方法

采暖热负荷的计算方法((0 目前绝大多数企业为节省时间,采用的热负荷确定方法均为估算法,即用房间面积乘以每平方米的设计热负荷指标。通常为朝南房间为120W/m2,其它房间为120W/m2-150W/m2不等,全凭设计人员的经验和感觉。为了设计效果,尽可能往大值选取。最终导致一些散热器型号选取过大,大马拉小车的现象在目前供暖设计中屡见不鲜,导致用户的初投资增加,整个供暖系统的花费加大。 站在为客户省钱的角度,尽可能规范选取散热器型号,我们的热负荷选择只需在充分满足房间温度的要求下,上下有轻微浮动即可。 以本公司原本设计的锦苑天元坊15幢的某户家庭暖气系统为例。该设计说明中缺少一些关键的技术参数,如:建筑物所处楼层(是否有屋顶),整个建筑物的维护结构资料(外墙,外窗,地面的材质和传热系数),扬州市的气象参数等,导致估算出来的某些房间热负荷太大。以书房为例,书房面积8.2m2,选取的是雅克菲钢制板式散热器,规格型号22K-600-800,热量1399W,算下来单位设计热负荷高达170W/m2,以北方比较成熟的供暖工艺来说,从节能角度出发,某户用热的单位面积热量超过98W/m2就要罚款,由此可见我们的设备选型不太合理,需要改进。 仍以该住宅的书房为例,采用常规的热负荷计算方法,其中维护结构:层高3m,外墙:双面抹灰24空心砖墙,传热系数为1.47W/m2·K,外窗:金属框 经过计算,在保证房间温度18o C的情况下,最东北角的房间热负荷为957W。单位面积平均负荷为116 W/m2,其他房间由于朝向等因素,该值会相应降低。而本设计选择的散热器其单位设计热负荷高达170W/m2,选择稍大,如选择小一号的散热器22K-600-600,热量1061W即可满足要求。 但是这种计算相对复杂,每个房间的外墙,外窗都要计算,如果是底层或者是顶层还需计算地面和顶层的散热量。工作量很大,对于企业设计不太适用。

桥梁计算题2014.10.6

六、计算题 1、某公路桥梁由多跨简支梁组成,总体布置如图6-1所示,每孔标准跨径25m ,计算跨径24m ,桥梁总宽10m ,行车道宽8m ,每孔上部结构采用后张法预应力混凝土箱梁,每个桥墩上设四个支座,支座横桥向中心距为4m 。桥墩支承在岩基上,由混凝土独柱墩身和带悬臂 的盖梁组成,桥梁设计荷载等级为公路-I 级,混凝土的重力密度为25kN/m 2 。 问:(1)该桥按规模分为哪一类? (2)该桥的设计安全等级为几级? (3)在计算汽车设计车道荷载时,设计车道数取几? (4)桥梁的车道横向折减系数为多少? (5)在计算主梁的剪力和弯矩时,车道荷载标准值如何取用? 图6-1(图中尺寸单位:m ) 【解】(1)根据《桥规》第1.0.11条表1.0.11可知:该桥按规模分类属大桥; (2)根据《桥规》第1.0.9条表1.0.9可知:该桥的设计安全等级为二级; (3)根据《桥规》第4.3.1条表4.3.1-3可知:设计车道数取2; (4)根据《桥规》第4.3.1条表4.3.1-4可知:车道横向折减系数为1.0; (5)在计算主梁的剪力和弯矩时,车道荷载的均布荷载标准值均为kN/m 5.10=k q ;集中荷载标准值,当桥梁计算跨径小于或者等于5m 时,kN 180=k P ;当桥梁计算跨径等

于或大于50m 时,kN 360=k P ;当桥梁计算跨径在5m ~50m 之间时,k P 值采用直线内插求得。计算剪力时,集中荷载标准值k P 乘以1.2的系数。本题中,计算跨径024m l =。 所以:计算主梁弯矩时的集中荷载标准值:180180(245)/(505)256kN k P =+?--=; 计算主梁剪力时的集中荷载标准值:256 1.2=307.2kN k P =?。 2、某预应力钢筋混凝土箱形截面简支梁桥,计算跨径40m ,设计荷载等级为公路-I 级,桥梁采用上、下行双幅分离式横断面形式,单幅行车道宽16m ,两侧防撞栏杆各0.6m ,单幅桥全宽17.2m 。 问:(1)计算汽车设计车道荷载时,采用几个设计车道数? (2)桥梁的车道横向折减系数为多少? (3)在计算主梁的剪力和弯矩时,车道荷载标准值各为多少? 【解】(1)根据《桥规》第4.3.1条表4.3.1-3可知:设计车道数取4; (2)根据《桥规》第4.3.1条表4.3.1-4可知:车道横向折减系数为0.67; (3)在计算主梁的剪力和弯矩时,车道荷载的均布荷载标准值均取为kN/m 5.10=k q ;集中荷载标准值:当计算主梁弯矩时:180180(405)/(505)320kN k P =+?--=; 当计算主梁剪力时:320 1.2=384kN k P =?。 3、某预应力钢筋混凝土箱形截面简支梁桥,计算跨径40m 。若该主梁跨中横断面面积 2m 6.9=F 、主梁采用C50混凝土,混凝土的弹性模量MPa 1045.34?=c E ,跨中截面的截面 惯性矩4m 75.7=c I 、材料重力密度3 kN/m 0.26=γ,试计算汽车荷载冲击系数μ为多少? 【解】已知:m 40=l ,2 m 6.9=F ,MPa 1045.34?=c E ,3kN/m 0.26=γ,4m 75.7=c I 结构跨中处延米结构重力: 3 26109.6249600N/m G F γ==??= 结构跨中处的单位长度质量:22 /249600/9.8125443Ns /m c m G g === 简支梁桥基频: 3.18Hz f = == 冲击系数:189.00157.01826.3ln 1767.00157.0ln 1767.0=-=-=f μ。 4、图6-2所示为一座桥面板铰接的T 形截面简支梁桥,桥面铺装厚度为0.12m ,桥面板净跨径为 1.42m ,车辆两后轮轴距为 1.4m ,车辆后轮着地宽度和长度分别为:20.6m b =和 20.2m a =;车辆荷载的轴重kN 140=P ,冲击系数3.11=+μ,计算桥面板根部在车辆荷

荷载组合例题(1)

【例题1】某办公楼面板,计算跨度为3.18m ,沿板长每米永久荷载标准值为3.1kN/m ,可变荷载只有一种,标准值为1.35Kn/m ,该可变荷载组合系数为0.7,准永久值系数为0.4,结构安全等级为二级。 求:用于计算承载能力极限状态和正常使用极限状态所需的荷载组合。 解: 1、承载能力极限状态 可变荷载控制的组合 ()221 1.2 3.1 3.18/8 1.4 1.35 3.18/87.07M kN m =???+??= 永久荷载控制的组合 ()221 1.35 3.1 3.18/8 1.40.7 1.35 3.18/8 6.96M kN m =???+???= 取 6.96M kN m = 。 2、正常使用极限状态 按标准组合计算 223.1 3.18/8 1.35 3.18/8 5.63M kN m =?+?= 按准永久组合计算 223.1 3.18/80.4 1.35 3.18/8 4.60M kN m =?+??= 【例题2】某矩形截面外伸梁如图,截面尺寸为250mm ×500mm ,承受永久荷载标准值20kN/m ,可变荷载标准值10kN/m ,组合系数ψc =0.7。 求:跨中最大弯矩设计值。 解:对跨中弯矩计算,跨中梁段荷载为不利荷载,其设计值应乘以放大系数: 1.35×20+0.7×1.4×10=36.8kN/m (永久荷载控制) 1.2×20+1.4×10=38kN/m (可变荷载控制) 外伸梁段的荷载为有利荷载,所以永久荷载分项系数为1.0,可变荷载分项系数为0,其设计值为:1×20+0×10=20kN/m 。 所以跨中最大弯矩设计值为: 38×62/8-0.5×20×22/2=151kN-m 。 对外伸段梁,跨中弯矩数值不影响支座处负弯矩,但是影响弯矩包络图范围,从而影响负筋配置,当然外伸段梁荷载为不利荷载。

热负荷计算

热负荷计算 锅炉的热负荷单位有许多种,常用的有以下四种:大卡(Kcal)、吨蒸发量(t)、瓦(w)、千瓦(kw)。 1、大卡(Kcal):大卡也称为千卡,1千卡的热量等于将1公斤的水温度升高1℃所需要的热量。 2、瓦(W):瓦是瓦特的简称,是国际单位制的功率单位。瓦特的定义是1焦耳/秒(1J/s),即每秒钟转换,使用或耗散的(以焦耳为量度的)能量的速率。通常我们用千瓦来作单位。1瓦=1焦耳(1W=1J/S) 3、吨:在锅炉热负荷中称的吨,是工程上所用的吨,又指1吨的蒸发量。工程上是指在1小时内产生1吨蒸汽所需要的热量浙江力聚生产的锅炉都是以大卡为单位来计算的。 1万大卡/小时≈11.63千瓦 1千瓦=0.086万大卡/小时 1吨蒸发量≈60万大卡/小时 1万大卡/小时≈0.0166吨蒸发量 1吨蒸发量≈700千瓦 1千瓦≈0.0014吨蒸发量 1吨蒸发量≈0.7MW1MW≈1000千瓦。 1.主要热量单位及其换算 [定义] 千卡(Kcal)(也称“大卡”):1千卡相当于将1Kg水温度升高1℃所需要的热量。 瓦(W):1千瓦相当于机械1秒内所做的功,1瓦=1焦耳(1W=1J/S) 1吨的概念(也称1吨蒸发量):工程上系指1小时内产生1吨蒸汽所需要的热量 [换算关系] 1万大卡/小时≈11.63千瓦?1千瓦=0.086万大卡/小时 1吨蒸发量≈60万大卡/小时?1万大卡/小时≈0.0166吨蒸发量 1吨蒸发量≈700千瓦?1千瓦≈0.0014吨蒸发量 1吨蒸发量≈0.7MW1MW≈1000千瓦 2. 取暖热负荷的确定 [公式] Q取暖=q(单位面积热负荷指标)×S供暖面积 [注解] 对北京地区居民取暖q一般取60大卡/平方?小时,对新建经济房甚至可以取到45大卡/平方?小时;对办公大楼、商场、宾馆等可以取65~70大卡/平方?小时。 [例题] 某住宅区供暖面积8万平方米,其热负荷为Q热水=60×8万=480万大卡

毕业设计 单房间热负荷计算

第2章 负荷计算 2.1负荷计算 2.1.1冷负荷计算 考虑本少年宫主要为青少年学习娱乐场所,所以空调运行时间基本为青少年的作息时间,所以本设计取时间段为8:00—18:00。 ①围护结构瞬变传热形成冷负荷的计算方法 ()n l t t K F CL -?=' (2-1) ()βαK K t t t d l l ??+=' (2-2) 式中:CL ——外墙和屋面瞬变传热引起的逐时冷负荷,kcal/h ; F ——外墙和屋面的面积,㎡; K ——外墙和屋面的传热系数,kcal/㎡.h; t l ’——修正后的温度,℃; tl ——外墙和屋面的冷负荷计算温度的逐时值,℃; td ——地点修正值,℃; αK ——外表面放热系数修正值; βK ——吸收系数修正值。 ②外玻璃窗瞬变传热引起冷负荷的计算方法 ()n l t t K F CL -?=' (2-3) d l l t t t +=' (2-4) 式中:CL ——外玻璃窗瞬变传热引起的逐时冷负荷,kcal/h ; F ——窗口面积,㎡; K ——外玻璃窗的传热系数,kcal/㎡.h; t l ’——修正后的温度,℃; tl ——外玻璃窗的冷负荷计算温度的逐时值,℃; td ——地点修正值,℃; ③透过玻璃窗的日射得热引起冷负荷的计算方法 CL J Z C D C F CL ???=max , (2-5) 式中:CL ——透过玻璃窗进入室内的日射得热引起的逐时冷负荷,kcal/h ; F ——窗玻璃的净面积,㎡; Z C ——窗玻璃的综合遮挡系数;

CL C ——窗玻璃的冷负荷系数。 ④人体散热引起的冷负荷计算方法 A.人体显热散热引起的冷负荷计算方法 CL S C n Q CL 1= (2-6) 式中:CL ——人体显热散热引起的冷负荷,kcal/h ; S Q ——来自室内全部人体的显热得热,kcal/h ; 1n ——群集系数; CL C ——人体散热冷负荷系数。 B .人体潜热散热引起的冷负荷计算方法 1n Q CL S = (2-7) 式中:CL ——人体潜热散热引起的冷负荷,kcal/h ; S Q ——来自室内全部人体的潜热得热,kcal/h ; 1n ——群集系数; ⑤照明引起的冷负荷计算方法 CL NC n n CL 21860= (2-8) 式中:CL ——照明引起的冷负荷,kcal/h ; N ——照明灯具所需功率,Kw ; 1n ——镇流器消耗功率系数; 2n ——灯罩隔热系数; CL C ——照明散热冷负荷系数。 ⑥设备散热引起的冷负荷计算方法 N n n n Q E 321860= (2-9) 式中:E Q ——设备和用具的世纪显热散热量,kcal/h; 1n ——利用系数(安装系数)一般可取0.7-0.9; 2n ——电动机负荷比率;

风荷载作用-例题

[例题2-1] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m ,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为30m ?40m ,地下室筏板基础底面埋深为12m,如图2-4所示。已知100年一遇的基本风压为2 /45.0m kN =? 建筑场地位置大城市郊区。已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。为简化计算,将建筑物沿高度划分为6个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值、计算在风苛载作用下结构底部(一层)的剪力设计值和筏板基础底面的弯矩设计值。 [解] (1) 基本自振周期 根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期 为: s n T t 9.13805.005.0≈?== ( n 是层数) 222210/62.19.145.0m s kN T ?=?=? (2) 风荷载体型系数 对于矩形平面,由《高层规程》附录A 可求得 80.01=s μ 57.0)40 12003.048.0()03.048.0(2=?+-=+-=L H s μ (3) 风振系数 由条件可知地面粗糙度类别为B 类,由表2-6可查得脉动增大系数 502.1=ξ 脉动影响系数v 根据H /B 和建筑总高度H 由表2-7确定,其中B 为与风向相一致的房屋宽度,由H/B=4.0可从表2-7经插值求得v=0.497;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即 H H i z =?。i H 为第i 层标高;H 为建筑总高度。则由式(2-4)可求得风振系数为: H H H H i z i z v z z v z ??+=?+=+=μμξμα?ξβ497.0502.1111 (4) 风荷载计算 风荷载作用下,按式(2-2a)的可得沿房屋高度分布的风荷载标准值为: z z z z z q βμβμ66.2440)57.08.0(45.0)(=?+?= 按上述方法可求得各区段中点处的风荷载标准值及各区段的合力见表2-9,如图2-4所示。

梁计算实例

模板计算实例 1、工程概况 柱网尺寸6m×9m,柱截面尺寸600mm×600mm 纵向梁截面尺寸300mm×600mm,横向梁截面尺寸600mm×800mm,无次梁,板厚150 mm,层高12m,支架高宽比小于3。 (采用泵送混凝土。) 2、工程参数(技术参数)

3计算 3.1梁侧模板计算 图3.1 梁侧模板受力简图 3.1.1梁侧模板荷载标准值计算 新浇筑的混凝土作用于模板的侧压力标准值,依据建筑施工模板安全技术规范,按下列公式计算,取其中的较小值: V F C 210t 22.0ββγ= 4.1.1-1 H F c γ= 4.1.1-2 式中 : γc -- 混凝土的重力密度,取24kN/m 3; t 0 -- 新浇混凝土的初凝时间,按200/(T+15)计算,取初凝时间为5.7 小时。 T :混凝土的入模温度,经现场测试,为20℃; V -- 混凝土的浇筑速度,取11m/h ; H -- 混凝土侧压力计算位置处至新浇混凝土顶面总高度,取0.8m ; β1-- 外加剂影响修正系数,取1.2; β2-- 混凝土坍落度影响修正系数,取1.15。

V F C 210t 22.0ββγ==0.22×24×5.7×1.2×1.15×3.32=138.13 kN/m 2 H F c γ==24×0.8=19.2 kN/m 2 根据以上两个公式计算,新浇筑混凝土对模板的侧压力标准值取较小值19.2kN/m 2。 3.1.2梁侧面板强度验算 面板采用木胶合板,厚度为18mm ,验算跨中最不利抗弯强度和挠度。计算宽度取1000mm 。(次楞平行于梁方向) 面板的截面抵抗矩W= 1000×18×18/6=54000mm 3; (W= 650×18×18/6=35100mm 3 ;)(次楞垂直于梁方向) 截面惯性矩I= 1000×18×18×18/12=486000mm 4; (I= 650×18×18×18/12=315900mm 4;) 1、面板按三跨连续板计算,其计算跨度取支承面板的次楞间距,L=0.15m 。 2、荷载计算 新浇筑混凝土对模板的侧压力标准值G 4k =19.2kN/m 2, 振捣砼对侧模板产生的荷载标准值Q 2K =4kN/m 2。 (规范:2振捣混凝土时产生的荷载标准值(k Q 2)(↓→)对水平面模板可采用2 kN/m 2,对垂直面模板可采用4 kN/m 2) 荷载基本组合 1) 由可变荷载效应控制的组合 k Q n i ik G Q r G r S 111+=∑= (4.3.1—2) ∑∑==+=n i ik Qi n i ik G Q r G r S 1 1 9.0 (4.3.1—3) 式中 G r ──永久荷载分项系数,应按表4.2.3采用;

风荷载习题

1、求单层厂房的风荷载 条件:某厂房处于大城市郊区,各部尺寸如图2.1.8所示,纵向柱距为6m ,基本风压 w 0=0.55kN /m 2,室外地坪标高为-0.150。 要求:求作用于排架上的风荷载设计值。 答案: 风荷载体型系数如图2.1.8所示。 风荷载高度变化系数,由《荷载规范》按B 类地面粗糙度确定。 柱顶处(标高11.4m 处) μz =1+(1.14-1)×[(11.4+0. 5-10)/(1 5-10)]=1.044 屋顶(标高12.5m 处) 1.075z μ= (标高13.0m 处) 1.089z μ= (标高15.55m 处) 1.14(1.24 1.14)[(15.550.1515)/(2015)] 1.151z μ=+-?+--= (标高15.8m 处为坡面且却是吸力,二面水平分力的合力为零) 垂直作用在纵墙上的风荷载标准值: 迎风面:21100.8 1.0440.550.459/k s z w w kN m μμ==??= 背风面:22200.5 1.0440.550.287/k s z w w kN m μμ==??= 排架边柱上作用的均布风荷载设计值: 迎风面:211 1.40.4596 3.85/Q k q r w B kN m ==??=

背风面:222 1.40.2876 2.41/Q k q r w B kN m ==??= 作用在柱顶的集中风荷载的设计值: 0() 1.4[(0.80.5) 1.075 1.10(0.20.6) 1.0890.5(0.60.6) 1.151 2.55]0.55624.3w Q si zi i F r h w B kN μμ==+??+-+??++????=∑ 2、求双坡屋面的风压 条件:地处B 类地面粗糙程度的某建筑物,长10m ,横剖面如图2.1.10a ,两端为山墙, w 0=0.35kN /m 2。 要求:确定各墙(屋)面所受水平方向风力。 答案:1、已知200.35/w kN m = 1 00 t a n (3/12)14.0415α-==<,相应屋面的0.6s μ=-。 100L m = 2、各墙(屋)面所受水平方向风力列表计算如表2.1.1所示。

计算例题

【例2-3-7】计算图2-3-52所示的五梁式装配式钢筋混凝土简支梁桥主梁的恒载内力。图2-3-52a 和图2-3-52b分别为主梁横截面和横隔梁布置图。已知计算跨径l=19.5m,每侧栏杆及人行道重量的作用力为5kN/m,钢筋混凝土、沥青混凝土和混凝土的重度分别为25 kN/m3、23kN/m3和24kN/m3。 解:(1)恒载集度计算 1)主梁 2)横隔梁 对于边主梁 A l M x b)

图2-3-53 恒载内力计算图 各计算截面的弯矩和剪力计算结果列于表2-3-7。 用表冲击系数为10.1767ln 0.01570.259f μ=-= (3)计算公路—I 级车道荷载的跨中弯矩 将车道荷载按图2-3-55布置,则车道荷载的跨中弯矩为 图2-3-55 车道荷载的影响线加载图式(单位:m ) 其中,双车道不折减k 19.5 1.00,m 4.875m 4 y ξ== =,车道均布荷载作用下22221 19.5m 47.53m 88 l Ω==?= 故得

(4)计算人群荷载的跨中弯矩一侧人群荷载沿纵向的线荷载集度为 (5)计算跨中截面车道荷载的最大剪力鉴于跨中剪力影响线的较大竖标值位于跨中部分,故全跨采用跨中荷载横向分布系数来计算。按图2-3-55b布置荷载,公路—I级车道荷载作用下11 Ω=???=,则跨中截面剪力为 19.50.5m 2.4375m 22 (6)计算跨中截面人群荷载的最大剪力 (7)计算支点截面车道荷载的最大剪力计算支点截面最大剪力时需要考虑近端荷载横向分布系数沿桥跨的变化,绘制荷载荷载横向分布系数沿桥跨方向的变化图和支点剪力影响线如图2-3-56所示。 图2-3-56 支点剪力计算图式(单位:m) 支点剪力影响线的面积为 则 所示,

房间热负荷计算例题

计算例题 图所示为北京市某四层办公楼建筑平面图,试计算一楼106房间(门厅)和四楼415房间(会议室)的供暖系统设计热负荷。 已知层高均为3.9m,围护结构的条件为:外墙:490mm厚重砂浆粘土砖墙,外表面为20mm厚水泥砂浆抹面,内表面为20mm厚水泥砂浆抹面、白灰粉刷。外墙传热系数为1.239 W∕(m2·K)。 l=,外窗:C1为双层铝合金框玻璃窗,宽×高=3000mm×2200mm,缝隙长度为10.8m 传热系数K=3.0W∕(m2·K),通过每米外窗缝隙进入室内的冷空气量0L'=1.2m3/(m·h)。 l=,传热系外门:M1为单层铝合金框玻璃门,宽×高=3000mm×3300mm,13.5m 数K=6.4W∕(m2·K),通过每米外窗缝隙进入室内的冷空气量0L'=1.1m3/(m·h)。 地面:非保温地面。 屋顶:具体结构(如图所示),传热系数K=0.75W∕(m2·K)。 某四层办公楼一楼和四楼局部平面图 屋顶结构图

【解】 一、106房间(门厅)供暖系统设计热负荷 北京市室外气象资料:北京市供暖室外计算温度w t '=-9℃,供暖室内计算温度n t =16℃。空气密度w ρ=1.303kg/m 3,1c =kJ/(kg ·K), 1.围护结构传热耗热量1Q ' (1)南外墙 7.2 3.93 2.23 3.3 F =?-?-?=m 2, 1.239K =W ∕(m 2·K),20%ch x =- ,南外墙的传热耗热量为 ()()1 1 1.23911.58(169)(120%)286.95W n w ch q KF t t x α''=-+=??+?-= (2)南外窗 3 2. 2 6.6F =?=m 2, 3.0K =W ∕(m 2·K),20%ch x =-, 南外窗的传热耗热量为 ()()1 1 3.0 6.6(169)(120%)396.00W n w ch q KF t t x α''=-+=??+?-= (3)南外门 3 3.39.9F =?=m 2, 6.4K =W ∕(m 2·K),20%ch x =-, 外门附加率500%m x =,(外门为主要出入口,附加500%。)南外门的传热耗热量为 ()()1 1 6.49.9(169)(120%500%)9187.20W n w ch m q KF t t x x α''=-++=??+?-+=(4)地面 地带划分如图: 106房间地带划分图 17.2214.4F =?=m 2,27.2214.4F =?=m 2,37.2 1.168.35F =?=m 2。地面各地带传 热系数1K =0.47W ∕(m 2·K),2K =0.23W ∕(m 2·K),3K =0.12W ∕(m 2·K)。地面的传热耗热量为 ()1 (0.4714.40.2314.40.128.35)(169)277.05W n w q KF t t ''=-=?+?+??+=∑

供热工程中的设计热负荷计算

供暖系统的设计热负荷 一、 房间的失热量包括: 1. 维护结构的传热耗热量Q 1 2. 加热由门、窗缝隙渗入室内的冷空气的耗热量Q 2 3. 加热由门、孔洞和其它生产跨间流入室内的冷空气的耗热量Q 3 4. 加热由外部运入的冷物料和运输工具的耗热量Q 4 5. 水分蒸发的耗热量Q 5 6. 加热由于通风进入室内的冷空气的耗热量Q 6 7. 通过其他途径散失的热量Q 7 房间的的热量包括: 1. 工艺设备的散热量Q 8 2. 热物料的散热量Q 9 3. 热管道及其他热表面的散热量Q 10 4. 太阳辐射进入室内的热量Q 11 5. 人体散热量Q 12 6. 通过其他途径获得的热量Q 13 围护结构的传热耗热量是指当室内温度高于室外温度时,通过围护结构向外传递的热量损失,在计算中又把它分成为围护结构传热的基本耗热量和附加(修正)耗热量两部分。基本耗热量是指在一定条件下,通过房间各部分围护结构(门、窗、地板、屋顶等),从室内传到室外的稳定传热量的总和。附加(修正)耗热量是由于围护结构的传热条件发生变化而对基本耗热量的修正。修正耗热量包括朝向修正、风力修正和高度修正等 二、 围护结构传热耗热量: α)(w n j t t KF Q -= 式中:j Q ——基本耗热量 W ;K ——传热系数 W/m 2·℃;F ——传热面积 m 2; n t ——冬季室内计算温度 ℃ ; w t ——供暖室外计算温度 ℃ ; α——围护结构的温差修正系数。 (地面传热计算:当围护结构是贴土的非保温地面时,其温差传热量为 )(w n d d pj d j t t F k Q -=?? 式中:d pj k ?——非保温地面的平均传热系数 W/m 2·℃ d F ——房间地面面积 m 2

风荷载计算

参考规范: 《建筑结构荷载规范》GB50009-2012 《高层建筑混凝土结构技术规程》JGJ3-2010 一般情况下的风荷载: 风荷载标准值 《荷载规范》8.1.1、《高规》4.2.1 0w w z s z k μμβ= (1)该风荷载标准值的计算公式适用于计算主要承重(主体)结构的风荷 载; (2)所求的风荷载标准值为顺风向的风荷载; (3)风荷载垂直于建筑物的表面; (4)风荷载作用面积应取垂直于风向的最大投影面积; (5)适用于计算高层建筑的任意高度处的风荷载。 基本风压 《荷载规范》3.2.5第2款 对雪荷载和风荷载,应取重现期为设计使用年限…… 《荷载规范》8.1.2 基本风压应采用按本规范规定的方法确定的50年重现期的风压,但不得小 于0.3kN/㎡。 《荷载规范》E.5 《高规》4.2.2 ……对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采 用。 (条文说明)……一般情况下,对于房屋高度大于60m 的高层建筑,承载力 设计时风荷载计算可按基本风压的1.1倍采用…… 《烟规》5.2.1 ……基本风压不得小于0.35kN/㎡。对于安全等级为一级的烟囱,基本风压 应按100年一遇的风压采用。 风压高度变化系数 《荷载规范》8.2.1 地面粗糙度 A 类 近海海面和海岛、海岸、湖岸及沙漠地区 B 类 田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇 C 类 密集建筑群的城市市区 D 类 密集建筑群且房屋较高的城市市区 《荷载规范》表8.2.1 对墙、柱的风压高度变化系数,均按墙顶、柱顶离 地面距离作为计算高度z ,查表用插入法确定。 风压体型系数 《荷载规范》8.3.1 围墙:按第32项,取1.3 《高规》4.2.3 1 圆形平面建筑取0.8; 2 正多边形及截角三角形平面建筑,由下列计算:n s /2.18.0+=μ 3 高宽比H/B 不大于4的矩形、方形、十字形平面建筑取1.3; 4 下列建筑取1.4: 1)V 形、Y 形、弧形、双十字形、井字形平面建筑; 2)L 形、槽形和高宽比H/B 大于4的十字形平面建筑;

热负荷及散热量计算..

热负荷及散热量计算 所谓热负荷是指维持室内一定热湿环境所需要的在单位时间向室内补充的热量。所谓得热量是指进入建筑物的总量,它们以导热、对流、辐射、空气间热交换等方式进入建筑。 系统热负荷应根据房间得、失热量的平衡进行计算,即 房间热负荷=房间失热量总和-房间得热量总和 房间的失热量包括: 1)围护结构传热量Q1; 2)加热油门、窗缝隙渗入室内的冷空气的耗热量Q2; 3)加热油门、孔洞和其他相邻房间侵入的冷空气的耗热量Q3; 4)加热由外部运入的冷物料和运输工具的耗热量Q4; 5)水分蒸发的耗热量Q5; 6)加热由于通风进入室内冷空气的耗热量Q6; 7)通过其他途径散失的热量Q7; 房间的得热量包括: 1)太阳辐射进入房间的热量Q8; 2)非供暖系统的管道和其他热表面的散热量Q9; 3)热物料的散热量Q10; 4)生产车间最小负荷班的工艺设备散热量Q11; 5)通过其他途径获得的散热量Q12; 1.1围护结构的基本耗热量 a t t KF q w n )(''-= 式中 ' q —围护结构的基本耗热量,W ; K —围护结构的传热系数,w/(㎡.℃); F —围护结构的面积,㎡; w t ' —供暖室外计算温度,℃; n t —冬季室内计算温度,℃; a —围护结构的温差修正系数。 整个建筑物的基本耗热量等于各个部分围护结构的基本耗热量的总和: ) (Q ' '' 1w n t t KF q -==∑∑ 1.2围护结构的附加耗热量 在实际中,气象条件和建筑物的结构特点都会影响基本耗热量使其发生变化,此时需要对基本耗热量加以修正,这些修正耗热量称为围护结构附加耗热量。附加耗热量主要有朝向修正,风力附加和高度附加耗热量。 1.2.1朝向修正耗热量 朝向修正耗热量是太阳辐射对建筑围护耗热量的修正。

风荷载习题

?1、求单层厂房的风荷载 条件:某厂房处于大城市郊区,各部尺寸如图2.1.8所示,纵向柱距为6m ,基本风压 w 0=0.55kN /m 2,室外地坪标高为-0.150。 ?要求:求作用于排架上的风荷载设计值。 答案: 风荷载体型系数如图2.1.8所示。 风荷载高度变化系数,由《荷载规范》按B 类地面粗糙度确定。 柱顶处(标高11.4m 处)?μz =1+(1.14-1)×[(11.4+0.?5-10)/(1?5-10)]=1.044 屋顶(标高12.5m 处) 1.075z μ= (标高13.0m 处) 1.089z μ= (标高15.55m 处) 1.14(1.24 1.14)[(15.550.1515)/(2015)] 1.151z μ=+-?+--= (标高15.8m 处为坡面且却是吸力,二面水平分力的合力为零) 垂直作用在纵墙上的风荷载标准值: 迎风面:21100.8 1.0440.550.459/k s z w w kN m μμ==??= 背风面:22200.5 1.0440.550.287/k s z w w kN m μμ==??= 排架边柱上作用的均布风荷载设计值: 迎风面:211 1.40.4596 3.85/Q k q r w B kN m ==??= 背风面:222 1.40.2876 2.41/Q k q r w B kN m ==??= 作用在柱顶的集中风荷载的设计值: 2、求双坡屋面的风压 条件:地处B 类地面粗糙程度的某建筑物,长10m ,横剖面如图2.1.10a ,两端为山墙,w 0 =0.35kN /m 2。 ???要求:确定各墙(屋)面所受水平方向风力。 答案:1、已知200.35/w kN m = 100 tan (3/12)14.0415α-==<,相应屋面的0.6s μ=-。 100L m = 2、各墙(屋)面所受水平方向风力列表计算如表2.1.1所示。

房屋热负荷计算

供暖设计热负荷 房屋平面图 北 房屋热负荷计算 一、已知维护结构条件为: 外墙:二墙砖,外表面为石灰、水泥、砂、砂浆抹面,厚24mm; 内表面为水泥砂浆抹面,厚20mm,白灰粉刷。 外窗:双层金属玻璃窗,尺寸如上标记。 楼层高度:各层均为4.5m.。 外门:双层金属框门,尺寸1200mmX2500mm。

地面:不保温地面。 屋面:构造如图所示。 一.确定维护结构的传热系数 1. 外墙 查表1—1、表1—2和附录5,得维护结构内表面换热系数Xn=8.7W/(㎡·℃); 外表面换热系数Xn=23W/(㎡·℃); 外表面石灰、水泥、砂、砂浆抹面导热系数λ1=0.87W/(m·℃); 内表面水泥砂浆抹面、白灰粉刷导致系数λ2=0.93W/(m·℃); 红砖墙导热系数λ3=0.81W/(m·℃)。 计算外墙传热系数,由式得 K=1/[1/Xn+∑(﹠/入i)+1/xw ] =1/(1/8.7+0.49/0.81+0.024/0.87+0.02/0.93+1/23)W/㎡·℃ =1.32 W/(㎡·℃) 2. 屋面 查表1—1、表1—2和附录5 ,得内表面换热系数Xn=8.7W/(㎡·℃); 板下抹混合砂浆λ1=0.87W/(m·℃),§1=20mm; 1:3水泥砂浆λ2=0.87W/(m·℃) §2=20mm; 屋面预控空心板λ3=1.74W/(m·℃) §3=120mm; 一毡二油λ4=0.17W/(m·℃) §4=5mm ; 膨胀珍珠岩λ5=0.07W/(m·℃) §5=100mm; 1:3水泥砂浆λ6=0.87W/(m·℃) §6=20mm ; 三毡四油卷材防水层λ7=0.17W/(m·℃) §7=10m;外表面换热系数 Xw=23W/(㎡·℃)。 屋面传热系数为 K=1/[1/Xn+∑(﹠/λi)+1/xw ] =1/ (1/8.7+0.12/1.74+0.02/0.87+0.02/0.87+0.005/0.17+0.1/0.07+0.02/0.87+0.01/0.17+1 /23)W/(㎡·℃) =0.55 W/(㎡·℃) 3. 外门、外窗 查附录6可知,双层金属门K=3.26W/(㎡·℃); 双层木框玻璃窗K=3.26 W/(㎡·℃)。 4. 地面 可采用地带法进行地面传热耗热量的计算,也可以查阅相关手册确定各房间地面的平均传热系数,再计算地面的传热耗热量。 二、客厅供暖设计热负荷计算 查附录1,冬季室内计算温度tn=16℃。 查附录3榆林供暖室外计算温度tw=-15℃。 1. 计算维护结构的传热耗热量Q1 (1)西外墙传热系数K=1.24 W/(㎡·℃),温差修正系数a=1,传热面积 F=9.2x4=36.8㎡。 南外墙基本耗热量为

采暖热负荷计算

采暖热负荷计算 采暖负荷计算流程示意图 转条件图(ZTJT) 区分外 搜索房间(T66_TUpdSpace) 缺省设置(DVS) 采暖热负荷 计算原理说明 参考文献 采暖负荷计算流程示意图

转条件图(ZTJT) 菜单位置:【计算】→【转条件图】 功能:转暖通条件图。 在菜单上点取该命令,出现”建筑转暖通条件图”对话框

建筑转暖通条件图对话框 将需要删除的建筑底图容的对应选择标志清除,然后点击【确认】按钮,再选择转换围,将建筑条件图转换为暖通条件图。 说明: [1]、计算空调冷负荷和采暖热负荷时,建议将[柱]删除,这样在自动提取 房间数据时会墙中心线的净面积进行计算,这样算出的负荷会更趋于安全。 [2]、在进行负荷计算时,必须保留墙、门窗和房间的底图信息。 区分外 如果建筑底图中的墙体没有区分外,则此时需要用户进行外墙区分。 [区分外]菜单下提供了三个功能: 识别外(T66_TMarkWall) 指定外墙(T66_TmarkExtWall) 指定墙(T66_TmarkIntWall) 识别外(T66_TMarkWall) 菜单位置:【计算】→【区分类外】→【识别类外】 功能:自动识别外。 在菜单上点取该命令,命令行提示: 请选择一栋建筑物的所有墙体(或门窗):

识别出的外墙用红色的虚线示意. 用于自动识别、外墙。点击[识别外]后,框选要识别的墙体围。 指定外墙(T66_TmarkExtWall) 菜单位置:【计算】→【区分类外】→【指定外墙】 功能:自行指定外墙。 如果自动识别的外墙不是十分准确,则可点击指定外墙,选择指定为外墙的墙体,自行指定外墙。 指定墙(T66_TmarkIntWall) 菜单位置:【计算】→【区分类外】→【指定墙】 功能:自行指定墙。 如果自动识别的外墙不是十分准确,则可点击[指定外墙],选择指定为外墙 的墙体,自行指定外墙。 区分外菜单 说明: 在用户指定了外墙之后,在进行楼层数据提取时,软件会自动的区分墙和 外墙,这样会明显的减少用户的输入操作。 搜索房间(T66_TUpdSpace) 菜单位置:【计算】→【搜索房间】 功能:自行指定墙。 在菜单上点取该命令,命令行提示: 请选择构成一完整建筑物的所有墙体(或门窗): 房间起始编号<1001>:

相关文档
最新文档