植物生理知识点整理

植物生理知识点整理
植物生理知识点整理

第七章

一、名词解释

1、信号转导

细胞信号转导(cell signal transduction):指的是耦联各种刺激信号与其引起的特定生理效应之间的一系列分子反应机制。

2、G蛋白

G蛋白又称GTP结合调节蛋白(GTP binding regulatory protein)。G蛋白在高等植物中普遍存在,而且初步证明了G蛋白在光、激素等因子对气孔运动、细胞跨膜离子运输等细胞信号转导中有重要作用。

3、IP3/DAG双信使系统

胞外刺激使PIP2转化成IP3和DAG,引发IP3/ Ca2+和DAG/PKC两条信号转导途径,在细胞内沿两个方向传递,这样的信使系统称为“双信使系统”

二、简答题

植物细胞内钙离子浓度变化是如何完成的?

细胞壁是胞外钙库。质膜上的CA通道控制CA内流,而质膜上的CA泵负责将CA泵出细胞。胞内钙库的膜上存在CA通道、CA泵和CA/H反向运输器,前者控制CA外流,后两者将胞质CA泵入胞内钙库。

三、填空

G蛋白的生理活性有赖于与的结合以及具有的活性而得名。

三磷酸鸟苷(GTP),GTP水解酶

质膜中的磷酸脂酶C水解PIP2( 磷脂酰肌醇-4,5-二磷酸)而产生以及两种信号分子。因此,该系统又称双信号系统。其中通过调节Ca2+浓度,而则通过激活蛋白激酶C(PKC)来传递信息。

肌醇-1,4,5-三磷酸(IP3),二酰甘油(DAG),IP3,DAG)。

三判断

(×)胞外刺激信号,只有被膜上受体识别后,通过膜上信号转换系统,转化为胞内信号,才能调节细胞代谢及生理功能。

第八章

一名词解释

1.植物生长物质

植物生长物质(plant growth substance):具有调节植物生长发育的一些生理活性物质,包括植物激素(phytohormones or plant hormones)和植物生长调节剂(plant growth regulators) 两大类。

2.植物激素

植物激素(plant hormones) :在植物体内合成的,可以移动的,对生长发育产生显著作用的微量有机物。

3.生长素极性运输

在胚芽鞘、茎尖部等处的极性运输(polar transport) 。生长素的极性运输是指生长素只能从植物体的形态学上端向下端运输。

4.三重反应

乙烯对茎伸长的抑制作用,促进茎的加粗和横向生长,称为乙烯的“三重反应”。

5.植物生长调节剂

植物生长调节剂(plant growth regulator):人工合成的具有类似植物激素生理活性的化合物。包括生长促进剂、生长抑制剂和生长延缓剂。

二简答题

1.生长素促进生长的作用机理?

(1)酸生长理论(Acid growth theory)

①原生质膜上存在着非活化的质子泵(H+-ATP酶),生长素作为泵的变构效应剂,与泵蛋白结合后使其活化。

②活化了的质子泵消耗能量(ATP ),将细胞内的H+泵到细胞壁中,导致细胞壁基质溶液的pH下降。

③在酸性条件下,H+使细胞壁中某些多糖水解酶(如纤维素酶)活化或增加,从而使连接木葡聚糖与纤维素微纤丝之间的键断裂,细胞壁松弛。

④细胞壁松弛后,细胞的压力势下降,导致细胞的水势下降,细胞吸水,体积增大而发生不可逆增长。

(2)基因活化学说

2.生长素与赤霉素、生长素与细胞分裂素、赤霉素与脱落酸、乙烯与脱落酸各有什么相互关系?

①GA/IAA比值高时,利于韧皮部分化,反之利于木质部分化

②IAA 与CTK 对愈伤组织的根或芽的分化起调控作用。

CTK/IAA 高时,愈伤组织分化芽;CTK/IAA低时,分化根;

CTK/IAA比例适中维持愈伤组织不分化

对器官分化的影响:CTK/IAA比值高时,可分化成芽;CTK/IAA低时,则形成根;CTK/IAA 比例中等,只分裂,不分化

对性别分化的影响:

③Eth/GA比值高时,利于黄瓜雌花的分化;

④雌雄异株的大麻、菠菜等花性别分化取决于CTK/GA的浓度比

IAA--雌花↑,GA雌花↓,雄花↑;

CTK--侧芽发育, IAA--顶端优势;

Eth抑制IAA合成, 促进IAA氧化,阻止IAA运输;

ABA抑制GA3诱导α-淀粉酶的形成,从而抑制GA促进种子萌发

IAA提高Eth含量;ABA使GA自由型→束缚型

CTK/IAA 高时,愈伤组织分化芽;CTK/IAA低时,分化根;CTK/IAA比例适中维持愈伤组织不分化

IAA/GA比值高,分化木质部;IAA/GA比值低,分化韧皮部;IAA/GA比值中等,既有木质部又有韧皮部。

3.简述乙烯的合成与合成调控?

合成调控

1)ACC合酶

2)ACC氧化酶对乙烯合成的调节

3)ACC丙二酰基转移酶

第九章

一名词解释:

1.光形态建成:由光调节植物生长、分化与发育的过程称为植物的光形态建成,或称光控发育作用

2.光敏色素:一类主要吸收红光和远红光的色素蛋白质,由两个部分组成:生色团和蛋白质。它有两种类型:生理激活型(Pfr型)和生理失活型(Pr型)。

二填空:

1.要使黄化苗转化成正常株,需照射光;使黄化苗保持黄化状态,照射光。

2.光敏素的Pr型吸收峰在nm;

Pfr的则在nm。

3.光敏素的Pfr和Pr之间存在相互转变关系,请注意其转变条件:、、。

红,远红,660 ,730,

红光(660nm)下Pr→Pfr 远红光(730nm)下Pfr→Pr 黑暗下Pfr→Pr

三判断

(×)光敏素是吸收红光和远红光的物质,其成分是非环式的四吡咯化合物。

第十章

一名词解释:

1.分化(differentiation)

细胞分化(cell differentiation): 在个体发育过程中,分生细胞的后代发育成在形态、结构和功能上发生差异的过程。

2.组织培养(plant tissure culture)

植物组织培养(plant tissue culture) 是指在无菌和人工控制的环境条件下,培养植物的离

体器官、组织或细胞的技术。

3.脱分化(dedifferentiation)

植物已经分化的细胞在切割损伤或在适宜的培养基上诱导形成失去原来分化状态的、结构均一的愈伤组织(callus)或细胞团的过程

4.根冠比(root top ratio,R/T)

根冠比(root/top):植物地下部分与地上部分干重或鲜重的比值

5.顶端优势(apical dominance)

植物主茎的顶芽生长占优势,抑制侧芽或侧枝生长的现象

6.黄化现象(etiolation)

7.细胞全能性(totipotency)

细胞全能性是指植物每个有核细胞都具备母体的全套基因,在适宜的条件下,每个有核细胞都可以形成一个完整的植株。

二填空:

1.种子萌发的标志是。

2.一般来说,种子在状态下保存,寿命较长。

3.一些植物的种子,不耐脱水干燥和零上低温,寿命很短,称为。胚根突破种皮; 干燥和低温; 顽拗性种子,

三判断

( √) 花粉管朝珠孔方向生长,属于向化性运动;根向下生长,属于向重性运动;含羞草遇外界刺激,小叶合拢,属于感震性运动;合欢小叶的开闭运动属于感夜性运动。。(×)土壤缺氮时根/冠比减小。

四简答

1.试述植物组织培养的原理、应用及意义?

植物组织培养(plant tissue culture) 是指在无菌和人工控制的环境条件下,培养植物的离体器官、组织或细胞的技术。

原理

脱分化(dedifferentiation)

植物已经分化的细胞在切割损伤或在适宜的培养基上诱导形成失去原来分化状态的、结构均一的愈伤组织(callus)或细胞团的过程

再分化(redifferentiation)

处于脱分化状态的愈伤组织再度分化形成不同类型细胞、组织、器官乃至最终再生成完整植株的过程。

应用

1.快速繁殖:运用组织培养的途径,一个单株一年可以繁殖几万到几百万个植株。例如一株葡萄一年繁殖到3万多株,一株兰花一年繁殖到400万株。

2.种苗脱毒: 针对病毒对农作物造成的严重危害,通过组织培养可以有效地培育出大量的无病毒种苗。已经取得成功的有马铃薯、草莓、香蕉、葡萄等等。

意义

1.可以研究外植体在不受其它部分干扰的情况下的生长和分化规律;

2.可用各种培养条件影响外植体的生长和分化,以解决理论上和生产上的问题。

优点:1、取材少2、人为控制条件3、周期短4、管理方便,利于自动化。

2.试述植物向光性和根向重性运动的机理

向光性

1、生长素分布不均匀:

原因:单侧光引起器官尖端不同部分产生电势差,向光侧带负电,背光侧带正电,吸引IAA-向背光侧移动,导致背光侧的IAA多,生长快,植物向光弯曲。

2、抑制物质分布不均匀(80 年代)气相-质谱等物理化学法。

单侧光--黄化燕麦芽鞘、向日葵下胚轴和萝卜下胚轴都会向光弯曲(两侧IAA 含量无不同)。发现:生长抑制物向光侧多于背光侧

向日葵生长抑制物:可能是黄质醛

萝卜下胚轴生长抑制物:可能是萝卜宁和萝卜酰胺

根向重性

1、平衡石的作用

在根冠、胚芽鞘尖和茎的内皮层细胞中有比重较大的淀粉体分布,受重力影响而沉积在细胞底部,起平衡石的作用。

平衡石的移动,对细胞质膜产生一种压力,这种压力就是被细胞感受的一种刺激,细胞感知后引起不均衡生长

2、IAA、Ca2+的作用:根横放时,平衡石下沉在细胞下侧内质网上,诱导内质网释放Ca2+到细胞质,Ca2+与CaM结合活化Ca泵和IAA泵,使根下侧积累较多的Ca和IAA,根上、下侧生长速度不一样,从而产生向重力性。

(茎负向重力性---高IAA和GA,对茎促进生长,向上弯曲;对根起抑制作用)

综上所述,结合平衡石、生长素、Ca2+ 、钙调素和脱落酸等对向重力性的影响,有人提出向重力性的机理:根横放时,平衡石“沉降”到细胞下侧的内质网上,产生压力,诱发内质网释放Ca2+ 到细胞质中,Ca2+ 和钙调素结合,激活细胞下侧的生长素泵和钙泵,引起细胞下侧生长素和Ca2+ 的积累。以此同时,在横放根的下侧积累较多的ABA或过多IAA,从而抑制下侧的生长,引起根尖向下弯曲生长。

第十一章

一名词解释:

1.春化作用(vernalization)

低温诱导促进植物开花的作用

2.长日植物(long-day plant,LDP)

在24小时昼夜周期中,日照长度必须长于一定时数才能成花或成花较多的植物,如小麦、甜菜、胡萝卜、油菜、菠菜、天仙子、芹菜、甘蓝。

3.临界暗期(critical dark period)

4.光周期诱导(photoperiodic induction)

5.同源异型突变(homeotic mutation)和同源异型基因(homeotic gene)

同源异型基因:控制同源异型化的基因即引起同源异型突变的基因(改变花器官特征而不改变花的发端)称同源异型基因(homeotic gene)

6.群体效应(population)

花粉萌发有“群体效应” (population),落在柱头上的花粉密度越大,萌发的比例越高,花粉管的生长越快。这是因为花粉中存在生长促进物质IAA的缘故

群体效应:单位面积内花粉的数量越多,花粉的萌发和花粉管的生长越好。

1.长日植物的临界日长长于短日植物,短日植物的临界暗期长于长日植物。A.一定,一定B.不一定,不一定

C.一定,不一定D.不一定,一定

2.下列哪种植物开花不需经历低温春化作用。

A.油菜B.胡萝卜C.天仙子D.棉花

3.利用暗期间断抑制短日植物开花,选择下列哪种光最有效。

A.红光B.蓝紫光C.远红光D.绿光

4.南麻北种通常可使麻秆生长较高,纤维产量和质量,种子。

A.提高,能及时成熟B.降低,能及时成熟

C.提高,不能及时成熟D.降低,不能及时成熟

5.夏季的适度干旱可提高果树的C/N比,花芽分化。

A.有利于B.不利于C.推迟D.不影响

BDACA

三填空:

1.一植物只有在日长短于14小时的情况下开花,该植物是。

2.要想使菊花提前开花可对菊花进行处理,要想使菊花延迟开花,可对菊花进行延长或间断处理。

3.植物在达到花熟状态之前的生长阶段称为期,一般以作为植物生殖生长开始的标志。

4.植物成花诱导中,感受光周期诱导和感受低温的部位分别是和。

短日植物; 短日照,光照,暗期; 幼年,花芽分化;叶片,茎尖端生长点

1.为什么说光敏色素参与了植物的成花诱导过程?它与植物成花之间有何关系?

答:用不同波长的光间断暗期的试验表明,无论是抑制短日植物开花,还是促进长日植物开花,都是以600~660nm波长的红光最有效;且红光促进开花的效应可被远红光逆转。这表明光敏色素参与了成花反应,光的信号是由光敏色素接受的。

光敏色素有两种可以互相转化的形式:吸收红光的Pr型和吸收远红光的Pfr型。Pr是生理钝化型,Pfr是生理活化型。照射白光或红光后,Pr型转化为Pfr型;照射远红光后,Pfr型转化为Pr型。光敏色素对成花的作用与Pr和Pfr的可逆转化有关,成花作用不是决定于Pr和Pfr的绝对量,而是受Pfr/Pr比值的影响。低的Pfr/Pr比值有利短日植物成花,而相对高的Pfr/Pr比值有利长日植物成花。

2.举例说明光周期理论在农业实践中的应用。

答:

(1)指导引种不同纬度地区引种时要考虑品种的光周期特性和引种地区生长季节的日照条件,对以收获种子为主的作物,若是短日植物,比如大豆,从北方引种到南方,会提

前开花,应选择晚熟品种;而从南方引种到北方,则应选择早熟品种。如将长日植物从北方引种到南方,会延迟开花,宜选择早熟品种;而从南方引种到北方时,应选择晚熟品种。否则,就有可能使植物提早或推迟开花,而造成减产甚至颗粒无收。

(2)育种上的利用根据作物光周期特性,利用中国气候多样的特点,可进行作物的南繁北育:短日植物水稻和玉米可在海南岛加快繁育种子;长日植物小麦夏季在黑龙江、冬季在云南种植,可以满足作物发育对光照和温度的要求,一年内可繁殖2~3代,加速了育种进程,缩短育种年限。

具有优良性状的某些作物品种间有时花期不遇,无法进行有性杂交育种。通过人工控制光周期,可使两亲本同时开花,便于进行杂交。如早稻和晚稻杂交育种时,可在晚稻秧苗4~7叶期进行遮光处理,促使其提早开花以便和早稻进行杂交授粉,培育新品种。如在进行甘薯杂交育种时,可以人为地缩短光照,使甘薯开花整齐,以便进行有性杂交,培育新品种。

(3)控制花期花卉栽培中,光周期的人工控制可以促进或延迟开花。如短日植物菊花,用遮光缩短光照时间的办法,可以从十月份提前至六、七月间开花;若在短日来临之前,人工补充延长光照时间或进行暗期间断,则可推迟开花。对于长日性的花卉,如杜鹃、山茶花等,人工延长光照或暗期间断,可提早开花。

(4)调节营养生长和生殖生长对以收获营养体为主的作物,可以通过控制光周期抑制其开花。如将短日植物烟草引种至温带,可提前至春季播种,促进营养生长,提高烟叶产量。对于短日植物麻类,南种北引可推迟开花,增加植物高度,提高纤维产量和质量.

3.影响植物花器官的形成的条件有哪些?

答:

(1)内因:

①营养状况营养是花芽分化以及花器官形成与生长的物质基础。其中的碳水化合物对花的形成尤为重要,C/N过小,营养生长过旺,影响花芽分化。

②内源激素花芽分化受内源激素的调控。如GA可抑制多种果树的花芽分化;CTK、ABA和乙烯则促进果树的花芽分化;IAA在低浓度起促进作用而高浓度起抑制作用。一般说来,当植物体内淀粉、蛋白质等营养物质丰富,CTK和ABA含量较高而GA含量低时,有利于花芽分化。

(2)外因:

①光照光照对花器官形成有促进作用。在植物花芽分化期间,若光照充足,有机物合成多,则有利于花芽分化。此外,光周期还影响植物的育性,如湖北光敏感核不育水稻,在短日下可育,在长日下不育。

②温度一般植物在一定的温度范围内,随温度升高而花芽分化加快。温度主要影响光合作用、呼吸作用和物质的转化及运输等过程,从而间接地影响花芽的分化。低温还影响减数分裂期花粉母细胞的发育,使其不能正常分裂。

③水分不同植物的花芽分化对水分的需求不同,如对稻麦等作物来说,孕穗期对缺水敏感,此时缺水影响幼穗分化;而对果树而言,夏季的适度干旱可提高果树的C/N比,反而有利于花芽分化。

④矿质营养缺氮,花器官分化慢且花的数量减少;氮过多,营养生长过旺,花的分化推迟,发育不良。在适宜的氮肥条件下,如能配合施用磷、钾肥,并注意补充锰、钼、硼等微量元素,则有利于花芽分化。

第十二章

一.名词解释

1..呼吸骤变(Respiratory climacteric):果实在成熟之前发生的呼吸速率突然升高的现象。后熟:种子采收后需经过一系列生理生化变化达到真正成熟,才能萌发的过程。

2.程序性细胞死亡:程序性细胞死亡(programmed cell death, PCD)是指胚胎发育、细胞分化及许多病理过程中,细胞遵循其自身“程序”,主动结束其生命的生理性死亡过程,又称之为细胞凋亡(apoptosis)。

3.离层:脱落的过程是水解离区的细胞壁和中胶层,使细胞分离,成为离层。

填空题

1.与脱落有关的酶类较多,其中和与脱落关系最密切。

2.叶片和花果的脱落都是由于细胞分离的结果

3.种子中的胚是由发育而来的;胚乳是由发育而来的

纤维素酶,果胶酶;离层;受精卵,受精极核

4.油料种子成熟过程中,脂肪是由转化来的

5.油料种子发育时,先形成脂肪酸,然后再转变成脂肪酸

6.昼夜温差大,有机物质呼吸消耗,瓜果含糖量,禾谷类作物千粒重

7.北方小麦的蛋白质含量比南方的。北方油料种子的含油量比南方的

碳水化合物;饱和,不饱和;少,高,高;高,高

8.风旱不实的种子中蛋白质的相对含量较

9.引起种子休眠的原因主要有、、和。

高;胚未成熟,胚未完成后熟,种皮(果皮)的限制,抑制物的存在

选择题:

1.以下果实中,生长曲线呈双S形的是。

A.樱桃B.苹果C.梨D.香蕉

2.下列果实中,能发生呼吸跃变的有。

A.梨B.橙子C.荔枝D.菠萝

3.下列果实具呼吸跃变现象,且其生长曲线为单S曲线。

A.番茄B.李C.桃D.橙

A;A;A

试述乙烯与果实成熟的关系及其作用机理。

答:果实的成熟与乙烯的诱导有密切关系。果实开始成熟时,乙烯的释放量迅速增加,超过一定的阈值时,便诱导果实成熟。已成熟的果实若和未成熟果实一起存放,则已成熟果实释放的乙烯也能加速未成熟果实的成熟过程,达到可食状态。用外源乙烯或乙烯利处理未成熟果实,也能诱导和加速其成熟。人为地将果实内部的乙烯除去,则果实的成熟便推迟。如果促进或抑制果实内乙烯的生物合成过程,则会相应地促进或抑制果实的成熟。利用反义RNA技术将ACC合成酶或ACC氧化酶的cDNA的反义系统导入番茄,转基因番茄果实中乙烯的合在严重受阻,果实不能正常成熟。因此,乙烯与果实的成熟密切相关,特别是跃变型果实。

乙烯诱导果实成熟的原因可能有以下几方面:

(1)乙烯与细胞膜相结合,改变了细胞膜的透性,诱导了呼吸高峰的出现,加速果实内部的物质转化,促进果实成熟。

(2)乙烯促进与成熟相关的酶活性的升高,如乙烯处理后,过氧化物酶、纤维素酶、果胶酶、磷酸酯酶等的含量和活性都增强。

(3)乙烯诱导新的RNA和蛋白质的合成,这些新合成的蛋白质与呼吸酶有关。

植物生理学总结

植物生理学总结. 第一章植物的水分生理 1、植物体内的水分存在形式 自由水:参与各种代谢作用,它的含量制约着植物的代谢强度。自由水占总含水量的百分比越大,则植物代谢越旺盛。 束缚水:不参与代谢作用,但植物要求低微的代谢强度去度过不良的外界条件,因此束缚水含量与植物抗性大小有密切关系 2、水势的概念(必考) 水溶液的化学势与纯水的化学势之差除以水的偏摩尔体积所得的商 3、渗透作用 水分子通过半透膜,由水势高的系统向水势低的系统移动的现象,称为渗透(osmosis)。 4、根系吸水的部分,途径,动力 部位:根尖,吸水能力依次为根毛区,根冠,分生区,伸长区。 途径:质外体途径:水分通过细胞壁,细胞间隙等没有细胞质部分的移动,阻力小,所以这种移动方式速度快 跨膜途径:水分从一个细胞移动到另一个细胞,要通过两次质膜,还要通过液泡膜,故称跨膜途径 共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢 共质体途径和跨膜途径统称为细胞途径,这三条途径共同作用是根部吸收水分 动力:根压、蒸腾拉力。(根内外水势差产生原因) 根压:根系生理活动引起液体从根部上升的压力。 蒸腾拉力:蒸腾作用产生的吸水力。叶片蒸腾时,气孔下腔附近的叶肉细胞因蒸腾失水而水势下降,所以从旁边细胞取得水分。 蒸腾拉力为主要原因。 5、蒸腾作用的概念、指标(蒸腾系数、蒸腾速率) 概念:植物体内的水分以气体状态向外界扩散的生理过程。 指标:蒸腾系数:形成1g干物质所消耗的水分克数。 蒸腾速率:单位时间单位叶面积散失的水量。 蒸腾效率(比率):形成干物质g / 消耗1Kg水。 6、脱落酸对气孔运动 脱落酸促使气孔关闭,其原因是:脱落酸会增加胞质Ca2+浓度和胞质溶胶pH,一方面抑制保卫细胞质膜上的内向K+通道蛋白活性,抑制外向K+通道蛋白活性。促使细胞内K+浓度减少,与此同时,脱落酸活化外向Cl—通道蛋白,Cl—外流,保卫细胞内Cl—浓度减少,保卫细胞膨压就下降,气孔关闭 7、气孔运动的三个学说 (1)淀粉-糖互变学说 保卫细胞的水势变化是由淀粉糖的变化影响的。 (2)无机离子吸收学说 保卫细胞的水势变化是由无机离子调节的。 (3)苹果酸生成学说 K+是保卫细胞渗透势发生变化的重要因素。

最新考研农学联考植物生理学真题参考答案

2011年考研农学联考植物生理学真题参考答案 一、单项选择题:l~15小题,每小题1分,共15分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。 1. G-蛋白是一类具有重要生理调节功能的蛋白质,它在细胞信号转导中的作用是 A. 作为细胞质膜上的受体感受胞外信号 B. 经胞受体激活后完成信号的跨膜转换 C. 作为第二信号 D. 作为蛋白激酶磷酸化靶蛋白 【参考答案】B 【考查知识点】植物细胞信号转导—GTP结合调节蛋白作用 2. 植物细胞进行无氧呼吸时 A. 总是有能量释放,但不一定有CO2释放 B. 总是有能量和CO2释放 C. 总是有能量释放,但不形成ATP D. 产生酒精或乳酸,但无能量释放 【参考答案】A 【考查知识点】植物呼吸代谢及能量转换—无氧呼吸特点

3. 以下关于植物细胞离子通道的描述,错误的是 A. 离子通道是由跨膜蛋白质构成的 B. 离子通道是由外在蛋白质构成的 C. 离子通道的运输具有一定的选择性 D. 离子通道的运输只能顺电化学势梯度进行 【参考答案】B 【考查知识点】植物细胞跨膜离子运输—离子通道的特点 4. C3植物中,RuBp羧化酶催化的CO2固定反应发生的部位是 A. 叶肉细胞基质 B. 叶肉细胞叶绿体 C. 维管束鞘细胞机制 D. 维管束鞘细胞叶绿体 【参考答案】B 【考查知识点】光合作用—RuBP羧化酶催化部位 5. 细胞壁果胶质水解的产物主要是 A. 半乳糖醛酸 B. 葡萄糖 C. 核糖 D. 果糖

【参考答案】A 【考查知识点】细胞壁—细胞壁的果胶质水解产物 6. 叶片衰老过程中最先解体的细胞器是 A. 高尔基体 B. 内质网 C. 叶绿体 D. 线粒体 【参考答案】C 【考查知识点】植物器官的衰老—衰老最先解体的细胞器 7. 某种长日植物生长在8h光期和16h暗期下,以下处理能促进其开花的是 A. 暗期中间用红光间断 B. 光期中间用黑暗间断 C. 暗期中间用逆红光间断 D. 按其中间用红光-远红光间断 【参考答案】A 【考查知识点】光周期现象—促进长日照植物开花的机制 8. 在其它环境条件适宜时,随环境温度升高,植物光和作用的光补偿点 A. 下降 B. 升高 C. 不变 D. 变化无规律 【参考答案】B

植物生理学重点归纳

植物生理学重点归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一章 1.代谢是维持各种生命活动(如生长、繁殖、运动等)过程中化学变化(包括物质合成、转化和分 解)的总称。 2.水分生理包括:水分的吸收、水分在植物体内的运输和水分的排出。 3.水分存在的两种状态:束缚水和自由水。束缚水含量与植物抗性大小有密切关系。 4.水分在生命活动中的作用:1,是细胞质的主要成分2,是代谢作用过程的反映物质3是植物对物 质吸收和运输的溶剂4,能保持植物的固有姿态 5.植物细胞吸水主要有三种方式:扩散,集流和渗透作用。 6.扩散是一种自发过程,指分子的随机热运动所造成的物质从浓度高的区域向浓度低的区域移动,扩 散是物质顺着浓度梯度进行的。适合于短距离迁徙。 7.集流是指液体中成群的原子或分子在压力梯度下共同移动。 8.水孔蛋白包括:质膜内在蛋白和液泡膜内在蛋白。是一类具有选择性、高效转运水分的跨膜通道蛋 白,只允许水通过,不允许离子和代谢物通过。其活性受磷酸化和水孔蛋白合成速度调节。 9.系统中物质的总能量分为;束缚能和自由能。 10.1mol物质的自由能就是该物质的化学势。水势就是每偏摩尔体积水的化学势。纯水的自由能最 大,水势也最高,纯水水势定为零。 11.质壁分离和质壁分离复原现象可证明植物细胞是一个渗透系统。 12.压力势是指原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有弹性的细胞 壁产生一种限制原生质体膨胀的反作用力。 13.重力势是水分因重力下移与相反力量相等时的力量。 14.根吸水的途径有三条:质外体途径、跨膜途径和共质体途径。 15.根压;水势梯度引起水分进入中柱后产生的压力。 16.伤流:从受伤或折断的植物组织溢出液体的现象。流出的汁液是伤流液。 17.吐水:从未受伤叶片尖端或边缘向外溢出液滴的现象。由根压引起。 18.根系吸水的两种动力;根压和蒸腾拉力。 19.影响根系吸水的土壤条件:土壤中可用水分,通气状况,温度,溶液浓度。 20.蒸腾作用:水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。 21.蒸腾作用的生理意义:1,是植物对水分吸收和运输的主要动力2,是植物吸收矿质盐类和在体内 运转的动力3,能降低叶片的温度 22.叶片蒸腾作用分为两种方式:角质蒸腾和气孔蒸腾。 23.气孔运动有三种方式:淀粉-糖互变,钾离子吸收和苹果酸生成。 24.影响气孔运动的因素;光照,温度,二氧化碳,脱落酸。 25.影响蒸腾作用的外在条件:光照,空气相对湿度,温度和风。内部因素:气孔和气孔下腔,叶片内 部面积大小。 26.蒸腾速率取决于水蒸气向外的扩散力和扩散途径的阻力。 27.水分在茎叶细胞内的运输有两条途径:经过活细胞和经过死细胞。 28.根压能使水分沿导管上升,高大乔木水分上升的主要动力为蒸腾拉力。 29.这种以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说, 称为内聚力学说亦称蒸腾-内聚力-张力学说。 第三章 1. 为什么说碳素是植物的生命基础? 第一,植物体的干物质中90%以上是有机物质,而有机化合物都含有碳素(约占有机化合物重量的45%),碳素成为植物体内含量较多的一种元素;第二,碳原子是组成所有有机物的主要骨架。碳原子与其他元素有各种不同形式的结合,由此决定了这些化合物的多样性。 2. 按照碳素营养方式的不同分为自养植物和异养植物 3. 自养植物吸收二氧化碳,将其转变成有机物质的过程称为植物的碳素同化作用。植物碳素同化作用包括细菌光合作用、绿色植物光合作用和化能合成作用。

《植物生理学》期末总结-植物生理学实验总结

《植物生理学》期末总结:植物生理学实验总结 一、名词解释 1.水势(water potential): 体系中每偏摩尔体积水的自由能与每偏摩尔体积纯水的自由能之差值,用ψw表示。 2.信号转导(signal transduction): 指细胞耦联各种刺激信号(包括各种内外刺激信号)与其引起特定生理效应之间的一系列分子反应机制。 3.呼吸跃变(respiratory climacteric): 果实成熟过程中,呼吸速率随着果龄而降低,但在后期会突然增高,呈现“呼吸高峰”,以后再下降的现象。 4.呼吸跃变(respiration climacteric): 果实成熟过程中,呼吸速率随着果龄而降低,但在后期会突然增高,呈现“呼吸高峰”,以后再下降的现象。 5.渗透作用(osmosis):

是一种特殊的扩散,指溶液中的溶剂分子通过半透膜扩散的现象。对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。 6.集体效应(group effect): 在一定面积内,花粉数量越多,花粉萌发和花粉管的生长越好的现象。 7.光补偿点(light pensation point): 随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于O2释放量,表观光合速率为零,这时的光强称为光补偿点。 8.矿质营养(mineral nutrition): 植物对矿质的吸收、转运和同化以及矿质在生命活动中的作用。 9.乙烯的“三重反应”(triple response): 乙烯对植物生长具有的抑制茎的伸长生长、促进茎或根的增粗和使茎横向生长(即使茎失去负向地性生长)的三方面效应。 10.春化作用(vernalization): 低温诱导促使植物开花的作用叫春化作用。

(完整版)植物生理学笔记复习重点剖析

绪论 1、植物生理学:研究植物生命活动规律及其机理的科学。 2、植物生命活动:植物体物质转化、能量转换、形态建成及信息传递的综合反应。 3、植物生理学的基本内容:细胞生理、代谢生理、生长发育生理和逆境生理。 4、历程:近代植物生理学始于荷兰van Helmont(1627)的柳条试验,他首次证明了水直接参与植物有机体的形成; 德国von Liebig(1840)提出的植物矿质营养学说,奠定了施肥的理论基础; 植物生理学诞生标志是德国von Sachs和Pfeffer所著的两部植物生理学专著; 我国启业人是钱崇澍,奠基人是李继侗、罗宗洛、汤佩松。 第二章植物的水分关系 1、束缚水:存在于原生质胶体颗粒周围或存在于大分子结构空间中被牢固吸附的水分。 2、自由水:存在于细胞间隙、原生质胶粒间、液泡中、导管和管胞内以及植物体其他间隙的水分。 3、束缚水含量增高,有利于提高植物的抗逆性;自由水含量增加,植物的代谢加强而抗逆性降低。 4、水分在植物体内的生理作用:①水分是原生质的主要成分;②水是植物代谢过程中重要的反应物质;③水是植物体内各种物质代谢的介质;④水分能够保持植物的固有姿态;⑤水分能有效降低植物的体温;⑥水是植物原生质良好的稳定剂;⑦水与植物的生长和运动有关。 5、植物细胞的吸水方式:渗透性吸水和吸胀吸水。 6、渗透作用:溶剂分子通过半透膜扩散的现象。 7、水的偏摩尔体积:指加入1mol水使体系的体积发生的变化。 8、水势:溶液中每偏摩尔体积水的化学势差。 9、水通道蛋白调节水分以集流的方式快速进入细胞的细微孔道。 10、溶质势:由于溶质颗粒与水分子作用而引起细胞水势降低的数值。Ψs = -icRT。 11、衬质势:细胞中的亲水物质对水分子的束缚而引起水势下降的数值,为负值。Ψm 12、压力势:由于细胞吸水膨胀时原生质向外对细胞壁产生膨压,细胞壁产生的反作用力——壁压使细胞水势增加的数值。Ψp 13、Ψw = Ψs + Ψm + Ψp + Ψg + …。 14、吸胀吸水:植物细胞壁中的纤维素以及原生质中的蛋白质、淀粉等大分子亲水性物质与极性的水分子以氢键结合而引起细胞吸水膨胀的现象。蛋白质>淀粉>纤维素 15、植物根系由表皮、皮层、内皮层和中柱组成,吸水途径有共质体途径和质外体途径。 16、主动吸水:仅由植物根系本身的生理活动而引起的吸水。分为伤流和吐水。 17、根压:由于植物根系生理活动而促使液流从根部上升的压力。 18、被动吸水(主要方式):通过蒸腾拉力进行的吸水。枝叶的蒸腾作用使水分沿导管上升的力量称为蒸腾拉力。 19、植物蒸腾作用是产生蒸腾拉力并促进根系吸水的根本原因 20、影响根系吸水的因素:(1)内部:导管水势、根系大小、根系对水的透性、根系对水吸收速率;(2)外部:土壤水分、土壤温度、土壤通气状况、土壤溶液浓度。

植物生理学

2016年考试题型:total :100分 名词解释:20分填空:15分选择:20分判断:10分简答:15分论述:20分 2016年考试范围: 知识点:(名词解释) 1水势:在等温等压条件下,体系中每偏摩尔体积的水与纯水之间的化学势差。 2渗透势:由于溶质颗粒的存在而引起体系水势降低的数值,又称为溶质势,一般为负值。 3压力势:由于静水压的存在而使体系水势改变的数值,一般为正值。 4衬质势:由于衬质与水相互作用而引起水势降低的数值,一般为负值。 5渗透作用:溶剂分子从较高化学势区通过半透膜向较低化学势区域扩散的现象。 6质外体途径:指水和溶质可以自由扩散的自由空间,包括细胞壁,细胞间隙和木质部导管。 7共质体途径:水分从一个细胞的细胞质经过西胞间连丝移动到另一个的细胞质的过程,水8分在共质体途径中移动的阻力大,速度慢。 9永久萎蔫系数:植物发生永久萎蔫时,土壤中尚存留的水分含量(以土壤干重的百分率计)。它用来表明植物可利用土壤水的下限,土壤含水量低于此值,植物将枯萎死亡。 10蒸腾作用:植物体内的水分以气体状态通过植物体表,从体内散发到体外的现象。11小孔扩散定律:小孔扩散速率与小孔周长成正比。 12内聚力学说:水分子的内聚力大于张力,可以保持导管或管胞中水柱的连续性。13灰分元素:他们之间或间接的来自土壤矿质,又称矿质元素。 14离子拮抗:在发生单盐毒害的溶液中加入少量不同化合物的金属离子,就可解除单盐毒害,这种现象就交离子拮抗。 15单盐毒害:将植物培养在一种盐溶液中,虽然这种盐是植物的必须元素构成,但植物仍然受到伤害而死亡。 16原初反应:光合作用的第一步。指光合作用中从光和色素分子受光激发到引起第一个光化学反应为止的过程。 17 Z-方案:即电子传递是由两个光系统串联进行,其中的电子传递按氧化还原电位高低排列,使电子传递呈侧写的Z型。 18双光增益效应:因两种波长的光协同作用而增加光合效率的现象。 19光合单位:光合单位是指光合作用中,在原初反应里,每吸收和传递1个光子到反应中心完成光化学反应所需要起协同作用的色素分子。 20光呼吸:是植物的绿色细胞依赖光照,以C2为底物,吸收O2和放出CO2的过程。21呼吸商:又称呼吸系数,是指植物组织在一定时间内释放CO2与吸收O2的数量的比

植物生理学笔记整理

《现代植物生理学》 绪论 1、植物生理学:是研究植物生命活动规律及其与环境相互关系、揭示植物生命现象本质的科学。 植物生理学的研究对象是高等植物。高等植物的生命活动主要分为生长发育与形态建成、物质与能量代谢、信息传递和信号转导3个方面。 2、萨克斯于1882年撰写出《植物生理学讲义》并开设课程,他的弟子费弗尔1904年出版三卷本《植物生理学》著作。这两部著作的问世,标志着植物生理学从植物学中脱胎而出,独立成为一门新兴的科学体系。 细胞生理 3、水势(Ψw ):同温同压下,每偏摩尔体积纯水与水的化学势差。(细胞水势由三部分组成:溶质势(ψs),衬质势(ψm)和压力势(ψp),即Ψw=ψs+ψm+ψp) 4、溶质势(ψs ):由于溶质的存在而使水势降低的值称为溶质势。 压力势(ψp):细胞壁对原生质体产生压力引起的水势变化值。 衬质势(ψm):由于亲水物质对水的吸引而降低的水势。 5、蒸腾作用的生理意义:a.水分吸收和运输的主要动力; b.是矿质元素和有机物运输的动力; c.降低叶温。 d.有利于气体交换 6、现已确定有17种元素是植物的必需元素:碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、硫(S)钾(K)、钙(Ca)、镁(Mg)、铁(Fe)、锰(Mn)、锌(Zn)、铜(Cu)、硼(B)、钼(Mo)、镍(Ni)、氯(Cl)。 根据植物对必需元素需要量的大小,通常把植物必需元素划分为两大类,即大量元素和微量 8、缺素症

9、单盐毒害:将植物培养在单一盐溶液中(即溶液中只含有一种金属离子),不久植物就会呈现不正常状态,最终死亡,这种现象称为单盐毒害。 离子对抗:在单盐溶液中若加入少量含有其他金属离子的盐类,单盐毒害现象就会减弱或消除,离子间的这种作用称为离子对抗。 (单盐毒害和离子对抗的内容也要看下及书上面的什么是“生理酸性盐”、“生理碱性盐”、“生理中性盐”也要看P81) 11、植物的光合作用过程 光合作用:是绿色植物大规模地利用太阳能把CO?和H2O合成富能的有机物,并释放出O2的过程。 12、C4植物比C3植物光合作用强的原因 ⑴结构原因:C3:维管束鞘细胞发育不好,无花环型,叶绿体无或少; 光合在叶肉细胞中进行,淀粉积累影响光合。 C4:维管束鞘细胞发育良好,有花环型,叶绿体较大; 光合在维管束鞘细胞中进行。有利于光合产物的就近运输,防止淀粉积累影响光合。 ⑵生理原因:①PEPC对CO2的Km(米氏常数)远小于Rubisico,所以C4对CO2的亲合力大,低CO2浓度(干旱)下,光合速率更高。 ②C4植物将CO2泵入维管束鞘细胞,改变了CO2/O2比率,改变了Rubisico的作用方向,降低了光呼吸。 13.光补偿点:当达到某一光强度时,叶片的光合速率与呼吸速率相等,净光合速率为零,这时的光强度称为光补偿点。 光饱和点:光合速率开始达到最大值时的光强度称为光饱和点。——P132 CO?补偿点:当光合速率与呼吸速率相等时,外界环境中的CO?浓度即为CO?补偿点(图中C 点)。

植物生理学知识总结

植物生理学:研究植物生命活动规律的科学,内容大致分为生长发育与形态建成、物质与能量转化、信息传递与信号转导 水分在植物生命活动中的作用 1) 水分就是细胞质的主要成分2) 水分就是代谢作用过程的反应物质 3) 水分就是植物对物质吸收与运输的溶剂4) 水分能保持植物的固有姿态 水势:就是每偏摩尔体积水的化学势差(水分子从体系中逃逸的能力) 注:纯水的水势定为零,溶液的水势就成负值,溶液越浓,水势越低 渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象 渗透系统:一个具有液泡的植物细胞,与周围溶液一起,便构成了一个渗透系统 根压:靠根部水势梯度使水沿导管上升的动力(包括伤流与吐水) 伤流:由于根压作用,从植物伤口或折断的部位流出液体的现象 吐水:由于根压作用,从叶尖或叶边缘的水孔流出液滴的现象 蒸腾拉力:叶片蒸腾时,气孔下腔附近的叶肉细胞因蒸腾失水而水势下降,所以从旁边细胞取得水分。同理,旁边细胞又从另一个细胞取得水分,如此下去,便从导管要水,最后根部就从环境吸收水分,这种吸水的能力完全就是由蒸腾拉力所引起的 影响根系吸水的土壤条件 1) 土壤中可用水分2) 土壤通气状况3) 土壤温度4) 土壤溶液浓度 蒸腾作用:就是指水分以气体状态,通过植物体的表面(主要就是叶片),从体内散失到体外的现象(分为角质膜蒸腾与气孔蒸腾) 蒸腾作用的生理意义 1) 蒸腾作用就是植物对水分吸收与运输的主要动力2) 蒸腾作用对矿物质与有机物的吸收,以及这两类物质在植物体内的运输都就是有帮助的3) 蒸腾作用能够降低叶片的温度 气孔——蒸腾过程中水蒸气从体内排到体外的主要出口,也就是光合作用与呼吸作用与外界气体交换的大门。气孔运动主要受保卫细胞的液泡水势的调节,但调节保卫细胞水势的途径比较复杂。 影响蒸腾作用的因素: 1) 外界条件 a) 光照——光照促使气孔开放,蒸腾作用增强b) 空气相对湿度——空气相对湿度增大,蒸腾作用减弱c) 温度——大气温度增高,蒸腾作用增强d) 风——微风促进蒸腾;强风抑

2018植物生理学考试知识点复习考点归纳总结电子版知识点复习考点归纳总结

蒸腾系数:植物制造1克干物质所需的水分量,又称需水量,它是蒸腾比率的倒数。蒸腾效率:植物在一定生长期内积累的干物质与同时间内蒸腾消失的水量的比例值。蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。蒸腾作用:水分以气体状态通过植物体表面从体内散失到体外的现象。杜南平衡:细胞内可扩散的负离子和正离子浓度的乘积等于细胞外可扩散正负离子浓度乘积时的平衡。它不消耗代谢能,属于离子的被动吸收方式。爱默生效应:如果在长波红光(大于685nm)照射时,再加上波长较短的红光(650nm),则量子产额大增,比分别单独用两种波长的光照射时的总和还要高。红降现象:当光波大于685nm时,虽然仍被叶绿素大量吸收,但量子效率急剧下降,这种现象被称为红降现象。双受精现象:在精核与卵细胞互相融合形成合子的同时,另一个精核与胚囊中的极核细胞融合形成具有3N的胚乳核的现象。温周期现象:植物对昼夜温度周期性变化的反应。光周期现象:在一天中,白天和夜晚的相对长度叫光周期。植物对光周期的反应叫光周期现象。光周期诱导:植物只需要一定时间适宜的光周期处理,以后即使处于不适宜的光周期下,仍然可以长期保持刺激的效果的现象。希尔反应:离体叶绿体在光下所进行的分解水并放出氧气的反应。原初反应:包括光能的吸收、传递以及光能向电能的转变,即由光所引起的氧化还原过程。三重反应:乙烯造成的促进茎的加粗生长、抑制伸长生长及横向生长的效应。离子拮抗作用:在发生单盐毒害的溶液中,加入其它离子可以减轻或消除单盐毒害,这种离子之间互相消除单盐毒害的作用。后熟作用:种子在休眠期内发生的生理生化过程。春化作用:低温促进植物开花的作用。去春化作用:春化作用完成之前,将植物置于高温之下,原来的低温处理效果消失。渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。吸涨作用:亲水胶体吸水膨胀的过程。胞饮作用:物质吸附在质膜上,然后通过膜的内折而转移到细胞内的摄取物质及液体的过程。CO2补偿点:当光合作用吸收的CO2量与呼吸释放的CO2量相等时,外界CO2浓度。CO2饱和点:光合速率达到最大时,外界CO2的浓度。光补偿点:植物的光合作用与呼吸作用达到动态平衡,净光和速率为零时的光照强度。光饱和点:增加光照强度,光合速率不再增加时的光照强度。光能利用率:单位面积上的植物光合作用所累积的有机物所含的能量,占照射在相同面积地面上的日光能量的百分比。光形态建成:依靠控制细胞分化、结构功能的改变,最终汇集成组织和器官的建成。光合作用单位:结合在类囊体膜上,能进行光合作用的最小结构单位。光合磷酸化:叶绿体在光下把无机磷和ADP转化为ATP,并形成高能磷酸键的过程。光呼吸:植物的绿色细胞在光照下吸收氧气,放出CO2的过程。光呼吸的主要代谢途径就是乙醇酸的氧化,乙醇酸来源于RuBP的氧化。光呼吸之所以需要光就是因为RuBP的再生需要光。光敏色素:能吸收红光和远红光并发生可逆装换的光受体。光合色素:指植物体内含有的具有吸收光能并将其用于光合作用的色素,包括叶绿素、类胡萝卜素、藻胆素。作用中心色素:指具有光化学活性的少数特殊状态的叶绿素a分子。聚光色素:没有化学活性,只能吸收光能并将其传递给作用中心色素的色素分子。聚光色素又叫天线色素。诱导酶:又称适应酶,指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。末端氧化酶:是指处于生物氧化作用一系列反应的最末端,将底物脱下的氢或电子传递给氧,并形成H2O或H2O2的氧化酶类。活性氧:植物体内代谢产生的性质活泼、氧化活性很强的含氧物的总称。氧化磷酸化:是指呼吸链上的氧化过程,伴随着ADP 被磷酸化为ATP的作用。有氧呼吸:指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出CO2并形成水同时释放能量的过程。无氧呼吸:指在无氧条件下,细胞把某些有机物分解成为不彻底的氧化产物,并释放能量的过程,亦称发酵作用。无氧呼吸消失点:又称无氧呼吸熄灭点,使无氧呼吸完全停止时环境中的氧浓度。抗氰呼吸:某些植物组织对氰化物不敏感的那部分呼吸,即在有氰化物存在的情况下仍有一定的呼吸作用。呼吸链:呼吸代谢中间产物随电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途径,传递到分子氧的总轨道。呼吸峰:果实在成熟过程中,呼吸首先降低,然后突然增高,最后又降低的现象。呼吸商:植物呼吸作用释放CO2量与吸收O2量之比。呼吸速率:单位时间内单位植物组织呼吸作用释放的二氧化碳量或消耗氧量。呼吸跃变:某些果实在成熟到一定阶段时,,呼吸速率最初下降然后突然上升,最后又急剧下降的现象。呼吸作用氧饱和点:当氧气浓度增加到一定程度时对呼吸作用没有促进作用时氧的浓度。程序化细胞死亡:由细胞内已存在的基因编码所控制的细胞自然死亡的过程。细胞信号转导:偶联各种细胞外刺激信号与其相应的生理反应之间的一系列反应机制。细胞全能型:植物体的每个细胞携带一个完整的基因组,并具有发育成完整植株的潜在能力。靶细胞:与激素结合并呈现激素效应部位的细胞。转移细胞:一种特化的转移细胞,其功能是进行短距离的溶质转移。这类细胞的细胞壁凹陷以增加其细胞质膜的表面积,有利于物质的转移。胞间连丝:贯穿胞壁的管状结构物内有连丝微管,其两端与内质网相连。植物生长调节剂:指一些具有植物激素活性的人工合成的物质。植物激素:指一些在植物体内合成,并从产生之处运送到别处,对生长发育起显著作用的微量有机物。激素受体:是能与激素特异结合,并引起特殊生理效应的物质。植保素:是寄主被病原菌侵入后产生的一类对病菌有毒的物质。长(短)日植物:只有在日照长度长于(小于)某一临界值的光周期诱导下才能开花的植物。中日性植物:在任何日照长度下都能开花的植物。生理钟:又称生物钟,指植物内生节奏调节的近似24小时的周期性变化节律。生理酸性盐:如(NH4)2SO4等肥料,由于植物的选择吸收,吸收较多的NH4+,而吸收较少的SO42-,结果导致土壤酸化,故称为生理酸性盐。生理碱性盐:像(NH4)2SO4溶液,由于根系的选择性吸收,吸收较多的NH4+,吸收SO42-较少从而导致土壤酸化的盐。生理平衡溶液:在含有适当比例的多种盐溶液中,各种离子的毒害作用被消除,植物可以正常生长发育,这种溶液称为平衡溶液。生长:细胞、器官或有机体的数目、大小与重量的不可逆增加,即发育过程中量的变化称为生长。生长抑制剂:这类物质主要作用于顶端分生组织区,干扰顶端细胞分裂,引起茎伸长的停顿和顶端优势破坏,其作用不能被赤霉素所恢复。生长延缓剂:抑制节间伸长而不破坏顶芽的化合物。生长大周期:植物在不同生育时期的生长速率表现出慢-快-慢的变化规律,呈现“S”型生长曲线的过程。偏上生长:在乙烯作用下,植物叶柄上端生长较快,下端较慢,叶片逐渐下垂的现象。生物固氮:某些微生物把空气中游离氮固定转化为含氮化合物的过程。生物自由基:生物体内代谢产生的具有不配对电子的分子、离子及原子团。临界日长:诱导短日植物开花所需的最长日照时数,或诱导长日植物能够开花所需最短日照时数。临界暗期:昼夜中短日植物能够开花所必须的最短暗期长度,或长日植物能够开花所必须的最长暗期长度。水分临界期:植物对水分不足最敏感、最易受伤害的时期称为作物的水分临界期。代谢性吸水:利用细胞呼吸释放出的能量,使水分经过质膜进入细胞的过程。自由水:距离胶粒较远而可以自由流动的水分。束缚水:靠近胶粒而被胶粒所束缚不易自由流动的水分。水势:系统中每偏摩尔体积的水与纯水的化学势差。渗透势:由于溶液中溶质颗粒的存在而引起的水势降低值,用负值表示,亦称溶质势。衬质势:细胞胶体物质亲水性和毛细管对自由水束缚引起的水势降低值,以负值表示。压力势:由于细胞壁压力的存在而增加的水势值,一般为正值。初始质壁分离时为0,剧烈蒸腾时会呈负值。根压:由于根系生理活动而形成的促进水分沿着导管上升的压力。共质体:是通过胞间连丝把无数原生质体联系起来形成一个连续的整体。质外体:是一个开放性的连续自由空间,包括细胞壁、细胞隙及导管等。外植体:进行组织培养时,从母体分离下来被用来培养的组织、器官或细胞。分化:来自同一分子或遗传上同质的细胞转变为形态上、机能上、化学构成上异质的细胞称为分化。脱分化:外植体在人工培养基上经过多次细胞分裂而失去原来的分化状态,形成无结构的愈伤组织或细胞团的过程。再分化:离体培养基中形成的处于脱分化状态的细胞团再度分化形成另一种或几种类型的细胞、组织、器官甚至最终再形成完整植株的过程。发育:植物生命周期过程中,植物发生大小、形态、结构、功能上的变化,称为发育。衰老:指一个器官或整株植物生命功能逐渐衰退的过程。脱落:植物细胞、组织或器官与植物体分离的过程。萎蔫:植物在水分亏缺严重时,细胞失去紧张,叶片和茎的幼嫩部分下垂的现象。逆境:指对植物生存和生长不

植物生理学名词解释汇总

第一章绪论 第二章水分代谢 1.内聚力 同类分子间的吸引力 2.粘附力 液相与固相间不同类分子间的吸引力 3.表面张力 处于界面的水分子受着垂直向内的拉力,这种作用于单位长度表面上的力,称为表面张力 4.毛细作用 具有细微缝隙的物体或内径很小的细管(≤1mm),称为毛细管。液体沿缝隙或毛细管上升(或下降)的现象,称为毛细作用 5.相对含水量(RWC) 6.水的化学势 当温度、压力及物质数量(除水以外的)一定时,体系中1mol水所具有的自由能,用μw表示 7.水势 在植物生理学中,水势是指每偏摩尔体积水的化学势

8.偏摩尔体积 偏摩尔体积是指在恒温、恒压,其他组分浓度不变情况下,混合体系中加入1摩尔物质(水)使体系的体积发生的变化 9.溶质势(ψs) 由于溶质颗粒的存在而引起体系水势降低的值,为溶质势(ψs) 10.衬质势(ψm) 由于衬质的存在而引起体系水势降低的数值,称为衬质势(ψm),为负值 11.压力势(ψp) 由于压力的存在而使体系水势改变是数值,为压力势(ψp) 12.重力势(ψg) 由于重力的存在而使体系水势改变是数值,为重力势(ψg) 13.集流 指液体中成群的原子或分子在压力梯度作用下共同移动的现象 14.扩散 物质分子由高化学势区域向低化学势区域转移,直到均匀分布的现象。扩散的动力均来自物质的化学势差(浓度差) 15.渗透作用 渗透是扩散的特殊形式,即溶液中溶剂分子通过半透膜(选择透性膜)的扩散 16.渗透吸水 由于溶质势ψs下降而引起的细胞吸水,是含有液泡的细胞吸水的主要方式(以渗透作用为动力) 17.吸胀吸水

依赖于低的衬质势ψm而引起的细胞吸水,是无液泡的分生组织和干种子细胞的主要吸水方式。(以吸胀作用为动力) 18.降压吸水 因压力势ψp的降低而引起的细胞吸水。当蒸腾作用过于旺盛时,可能导致的吸水方式 19.主动吸水 由根系的生理活动而引起的吸水过程。动力是内皮层内外的水势差(产生根压) 20.被动吸水 由枝叶蒸腾作用所引起的吸水过程。动力是蒸腾拉力 21.根压 植物根系的生理活动促使液流从根部上升的压力,称为根压 22.伤流 如果从植物的茎基部靠近地面的部位切断,不久可看到有液滴从伤口流出。这种从受伤或折断的植物组织中溢出液体的现象,叫做伤流(bleeding) 23.吐水 没有受伤的植物如处于土壤水分充足、天气潮湿的环境中,从叶片尖端或边缘向外溢出液滴的现象 24.萎蔫(wilting) 植物吸水速度跟不上失水速度,叶片细胞失水,失去紧张度,气孔关闭,叶柄弯曲,叶片下垂,即萎蔫 25.暂时萎蔫(temporary wilting) 是由于蒸腾大于吸水造成的萎蔫。发生萎蔫后,转移到阴湿处或到傍晚,降低蒸腾即可恢复。这种萎蔫称为暂时萎蔫。 26.永久萎蔫(permanent wilting)

植物生理学 期末复习 名词解释总结

植物生理学名词解释总结 1.ACC合酶:催化SAM裂解为5’-甲硫基-腺苷和ACC的酶,为乙烯合成的 限速酶 2.矮壮素(CCC):抑制GAs合成,进而抑制细胞伸长的人工合成生长延缓剂 3.必须元素:在植物生活史中,起着不可替代的直接生理作用的不可缺少的元 素 4.春化作用:低温诱导促使植物开花的作用 5.长日植物:在24h昼夜周期中,日照长度长于一定时间才能成花的植物。如 延长光照或在暗期短期照光可促进或提早开花,相反如延长黑暗则推迟或不能开花 6.单性结实:有些植物的胚珠不经受精,子房仍能够继续发育成没有种子的果 实 7.单盐毒害:植物生长在只含有一种金属元素的溶液中而发生受害的现象 8.代谢源与代谢库:制造并输出同化物的部位或器官(成熟叶);消耗或贮藏 同化物的部位或器官(根、果实) 9.分化:从一种同质性的细胞类型转变成形态结构和功能与原来不同的异细胞 类型的过程 10.光周期现象:昼夜的相对长度对植物生长发育的影响 11.光呼吸:植物和绿色细胞在光照下吸收氧气和放出二氧化碳的现象 12.光形态建成:光控制植物生长、发育和分化的过程 13.光周期诱导:植物只需在某一生育周期内得到足够日数的适合光周期,以后 即便放置在不适宜的光周期条件下仍可开花 14.光和速率:光合强度,单位时间单位叶面积所吸收的CO2或释放的O2量, 或单位时间单位也面积所积累的干物质量 15.光饱和点:在光照强度较低时,光和速率随光照强度增加;光强度进一步提 高时,光和速率的增加逐渐减小,当超过一定光强时,光和速率不再增加,此时的光照强度为光饱和点 16.HSP:在高于植物正常生长温度刺激下诱导合成的新蛋白

植物生理学重点

一.成花诱导 春化作用(vernalization):低温诱导促进植物开花的作用。 温度: 相对低温型:低温处理促进植物开花,如冬性一年生植物,种子吸涨后即可感受低温 绝对低温型:若不经低温处理,植物绝对不能开花,如二年生植物,营养体达到一定大小才能感受低温。 低温与条件: 各类植物通过春化时要求低温持续的时间不同,在一定时间内,春化的效应随低温处理时间的延长而增加。 (2)需要充足的氧气、适量的水分和作为呼吸底物的糖分 (3)光照 春化之前,充足的光照可促进二年生和多年生植物通过春化。 时期、部位和刺激传导 (1)时期 大多数一年生植物(冬小麦)在种子吸胀后即可接受低温诱导,在种子萌发和苗期均可进行。而需低温的二年生植物(胡萝卜、月见草等)只有绿苗达到一定大小才能通过春化。 (2)部位 感受低温的部位:茎尖端的生长点 春化过程中的生理生化变化 (1)呼吸速率—春化处理的较高 (2)核酸代谢 在春化过程中核酸(特别是RNA)含量增加,代谢加速,而且RNA性质有所变化。 (3)蛋白质代谢 可溶性Pr及游离AA含量(Pro)增加。 (4)GA含量增加 一些需春化的植物(如天仙子、白菜、胡萝卜等)未经低温处理,若施用GA也能开花。GA 以某种方式部分代替低温的作用。 春化作用的机理 前体物低温中间产物低温最终产物(完成春化) 高温 中间产物分解(解除春化) 春化作用在农业生产中的应用 A、人工春化,加速成花,提早成熟 (1)“闷麦法” —春天补种冬小麦 (2)春小麦低温处理—早熟,躲开干热风,利于后季作物的生长 (3)加速育种过程—冬性作物的育种 B、指导引种 引种时应注意原产地所处的纬度,了解品种对低温的要求。如北种南引,只进行营养生长而不开花结实。

植物生理学整理

植物生理学 名词解释 1植物激素:在植物体内合成的,通常从合成部位运往作用部位,对植物生长发育产生显著调节作用的微量生理活性物质。 2植物生长调节剂:由人工合成的类似于植物激素的生理作用的物质。 3组织培养:植物的离体器官,组织或细胞在人工控制的环境下培养发育再生成完整植株的技术。 4种子休眠:有些种子即使处于适宜的外界条件也不萌发,在自然条件下必须经过一定时间后才能萌发,这种现象称为休眠。 5光周期:自然界一天中的光暗交替称为光周期。 6光周期现象:植物对昼夜长度发生反应的现象。 7光周期诱导:在一定时期,满足植物所需一定天数的光周期即可诱导植物成花的现象。 8逆境:对植物生存和发育不利的各种环境因素的名称。 9抗性:植物对逆境的抵抗和忍耐能力。 10衰老:是指植物的器官或整个植株的生命功能的自然衰退,最终导致自然死亡的一系列恶化过程。 1.植物细胞信号转导:植物内外的信号通过细胞的转导系统转换,引起细胞生理反应的过程 2.蒸腾作用:植物体内的水分,通过其表面,以气体状态散失到大气中去的过程 3.呼吸作用:植物体内一切活细胞内经过某些代谢途径使有机物质氧化分解,并释放能量的过程 4.灰分元素:灰分中的物质为各种矿质的氧化物,硫酸盐,磷酸盐,硅酸盐等,构成植物灰分元素 5.光合作用:绿色植物吸收太阳光能,将二氧化碳和水合成有机物质并释放氧气的过程 6.光补偿点:当呼吸释放的二氧化碳和光合作用吸收的二氧化碳相等,叶片变现光合作用速率为零时的光照强度 7.天线色素:又称聚光色素,是光系统中只收集光能并将其传递给中心色素,本身不直接参与光化学反应的色素 8.受体:是一类蛋白,能够特异性地感受环境刺激或与胞间信号特异性结合 9.生物膜:由脂类和蛋白质组成的具有一定结构和生理功能的胞内所有被膜的总称 10.细胞骨架:真核细胞中的蛋白质纤维网架体系 填空 1植物体内水分存在的状态有自由水和(束缚水) 2植物细胞的吸水方式有(渗透性吸水)吸胀吸水和(代谢性吸水) 3土壤溶液浓度过高会引起水分的反渗透,导致(烧苗) 4影响呼吸速率的内部因素有(种间差异)和器官间差异 5原初反应是光合作用的第一步,包括光能的吸收、(传递)和转换过程 6有机物总的分配方向是由(源)到(库) 7同化物短距离运输的胞间运输包括(质体外) 运输、(共质体)运输、(交替)运输8研究同化物运输途径的方法有环割实验和(同位素示踪法)

植物生理学知识总结

植物生理学:研究植物生命活动规律的科学,内容大致分为生长发育与形态建成、物质与能量转化、信息传递和信号转导 水分在植物生命活动中的作用 1) 水分是细胞质的主要成分2) 水分是代谢作用过程的反应物质 3) 水分是植物对物质吸收和运输的溶剂4) 水分能保持植物的固有姿态水势:是每偏摩尔体积水的化学势差(水分子从体系中逃逸的能力) 注:纯水的水势定为零,溶液的水势就成负值,溶液越浓,水势越低渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象渗透系统:一个具有液泡的植物细胞,与周围溶液一起,便构成了一个渗透系统根压:靠根部水势梯度使水沿导管上升的动力(包括伤流和吐水) 伤流:由于根压作用,从植物伤口或折断的部位流出液体的现象吐水:由于根压作用,从叶尖或叶边缘的水孔流出液滴的现象 蒸腾拉力:叶片蒸腾时,气孔下腔附近的叶肉细胞因蒸腾失水而水势下降,所以从旁边细胞取得水分。同理,旁边细胞又从另一个细胞取得水分,如此下去,便从导管要水,最后根部就从环境吸收水分,这种吸水的能力完全是由蒸腾拉力所引起的影响根系吸水的土壤条件 1) 土壤中可用水分2) 土壤通气状况3) 土壤温度4) 土壤溶液浓度蒸腾作用:是指水分以气体状态,通过植物体的表面(主要是叶片),从体内散失到体外的现象(分为角质膜蒸腾和气孔蒸腾) 蒸腾作用的生理意义 1) 蒸腾作用是植物对水分吸收和运输的主要动力2) 蒸腾作用对矿物质和有机物的吸收,以及这两类物质在植物体内的运输都是有帮助的3) 蒸腾作用能够降低叶片的温度气孔——蒸腾过程中水蒸气从体内排到体外的主要出口,也是光合作用和呼吸作用与外界气体交换的大门。气孔运动主要受保卫细胞的液泡水势的调节,但调节保卫细胞水势的途径比较复杂。 影响蒸腾作用的因素: 1) 外界条件 a) 光照——光照促使气孔开放,蒸腾作用增强b) 空气相对湿度——空气相对湿度增大,蒸腾作用减弱c) 温度——大气温度增高,蒸腾作用增强d) 风——微风促进蒸腾;强风抑制蒸腾2)内部因素 a)气孔频度(每平方厘米叶片的气孔数)b)气孔大小 c)叶片内部面积大小(内部面积指细胞间隙的面积) 必需元素

植物生理学 第7版 潘瑞炽编 知识要点资料讲解

绪论 1.植物生理学:是研究植物生命活动规律的学科(内容分为生长发育与形态建成、物质与能量转化、信息传递和信号转导) 2.植物生理学的任务:研究和了解植物在各种环境条件下进行生命活动的规律和机制,并将这些研究成果应用于植物生产实践中 3.Sachs被称为植物生理学的奠基人(1882年编写了《植物生理学讲义》),Sachs和他的弟子Pfeffer被称为植物生理学的两大先驱 4.植物生理学的研究层次越来越宽广: 1)从生物大分子复杂生命活动 2)代谢调节 3)信号转导 4)植物与环境协同进化

第一章植物的水分生理 1.水分在植物细胞内通常分为束缚水和自由水两种状态 束缚水:靠近胶粒而被胶粒吸附束缚不易自由流动的水分 自由水:距离胶粒较远而可以自由流动的水分 2.水分在植物生命活动中的作用 1)水分是细胞质的主要成分 2)水分是代谢作用过程的反应物质 3)水分是植物对物质吸收和运输的溶剂 4)水分能保持植物的固有姿态 3.水通道由水孔蛋白组成(水孔蛋白是膜整合蛋白),水通过水通道选择性跨膜运输 4.水分移动需要能量做功,即动力 化学势(浓度差)——扩散 动力集流(压力) 渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象 5.水势:是每偏摩尔体积水的化学势差(水分子从体系中逃逸的能力) 注:纯水的水势定为零,溶液的水势就成负值,溶液越浓,水势越低 6.相邻两细胞的水分移动方向,取决于两细胞间的水势差异,水势高的细胞中的水分向水势低的细胞流动 7.土壤中的水分分为3种:重力水、毛细管水、束缚水 重力水:是指在重力作用下通过土壤颗粒间的孔隙下降的水分 毛细管水:是指存在于土壤颗粒间毛细管内的水分(植物吸收的水分主要是毛细管水) 束缚水:是土壤颗粒或土壤胶体的亲水表面所吸附的水合层,植物一般不能利用(分为吸湿水和薄膜水) 8.根系吸水的途径有3条:质外体途径、跨膜途径、共质体途径 质外体途径——水分通过细胞壁、细胞间隙等没有细胞质的部分移动,阻力小,速率快 跨膜途径——水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜 共质体途径——水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,速率慢 9.根系吸水的动力 根压:靠根部水势梯度使水沿导管上升的动力(包括伤流和吐水) 蒸腾拉力:叶片蒸腾时,气孔下腔附近的叶肉细胞因蒸腾失水而水势下降,所以从旁边细胞取得水分。同理,旁边细胞又从另一个细胞取得水分,如此下去,便从导管要水,

植物生理学第七版潘瑞炽答案

第一章植物的水分生理 1.将植物细胞分别放在纯水和1mol/L蔗糖溶液中,细胞的渗透势、压力势、水势及细胞体积各会发生什么变化? 答:在纯水中,各项指标都增大;在蔗糖中,各项指标都降低。 2.从植物生理学角度,分析农谚“有收无收在于水”的道理。答:水,孕育了生命。陆生植物是由水生植物进化而来的,水是植物的一个重要的“先天”环境条件。植物的一切正常生命活动,只有在一定的细胞水分含量的状况下才能进行,否则,植物的正常生命活动就会受阻,甚至停止。可以说,没有水就没有生命。在农业生产上,水是决定收成有无的重要因素之一。 水分在植物生命活动中的作用很大,主要表现在4个方面: ●水分是细胞质的主要成分。细胞质的含水量一般在70~90%, 使细胞质呈溶胶状态,保证了旺盛的代谢作用正常进行,如根尖、茎尖。如果含水量减少,细胞质便变成凝胶状态,生命活动就大大减弱,如休眠种子。 ●水分是代谢作用过程的反应物质。在光合作用、呼吸作用、 有机物质合成和分解的过程中,都有水分子参与。 ●水分是植物对物质吸收和运输的溶剂。一般来说,植物不能 直接吸收固态的无机物质和有机物质,这些物质只有在溶解在水中才能被植物吸收。同样,各种物质在植物体内的运输,也要溶解在水中才能进行。 ●水分能保持植物的固有姿态。由于细胞含有大量水分,维持 细胞的紧张度(即膨胀),使植物枝叶挺立,便于充分接受光照和交换气体。同时,也使花朵张开,有利于传粉。 3.水分是如何跨膜运输到细胞内以满足正常的生命活动的需要的?

●通过膜脂双分子层的间隙进入细胞。 ●膜上的水孔蛋白形成水通道,造成植物细胞的水分集流。植 物的水孔蛋白有三种类型:质膜上的质膜内在蛋白、液泡膜上的液泡膜内在蛋白和根瘤共生膜上的内在蛋白,其中液泡膜的水孔蛋白在植物体中分布最丰富、水分透过性最大。 4.水分是如何进入根部导管的?水分又是如何运输到叶片的? 答:进入根部导管有三种途径: ●质外体途径:水分通过细胞壁、细胞间隙等没有细胞质部分 的移动,阻力小,移动速度快。 ●跨膜途径:水分从一个细胞移动到另一个细胞,要两次通过 质膜,还要通过液泡膜。 ●共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动 到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。 这三条途径共同作用,使根部吸收水分。 根系吸水的动力是根压和蒸腾拉力。 运输到叶片的方式:蒸腾拉力是水分上升的主要动力,使水分在茎内上升到达叶片,导管的水分必须形成连续的水柱。造成的原因是:水分子的内聚力很大,足以抵抗张力,保证由叶至根水柱不断,从而使水分不断上升。 5.植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭? ●保卫细胞细胞壁具有伸缩性,细胞的体积能可逆性地增大 40~100%。 ●保卫细胞细胞壁的厚度不同,分布不均匀。双子叶植物保卫

相关文档
最新文档