常用坐标系与高程系简介

常用坐标系与高程系简介
常用坐标系与高程系简介

常用坐标系与高程系简介

2009-09-27 10:06:45| 分类: GIS技术| 标签: |字号大中小订阅

坐标系的概念

1、坐标系的定义:

如果空间上任意一点P的位置,可以用一组基于某一时间系统时刻t的空间结构的数学描述来确定,则这个空间结构可以称为坐标系,数学描述称为P点在该坐标系中的坐标。牛顿运动学原理要求坐标系就是惯性的,惯性就是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性,基于这个特性,惯性坐标系的定义需与时间无关,通常这样的坐标系需要三个属性来描述(这应该就是三维空间的本性吧),首先一个就是原点(O),就就是坐标系的中心点,第二个就是过原点的任意直线(这里称为Z轴),第三个就是过原点且与Z轴不重合的任意直线(这里称为X轴),如果X轴与Z轴垂直,会带来较优美的数学描述,我们称这样的坐标系就是笛卡尔坐标系。P点的位置可以用P到原点的距离r,OP与Z轴的夹角,OP与X轴的夹角来描述(当然也可以有其它等价描述),可以证明这个描述确定的P点就是唯一的。

2、GPS领域常用坐标系模型:

在GPS测量中,最常用的坐标系模型就是协议地球坐标系,该坐标系随同地球一起旋转,讨论随地球一起自转的目标位置,用这类坐标系方便;另外一类就是协议天球坐标系,这个坐标系随同太阳系一同旋转,与地球自转无关,讨论卫星轨道运动时,用这类坐标系方便。

天球坐标系的定义就是这样的,原点就是地球质心(O),Z轴指向地球自转轴(天极,向北为正),X轴指向春分点,根据春分点的定义可以证明X轴与Z轴互相垂直,且X轴在赤道面上,同时为数学描述方便,引入与XOZ成右手旋转关系的Y轴。因为地球自转轴受其它天体影响(日、月)在空间产生进动,使得春分点变化(章动与岁差),导致用“瞬时天极”定义的坐标系不断旋转,而旋转的坐标系表现出非惯性的特性,不能直接应用牛顿定律。我们可以用某一历元时刻的天极与春分点(协议天极与协议春分点)定义一个三轴指向不变的天球坐标系,称为固

定极天球坐标系。

地球坐标系的定义就是这样的,原点为地球质心(O),Z轴为地球自转轴,X轴指向地球上赤道的某一固定“刚性”点,所谓“刚性”就是指其自转速度与地球一致,同时也为数学描述方便,引入与XOZ成右手旋转关系的Y轴。地球不就是一个严格刚性的球体,Z轴在地球上随时间而变,称为极移,同天球坐标系一样,需要指定一个固定极为Z轴,这样的地球坐标系称为固定极地球坐标系。可以证明当观察地球上的物体时,该坐标系就是惯性的。如果一个坐标系OXYZ,O不就是地球质心,Z轴与地球自转轴平行,则这个坐标系具有与地球相同的自转角速度,我们也把此类坐标系称为地球坐标系。

3、协议坐标系统:

那么,什么就是“协议”坐标系呢?通常,理论上坐标系由定义的坐标原点与坐标轴指向来确定。坐标系一经定义,任意几何点都具有唯一一组在该坐标系内的坐标值,反之,一组该坐标系内的坐标值就唯一定义了一个几何点。实际应用中,在已知若干参考点的坐标值后,通过观测又可反过来定义该坐标系。可以将前一种方式称为坐标系的理论定义。而由一系列已知点所定义的坐标系称为协议坐标系,这些已知参考点构成所谓的坐标框架。在点位坐标值不存在误差的情况下,这两种方式对坐标系的定义就是一致的。事实上点位的坐标值通常就是通过一定的测量手段得到,它们总就是有误差的,由它们定义的协议坐标系与原来的理论定义的坐标系会有所不同,凡依据这些点测定的其它点位坐标值均属于这一协议坐标系而不属于理论定义的坐标系。由坐标框架定义的固定极天球坐标系与固定极地球坐标系,称为协

议天球坐标系与协议地球坐标系。

一个完整的坐标系统,除了定义坐标系外,还需要定义基准,所谓基准就就是在指定坐标系中的尺度单位、基本的点、线、面(如椭球面、水准面等),本专题讨论点P的坐标在不同坐标系统的转换,主要就是在WGS-84坐标系统与中国国家地方坐标系统的转换,下一章先讨论WGS-84坐标系统与中国国家地方坐标系统的定义。

WGS-84大地坐标系统的几何定义就是:原点位于地球质心,Z轴指向BIH1984、0定义的协议地球极(CTP)方向,X轴指向BIH1984、0的零子午面与CTP赤道的交点。对应与WGS-84大地坐标系有一WGS-84椭球,WGS-84椭球及有关常数采用国际大地测量(IAG)与地球物理联合会(IUGG)第17届大会大地测量常数的推荐值,四个基本常数为:长半轴a、地心引力常数GM、地球重力场模型系数C2、0、地球自转角速度ω,其它的椭球常数可以根据以

上四个常数计算得到,如偏心率、扁率等。

常用坐标系

1、北京54坐标系

北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54与大地高H54定位,它就是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

1954年北京坐标系的历史:

新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量与测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为就是前苏联1942年坐标系的延伸。它的原点不在北京而就是在

前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴,扁率1/298、3;

2、西安80坐标系

1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴,扁率1/298、25722101

3、2000国家大地坐标系的定义

国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。2000国家大地坐标系的原点为包括海洋与大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000、0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984、0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000、0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。采用广义相对论意义下的尺度。

2000国家大地坐标系,长半轴6378137m,扁率f=1/298、257222101,地心引力常数GM=3、986004418×

1014m3s-2,自转角速度ω=7、292l15×10-5rads-1。

4、WGS84坐标系

WGS-84坐标系(WorldGeodeticSystem)就是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984、0定义的协议地极(CTP)方向,X轴指向BIH1984、0的协议子午面与CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这就是一个国际协议地球参考系统(ITRS),就是目前国际上统一采用的大地坐标系。GPS广播星历就是以

WGS-84坐标系为根据的。

WGS84坐标系,长轴6378137、000m,短轴6356752、314,扁率1/298、257223563。

由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件

不许可,且有足够的重合点,也可以进行人工解算。

注释:

WGS84经纬度坐标与西安80的坐标转换

由gisnewcomer?2002-08-0810:05

因为7参数3参数无法获得且没有已知点,想直接把WGS84的经纬度当作西安80的经纬度,经高斯投影得到西安80平面坐标。这样的简化转换在精度要求不高时就是否实用?

浙江的WGS84经纬度与西安80经纬度到底相差多大?另外,有人能提供浙江40带的7参数/3参数或者近

似参数不?

--------------------------------------------------------------------------------

由LLM?2002-08-0813:21

这要瞧您的精度要求到底有多高,在1:400万上应该没问题、LLM

--------------------------------------------------------------------------------

由gisnewcomer?2002-08-0814:44

地图就是1:10000的,精度要求不高,但总不能误差50米以上吧。gisnewcomer

--------------------------------------------------------------------------------

由LLM?2002-08-0816:01

能差几百米LLM

--------------------------------------------------------------------------------

由gisnewcomer?2002-08-0817:25

没这么严重吧?这岂不就是束手无策了?gisnewcomer

--------------------------------------------------------------------------------

由chiaojg?2002-08-0818:58

必须有已知点,然后求参数,否则误差很大chiaojg

--------------------------------------------------------------------------------

由三木?2002-08-1018:43

我想问一下如果在mapgis中直接用投影转换行不行??三木

--------------------------------------------------------------------------------

由LLM?2002-08-1211:24

在mapgis中也需知道参数、LLM

--------------------------------------------------------------------------------

由gisnewcomer?2002-08-1213:15

一个已知点行不行?

WGS84经纬度坐标没有高程能不能转换为西安80平面坐标?gisnewcomer

--------------------------------------------------------------------------------

由LLM?2002-08-1213:45

一个已知点只能平移,小范围可以、LLM

--------------------------------------------------------------------------------

由三木?2002-08-1215:27

在1:10000的图上那最少需要几个已知点才可以进行坐标转换三木

--------------------------------------------------------------------------------

由gisnewcomer?2002-08-1310:55

WGS84经纬度坐标没有高程能不能转换为西安80平面坐标?

几个已知点才好求出7参数?gisnewcomer

--------------------------------------------------------------------------------

由LLM?2002-08-147:28

在1:10000的图上那最少要一个已知点才可以平移转换,不同图平量可能不同、

WGS84经纬度坐标没有高程能转换为西安80平面坐标,这只就是忽略了高程变化对转换中平面位置的影

响、求七个参数不就是一种好方法、LLM

--------------------------------------------------------------------------------

由gisnewcomer?2002-08-1410:53

但在转换BLH-->XYZ的公式中H就是必需的呀,没有H好像不行的。如果转换时假设H=0好像说不过去。

难道任何WGS经纬度坐标相同而高程不同的点转换到西安80平面坐标会相同么?

为什么求7参数不好?这不就是标准转换公式么?

LLM,我的QQ就是,想向您请教一下这些问题。gisnewcomer

--------------------------------------------------------------------------------

由LLM?2002-08-1422:26

可用平均高程代替。

只用能掌握的有限点求七个参数不可能准确。用这些点直接变换会更简单。LLM

常用高程系

1、我国常用高程系

“1956年黄海高程系”,就是在1956年确定的。它就是根据青岛验潮站1950年到1956年的黄海验潮资料,求出该站验潮井里横按铜丝的高度为3、61米,所以就确定这个钢丝以下3、61米处为黄海平均海水面。

从这个平均海水面起,于1956年推算出青岛水准原点的高程为72、289米。

国家85高程基准其实也就是黄海高程基准,只不过老的叫“1956年黄海高程系统”,新的叫“1985国家

高程基准”,新的比旧的低0、029m

我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。但由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共与国水准原点,得出1985年国家高程基准高程与1956年黄海高程的关系为:1985年国家高程基准高程=1956年黄海高程-0、029m。1985年国家高程基准已

于1987年5月开始启用,1956年黄海高程系同时废止。

各高程系统之间的关系:

56黄海高程基准:+0、000

85高程基准(最新的黄海高程):56高程基准-0、029

吴淞高程系统:56高程基准+1、688

珠江高程系统:56高程基准-0、586

我国目前通用的高程基准就是:85高程基准

2、EGM96

EGM96 (Earth Gravitational Model 1996) is a geopotential model of the Earth consisting of spherical harmonic coefficients complete to degree and order 360、It is a composite solution, consisting of: (1) a combination solution to degree and order 70, (2) a block diagonal solution from degree 171 to 621, and (3) the quadrature solution at degree 360、This model is the result of a collaboration between the National Imagery and Mapping Agency (NIMA), the NASA Goddard Space Flight Center (GSFC), and Ohio State University、

The joint project took advantage of new surface gravity data from many different regions of the globe, including data newly released from the NIMA archives、Major terrestrial gravity acquisitions by NIMA since 1992 include airborne gravity surveys over Greenland and parts of the Arctic and the Antarctic, surveyed by the Naval Research Lab (NRL) and cooperative gravity collection projects, several which were undertaken with the University of Leeds、These collection efforts have improved the data holdings over many of the world's land areas, including Africa, Canada, parts of South America and Africa, Southeast Asia, Eastern Europe, and the former Soviet Union、In addition, there have been major efforts to improve NIMA's existing 30' mean anomaly database through contributions over various countries in Asia、

NIMA also computed and made available 30'×30' mean altimeter derived gravity anomalies from the GEOSAT Geodetic Mission、EGM96 also included altimeter derived anomalies derived from ERS-1 by Kort & Matrikelstyrelsen (KMS), (National Survey and Cadastre, Denmark) over portions of the Arctic, and the Antarctic, as well as the altimeter derived anomalies of Schoene [1996] over the Weddell Sea、PGM2000A is an EGM96 derivative model that incorporates normal equations for the dynamic ocean

topography implied by the POCM4B ocean circulation model、

注释:《1985 国家高程基准与全球似大地水准面之间的系统差及其分布规律》一文中指出:利用分布全国大陆范围的GPS网949个点的GPS/水准数据与地球重力场模型EGM96、DQM99A,求出1985国家高程基准点与WGS84定义的似大地水准面之间有35、7cm的垂直偏差,1985国家高程基准面的系统差自东向西、

自南向北明显增大。

坐标系统间的转换

在实际应用中需要将GPS观测成果点位的WGS-84坐标转换为地面网的坐标,首先要把点位的WGS-84坐标转换成国家(或地区)的大地坐标,然后再把大地坐标转换成高斯平面直角坐标。

1)WGS-84坐标转换成国家大地坐标(图2-6):

这就是把地心坐标转换为参心坐标,其实质就就是确定转换参数。通常由三个平移参数,三个旋转参数与一个尺度变化因素组成7个转换参数,其直角坐标转换公式为(2—3)式:

式中:ΔX0,ΔY0,ΔZ0为平移参数

k为尺度变化因子

ωX,ωY,ωZ为旋转参数,

其大地坐标转换公式简略写成(2-4)式:

在GPS卫星定位网的测量中,一般只需要进行两个坐标系之间作基线向量的转换,其转换公式为(2-5)式:

上式中不需要平移参数,只要三个旋转参数与一个尺度变化因子即可

2)大地坐标(B,L)转换为高斯平面直角坐标。

这种转换按高斯投影正算公式(2-6)式进行:

式中:X0为过P点的平行圈所截的中央子午线距赤道弧长;

NP为P点的卯酉圈半径;

l为过P点经度与投影带中央子午线经度之差;

B为P点的纬度;

t=tgB;

η2=(e′)2cos2B。

常用坐标系与高程系简介

常用坐标系与高程系简介 2009-09-27 10:06:45| 分类:GIS技术| 标签:|字号大中小订阅 坐标系的概念 1.坐标系的定义: P的位置,可以用一组基于某一时间系统时刻t的空间结构的数学描述来确定,则这个空间结构可以称为坐标系,数学描述称为P点在该坐标系中的坐标。牛顿运动学原理要求坐标系是惯性的,惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性,基于这个特性,惯性坐标系的定义需与时间无关,通常这样的坐标系需要三个属性来描述(这应该是三维空间的本性吧),首先一个是原点(O),就是坐标系的中心点,第二个是过原点的任意直线(这里称为Z轴),第三个是过原点且与Z轴不重合的任意直线(这里称为X轴),如果X轴与Z轴垂直,会带来较优美的数学描述,我们称这样的坐标系是笛卡尔坐标系。P点的位置可以用P到原点的距离r,OP与Z轴的夹角,OP与X 轴的夹角来描述(当然也可以有其它等价描述),可以证明这个描述确定的P点是唯一的。 2.GPS领域常用坐标系模型: GPS测量中,最常用的坐标系模型是协议地球坐标系,该坐标系随同地球一起旋转,讨论随地球一起自转的目标位置,用这类坐标系方便;另外一类是协议天球坐标系,这个坐标系随同太阳系一同旋转,与地球自转无关,讨论卫星轨道运动时,用这类坐标系方便。 的,原点是地球质心(O),Z轴指向地球自转轴(天极,向北为正),X轴指向春分点,根据春分点的定义可以证明X轴与Z轴互相垂直,且X轴在赤道面上,同时为数学描述方便,引入与XOZ成右手旋转关系的Y轴。因为地球自转轴受其它天体影响(日、月)在空间产生进动,使得春分点变化(章动和岁差),导致用“瞬时天极”定义的坐标系不断旋转,而旋转的坐标系表现出非惯性的特性,不能直接应用牛顿定律。我们可以用某一历元时刻的天极和春分点(协议天极和协议春分点)定义一个三轴指向不变的天球 坐标系,称为固定极天球坐标系。 (O),Z轴为地球自转轴,X轴指向地球上赤道的某一固定“刚性”点,所谓“刚性”是指其自转速度与地球一致,同时也为数学描述方便,引入与XOZ成右手旋转关系的Y轴。地球不是一个严格刚性的球体,Z轴在地球上随时间而变,称为极移,同天球坐标系一样,需要指定一个固定极为Z轴,这样的地球坐标系称为固定极地球坐标系。可以证明当观察地球上的物体时,该坐标系是惯性的。如果一个坐标系OXYZ,O不是地球质心,Z轴与地球自转轴平行,则这个坐标系具有与地球相同的自转角速度,我们也把此类坐标系称为地球坐标系。 3.协议坐标系统: 系呢?通常,理论上坐标系由定义的坐标原点和坐标轴指向来确定。坐标系一经定义,任意几何点都具有唯一一组在该坐标系内的坐标值,反之,一组该坐标系内的坐标值就唯一定义了一个几何点。实际应用中,在已知若干参考点的坐标值后,通过观测又可反过来定义该坐标系。可以将前一种方式称为坐标系的理论定义。而由一系列已知点所定义的坐标系称为协议坐标系,这些已知参考点构成所谓的坐标框架。在点位坐标值不存在误差的情况下,这两种方式对坐标系的定义是一致的。事实上点位的坐标值通常是通过一定的测量手段得到,它们总是有误差的,由它们定义的协议坐标系与原来的理论定义的坐标系会有所不同,凡依据这些点测定的其它点位坐标值均属于这一协议坐标系而不属于理论定义的坐标系。由坐标框架定义的固定极天球坐标系和固定极地球坐标系,称为协 议天球坐标系和协议地球坐标系。

我国三大常用坐标系区别

我国三大常用坐标系区别 (北京54、西安80和WGS-84) 北京, 西安, 坐标系 我国三大常用坐标系区别(北京54、西安80和WGS-84) Gis应用2009-09-27 10:06 阅读13 评论0 字号:大大中中小小我国三大常用坐标系区别(北京54、西安80和WGS-84) 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 附: 我国常用高程系

我国四大常用坐标系及高程坐标系学习资料

我国四大常用坐标系及高程坐标系 1.北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2.西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3.WGS-84坐标系 WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),

地理坐标系及我国大地坐标系和高程系

地理坐标系及我国大地坐标系和高程系 地理坐标系是指用经纬度表示地面点位的球面坐标系。在大地测量学中,对于地理坐标系统中的经纬度有三种描述:即天文经纬度、大地经纬度和地心经纬度。 大地控制的主要任务是确定地面点在地球椭球体上的位置。这种位置包括两个方面:一是点在地球椭球面上的平面位置,即经度和纬度;二是确定点到大地水准面的高度,即高程。为此,必须首先了解确定点位的坐标系。 1.地理坐标系 对地球椭球体而言,其围绕旋转的轴叫地轴。地轴的北端称为地球的北极,南端称为南极;过地心与地轴垂直的平面与椭球面的交线是一个圆,这就是地球的赤道;过英国格林威治天文台旧址和地轴的平面与椭球面的交线称为本初子午线。以地球的北极、南极、赤道和本初子午线等作为基本要素,即可构成地球椭球面的地理坐标系统(图2-3)。其以本初子午线为基准,向东,向西各分了1800,之东为东经,之西为西经;以赤道为基准,向南、向北各分了900,之北为北纬,之南为南纬。 地理坐标系是指用经纬度表示地面点位的球面坐标系。在大地测量学中,对于地理坐标系统中的经纬度有三种描述:即天文经纬度、大地经纬度和地心经纬度。 (1)天文经纬度 天文经度在地球上的定义,即本初子午面与过观测点的子午面所夹的二面角;天文纬度在地球上的定义,即为过某点的铅垂线与赤道平面之间的夹角。天文经纬度是通过地面天文测量的方法得到的,其以大地水准面和铅垂线为依据,精确的天文测量成果可作为大地测量中定向控制及校核数据之用。 (2)大地经纬度 地面上任意一点的位置,也可以用大地经度L、大地纬度B表示。大地经度是指过参考椭球面上某一点的大地子午面与本初子午面之间的二面角,大地纬度是指过参考椭球面上某一点的法线与赤道面的夹角(图2-3)。大地经纬度是以地球椭球面和法线为依据,在大地测量中得到广泛采用。

测量坐标和高程(完)

1. 水准面:液体受重力而形成的静止表面称为水准面。 是一个处处与重力方向垂直的连续曲 面。有无数个水准面。同一水准面上的重力位处处相等;同一水准面上任一点的铅垂线都与水准面相正交。 2. 与平静的平均海水面相重合、并延伸通过陆地而形成的封闭曲面称为大地水准面. 大地水准面包围的形体称为大地体(Geoid )。水准面和铅垂线是野外观测的基准面和基准线。 3. 代表地球形状和大小的旋转椭球成为地球椭球。地球椭球分类 a) 总地球椭球:与全球范围内的大地水准面最佳拟合 b) 参考椭球:与某个区域的大地水准面最佳拟合,其椭球面成为参考椭球面。 参考椭球有许多个,总地球椭球只有一个。 4. 大地水准面差距:地球椭球与大地水准面的距离 垂线偏差:地面一点对大地水准面的垂线和对于地球椭球面的法线夹角. 5. 大地原点:确定大地水准面和参考椭球面的相互关系。 6. 参考椭球的作用: 参考椭球面:一个以椭圆的短轴为旋转轴的旋转椭球体的表面。椭球体的大小和大地体十分接近。参考椭球面可用数学模型表示。 1、代表地球的数学表面; 2、大地测量计算的基准面; 3、研究大地水准面的参考面; 4、地图投影的参考面。 地球的形状是一个南北极稍扁的,类似于一个椭圆绕其短轴旋转的椭球体。 7. 测量工作的基准线和基准面 测量工作的基准线—铅垂线 。 测量工作的基准面—大地水准面。 测量内业计算的基准线—法线。 测量内业计算的基准面—参考椭球面。 8. 测量工作及基本原则 1、 从整体到局部; 2、先控制后碎部 ; 3、复测复算、步步检核。前一步工作未检核不进行后一步工作 优点:① 减少误差积累;② 避免错误发生; ③ 提高工作效率。 9. ρo=180o/π=57.3o ρ ′=3438′ ρ " =206265 " 10. 水准面曲率对水平距离的影响 结论:当D=10km 时,所产生的相对误差为1:120万,最精密距离测量的容许误差位1/100万,这样小的误差,对精密量距来说也是允许的。因此,在10km 为半径的圆面积之内进行距离测量时,可以把水准面当作水平面看待,而不考虑地球曲率对距离的影响。 11. 水准面曲率对水平角度的影响 球面角超 2R D 31D ΔD ??? ??=206265:6371::''2 ''ρρεkm R P R P 地球的半径 球面多边形的面积 =

不同类型地图使用的投影与坐标系

不同类型地图使用的投影与坐标系 (2016-08-12 15:29:29) 不同类型地图使用的投影与坐标系 1.概念辨析 地图投影跟大地坐标系是完全两个东西,尽管具有相关性。地球椭球体则是另一个东西。实际上地图编绘涉及三个基本的东西:椭球体、地图投影、大地坐标系。三者密切关联。(百科知识) 要绘制地图,首先考虑用什么椭球体,这是投影和坐标系的基础——我国三代坐标系使用三种椭球体。 三者之间的关系:先有个椭球体,然后是投影到承影面,然后是添加经纬网。椭球体是基础,投影是转换函数,是数学关系,大地坐标系是参照系。因此,同一椭球体可以用不同的投影;而同一投影,也可以用不同的大地坐标系。 但是一般三者是协调一致的,如我国的三代坐标系,有对应的椭球体、投影类型、基准面(坐标系)。 从地图反映地球表面来看,整个过程涉及五个环节:地球~椭球体~投影~坐标系~地图。而地球是球面的,是一个曲面,而地图是平面的,二者的结构性矛盾,导致我们不得不采用一系列转换,这个转换中不可避免地产生扭曲、变形和误差。具体关系:总结:地球(地球表面,存在高低起伏)→椭球体(光滑球面,相关参数)→投影(投影方式:几何投影与解析投影)→坐标系(地理坐标系与平面直角坐标系)→地图。 2. 我国三代坐标系 我们经常给影像投影时用到的北京54、西安80和2000坐标系是投影直角坐标系,如下表所示为国内坐标系采用的主要参数。从中可以看到我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的大地基准面。 表:北京54、西安80和2000坐标系参数列表 坐标名称投影类型椭球体基准面 北京54Gauss Kruger (Transverse Mercator) Krasovsky D_Beijing_1954 西安80Gauss Kruger (Transverse Mercator) IAG75D_Xian_1980 CGCS2000Gauss Kruger CGCS2000D_China_2000

我国三大常用坐标系区别.

我国三大常用坐标系区别 我国三大常用坐标系区别(北京54、西安80和WGS-84)我国三大常用坐标系区别(北京54、西安80和WGS-84)。 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP 赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。

常用坐标系

一、常用坐标系 1、北京坐标系 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、2000国家大地坐标系的定义 国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。采用广义相对论意义下的尺度。 2000国家大地坐标系,长半轴6378137m,扁率f=1/298.257222101,地心引力常数GM =3.986004418×1014m3s-2,自转角速度ω=7.292l15×10-5rads-1。 4、1984世界大地坐标系(WGS84坐标系WorldGeodeticSystem) wgs-84坐标系是美国国防部研制确定的大地坐标系,是一种协议地球坐标系。wgs-84坐标系的定义是:原点是地球的质心,空间直角坐标系的z轴指向bih(1984.0)定义的地极(ctp)方向,即国际协议原点cio,它由iau和iugg共同推荐。x轴指向bih定义的零度子午面和ctp 赤道的交点,y轴和z,x轴构成右手坐标系。wgs-84椭球采用国际大地测量与地球物理联合会第17届大会测量常数推荐值,采用的两个常用基本几何参数: 长半轴a=6378137m;扁率f=1:298.257223563。 GPS广播星历是以WGS-84坐标系为根据的。

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位, 它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大 地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我 国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m短轴6356863,扁率1/298.3 ; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。 为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐 标系,又简称西安大地原点。基准面采用青岛大港验潮站1952- 1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m短轴6356755,扁率1/298.25722101 3、W G-84坐标系 WG—84坐标系(WorldGeodeticSystem )是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,丫轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS^播星历是以WGS-84坐标系为根据的。 WGS8坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 4、2000国家大地坐标系 英文缩写为CGCS200O 2000国家大地坐标系是全球地心坐标系在我国的具体体现,其原点为包括海洋和大气的整个地球的质量中心。2000国家大地坐标系采用的地球椭球参数如下:长半轴a=6378137m 扁率f=1/298.257222101, 地心引力常数GM=3.986004418< 1014m3s2 自转角速度3 =7.292115 < 10-5rads-1 我国常用高程系 “ 1956年黄海高程系”,是在1956年确定的。它是根据青岛验潮站1950年到1956年的黄海验潮资料,求出该站验潮井里横按铜丝的高度为 3.61米,所以就确定这个钢丝以下3.61米处为黄海平均海水面。从这个平均海水面起,于1956年推算出青岛水准原点的高程为72.289米。 国家85高程基准其实也是黄海高程基准,只不过老的叫“1956年黄海高程系统”,新的叫“ 1985国家高程基准”,新的比旧的低0.029m 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,为中国第一个国家高程系

四大常用坐标系及高程坐标系

四大常用坐标系及高程 坐标系 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

我国四大常用坐标系及高程坐标系 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.

我国三大常用坐标系区别

我国三大常用坐标系区别(北京54、西安80和WGS -84) 我国三大常用坐标系区别(北京54、西安80和WGS-84)我国三大常用坐标系区别(北京54、西安80和WGS-84) 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954 年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率 1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP 赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 附: 我国常用高程系

坐标及高程系统

时间系统:世界时:太阳两次经过“0度经线”所需的时间,就是地球自转一周要一天。但是,地球自转在变慢,以自转为标准的时间就会变长。世界时要各种改正,确保精度。 原子时:目前最精密的时间,基准是:在零磁场下,位于海平面的铯原子基态两个超精细能级间跃迁辐射192631770周所持续的时间为一个原子时秒(反正和原子有关,很精密)。 目前世界通用的时间系统(生活中运用的)是:协调世界时,其=世界时+原子时,前者是基础,后者是确保精度用,因为世界时在变慢,但时间长度已经固定,所以隔几年需要调整(看累计情况,大于0.9秒就要调整),一般在12月31日或者6月30日,到时候会出现23:59:60的现象,一般情况下23:59:59过后就是0点(00:00:00)。 GPS采用的时间系统是他自己的原子时(美国制造),与协调世界时有误差,可以改正。 椭球的概念:一般认为地球是个球形,但在测绘中,这个球形的垂直方向(即南北极方向)比水平方向略短,类似于一个椭圆形的球,简称椭球。之所以要椭球,一是方便大规模计算,二是椭球较符合地球实际。 椭球分为参考椭球和总地球椭球,前者是根据自己国家的情况,确定椭球长短半轴,确定椭球原点和方向。后者就是以整个地球为参考(包括大气层)确定椭球的各个参数。 坐标系:大地坐标系,空间坐标系,平面坐标系。坐标系都是要建立在椭球的基础上,就是为了大范围,精确的计算坐标。 大地坐标系:即经常用的经纬度+高程,如某地大地坐标:东经114°,北纬23°,高程20米。 空间坐标系:一般是以地球的球心为原点,0度经线为X轴,东经90度为Y轴,北极方向为Z轴,建立三维坐标。 平面坐标我们一般用高斯-克吕格平面坐标系,原因:球面上的坐标,要原封不动的移动到平面上,同时角度和距离都不变,这是不可能的。高斯投影保证了角度,牺牲了距离。 为了保证距离没有太大的变化,高斯投影要分带,常见的是6°和3°分带。6°是这样[0,6][6,12][12,18][18,24]……,即0度经度开始,每6度向东拓展,每个分带的中央经度就是3,9,15,21……3度带是[-1.5,1.5][1.5,4.5][4.5,7.5]就是中央经度从0度开始,每3度向东扩展。分带之后,以中央经度为X轴,赤道向东为Y轴,建立平面坐标。(测绘的XY轴和数学的相反)。在中国,为了使Y轴没有负数,Y坐标一律加上500km。(测绘中,负数是个很讨厌的东西,平时应尽量避免) 表现形式:P(24,38514366),意思是X坐标24,Y坐标前两位38代表其带号(即第几个中央经线,在中国,6度带在13-23之间,3度带在25-45之间,因此可区分是几度带),514366是加上500km后的坐标,其原始坐标应是14366。 空间坐标系:主要有北京54、国家80、WGS-84坐标系、2000国家大地坐标系(少用)。 北京54(1954年)是沿用苏联的椭球,和我国实际不符,误差大,不过目前仍有应用。 国家80最常用,他是我国第一次根据国情于1980年设定的,椭球是与我国符合的参考椭球,椭球参数只需记住一个:长半轴a=6378140m,高程用的是1956高程系统(不是我们常用的1985系统),大地原点在陕西省西安市泾阳县永乐镇石际寺村,因原点在西安,也可以叫西安80,之所以选择西安,是因为他距离中国东南西北都差不多,便于控制整个系统的精度。 WGS-84,目前GPS采用的坐标系,接触多,这是地心坐标系,因为他考虑的是全球范围内,其定位定向和原点很讲究。长半轴a=6378137米(精密坐标多用此值,相当于赤道半 a≈6371000.790,也就是6371千米)。径,南北极半径b=6356752.3142,地球半径R=32b 2000国家大地坐标系是我国建立的地心坐标系,a=6378137m,但应用很少,北斗系统采用的这一系统,因为卫星导航涉及到全球,要有个地心坐标系相配。 此外,还有种世界上最精确的坐标系--ITRF系列,他利用全球的高等级点(中国也有

测量坐标计算及高程计算

在测量岗位工作已经有三个月到时间了,三个月的时间学习和收获了许多,现对这三个月的工作学习做一下总结。 测量工作内容主要有以下两个方面:测量放线(坐标计算),高程控制。 一、测量放线 测量放线到主要技术包括坐标计算和仪器使用。坐标计算包括直线段坐标计算和曲线段坐标计算。 1、直线段坐标计算。直线坐标计算分为中桩坐标计算和边桩坐标计算。 1)中桩坐标计算。根据公式 ααsin ,cos d Y Y d X X +=+=起中起中 d — 所求点到起点距离; α— 该直线坐标方位角。在此顺带详细介绍一下坐标方位角到计算方法: (1)坐标方位角的计算 AB AB A B A B AB x y x x y y ??=--=arctan arctan α当 R y x R y x R y x R y x -360,0,0180,0,0-180,0,0;,0,0?=?+?=??>?αααα;; (2)坐标方位角的推算

, , 218021*********βαβααβαβαα-?+=-=+?+=+=B B AB BA B 由此推出:βαα±?+=180后前(“左”→“+”, “右”→“-”),计算中,若α值大于360°,应减去360°;若小于0°,则加上360°。 2)边桩坐标计算 应用公式 )90sin(90cos(?±+=?±+=ααl y y l x x 中边中边), 进行边桩坐标到计算。北客站为直线车站,坐标计算较简单,现以位于机场线第二段底板的变电所夹层东北角C 点为例进行计算: 以机场线右线为基准来计算中、边桩坐标。已知起点坐标A (22264.4009,11553.2031),终点坐标B (22180.2655,11279.0739),起点里程为YDK0+255.275,C 点里程为YDK0+286.075,偏距为15.33m ,则由以上公式计算C 点坐标: α=arctan((11279.0739-11553.2031)/(22180.2655-22264.4009))+180°=252.938°, =中x 22264.4009+(286.075-255.275)*cos252.938°=22255.3640 =中y 11553.2031+(286.075-255.275)*sin252.938°=11523.7586 =c x +15.33*cos (252.938°+90°)=22270.0193 = c y +15.33*sin (252.938°+90°)=11519.2606,则可求出C (22270.0193,11519.2606)。 2、曲线段坐标计算 1)不带缓和曲线的圆曲线中、边桩坐标计算 北 中 x 中 y

北京54坐标系与西安80坐标系及常用坐标系参数

北京54坐标系与西安80坐标系及常用坐标系参数西安80坐标系与北京54坐标系其实是一种椭球参数的转换,作为这种转,在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WZ),尺度变化(DM)。要求得七参数就需要在一个地区需要3个以上的已知点。如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化面DM视为0。 方法如下: 第一步:向地方测绘局(或其它地方)找本区域三个公共点坐标对; 第二步:求公共点的操作系数。 第三步:利用相关软件进行投影变换。 54国家坐标系: 建国初期,为了迅速开展我国的测绘事业,鉴于当时的实际情况,将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。因此,P54可归结为:

a.属参心大地坐标系; b.采用克拉索夫斯基椭球的两个几何参数; c.大地原点在原苏联的普尔科沃; d.采用多点定位法进行椭球定位; e.高程基准为1956年青岛验潮站求出的黄海平均海水面; f.高程异常以原苏联1955年大地水准面重新平差结果为起算数据。按我国天文水准路线推算而得。 自P54建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。 1954北京坐标系参考椭球基本几何参数 长半轴a=6378245m 短半轴b=6356863.0188m 扁率α=1/298.3 第一偏心率平方=0.006693421622966 第二偏心率平方=0.006738525414683 80国家坐标系:采用国际地理联合会(IGU)第十六届大会推荐的椭球参数,大地坐标原点在陕西省泾和县永乐镇的大地坐标系,又称西安坐标系。 C80是为了进行全国天文大地网整体平差而建立的。根据椭球定位的基本原理,在建立C80坐标系时有以下先决条件:(1)大地原点在我国中部,具体地点是陕西省径阳县永乐镇;

我国三大坐标系

我国三大常用坐标系区别(北京54、西安80和WGS-84) 我国三大常用坐标系区别(北京54、西安80和WGS-84) 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 附: 我国常用高程系

浅谈具有高程补偿面的独立坐标系在工程上的应用

浅谈具有高程补偿面的独立坐标系在工程上的应用关键字:长度投影变形高程补偿面独立坐标系GPS基线 0 引言 某工程为石油管线带状地形图测量。为此需做一个带状地形控制网。用于带状地形图的绘制。其目的为以后施工建设提供控制依据,并为线路定测和中线放样提供依据。因测区地形多为山区。地形条件复杂,作业季节为盛夏,山区树林茂密,通视条件极差。为此,平面控制采用GPS测量,高程控制采用水准测量。由于平面控制网不仅要满足测图的需要,还要满足改扩建工程施工测量的要求,在进行GPS工程控制网坐标系的选择时,二者需同时兼顾。测区位于国家坐标系三度带边缘,且和国家控制点联测较为困难。本次工程对GPS工程控制网坐标系的选择和对短边GPS高程测量的精度分析得到结论,对工程控制网的建立有一定的借鉴作用。 1 长度投影变形来源 长度投影变形是在两个过程中产生的,我们知道,通过GPS采集测量数据必须通过高程归化平差,归化到参考椭球面上。在这过程中长度产生了高程归化投影变形。然后是由参考椭球体面上的长度投影到高斯平面上时产生了高斯投影长度变形。这样通过平差解算出的基线长度往往和实地量测长度值不同。这就是长度变形的来源。这时,必须人为加入长度变形改正数,为了避免在日常测绘工作中进行大量而繁琐的长度改正计算,必须对长度投影变形给予必要控制。 2 长度投影变形分析 由于该工程平面控制网不但作为大比例尺侧路的控制基础,还要满足后续改扩建工程施工放样测量的需要。为保证施工放样工作的顺利进行,要求由控制点坐标直接反算的边长与实地量得边长尽量相等,也就是说,由高程归算和高斯投影两项改正而带来的长度变形或者改正数,不得大于施工放样的精度要求。按《工程测量规范》要求,每公里长度改正数不大于2.5cm。 设地面实测边长归算到参考椭球面上的长度变形值为,则: = (1) 式中:为归算边高出参考椭球面的平均高程,S为归算边的长度,R为归算边方向参考椭球的法截线的曲率半径。由(1)式可知:的绝对值与成正比关系。当越大,越大。而与其他参数无关。当S=1km,=160m,=-2.5cm,即测区平均海拔超过160m,长度变形值每公里2.5cm。说明当测区平均海拔超过160m 时,若不采取解决办法。就不满足《工程测量规范》的要求。当为负值时,表明地标实测长度归算到参考椭球面上总是缩短的。

第二讲:三种常用的正交坐标系、梯度、散度1

1.2三种常用的正交坐标系 1.3标量场的梯度 1.4矢量场的通量与散度 1、了解三种常用坐标系的特点; 2、熟悉球坐标、柱坐标的基矢,基矢变化及空间微元表示; 3、理解梯度的物理意义,掌握其计算公式。 重点:1、基矢及空间微元表示, 2、梯度的物理意义及计算公式。 难点:基矢的变化。 讲授、练习 学时:2学时 §1.2三种常用的正交坐标系 一、坐标系的概念 1、坐标 确定一个空间点需要三个有序数()321,,q q q ,称为空间点的坐标。 2、坐标面、坐标线 两个坐标面的交线称为坐标线。若在空间任意一点,三个坐标面正交(基矢正交), 称为三维正交坐标系。 3、单位矢 用 321?,?,?e e e 分别表示坐标曲线321,,q q q 上的切向单位基矢。 规定:321?,?,?e e e 的方向关系构成右手系。 注意:在曲线坐标系中321?,?,?e e e 一般是空间点函数。 4、拉梅系数(度规系数) () ()()??? ??===z y x q q z y x q q z y x q q ,,,,,,33 2211()()()??? ??======333 222111,,,,,,c z y x q q c z y x q q c z y x q q 三个等值曲面,称为坐标曲面 由于空间点同时可用()z y x ,,表示,因此

在坐标系中,设()321,,q q q P 点的位置矢量为: ()321,,q q q r r = 则 33 2211dq q r dq q r dq q r r d ??+??+??= 式中 ????????? ? ?=??=??=??=??=??=??33333 2222 2 11111 ??????e h e q r q r e h e q r q r e h e q r q r 321,,h h h 称为坐标系的度规系数(拉梅系数)。这样, 111222333???d r e h dq e h dq e h dq =++ 1、坐标变量:()z y x ,, 2、坐标面:1C x =,2C y =,3C z = 坐标线:三条直线 3、基矢:()z y x e e e ?,?,?,正交且符合右螺旋 矢量表示:???x x y y z z A e A e A e A =++,例:位置矢量 ???x y z r e x e y e z =++ 4、空间微元: 线元: ???x y z dr e dx e dy e dz =++ 面元: ???,,x x y y z z dS e dydz dS e dxdz dS e dxdy === 5、拉梅系数:1321===h h h 三、柱坐标系 1、坐标变量:(),,z ρφ 2、坐标面:1C =ρ,2C φ=,3C z = 坐标线:两条直线、一个曲线 坐标变换:cos , sin ,x y z z ρφρφ=== x 为常数平面 x y z y 为常数平面 Z 为常数平面 e y ?e z ?x e ? (x,y,z ) p r 二、直角坐标系 x y 体元: dV dx dy dz =

相关文档
最新文档