阴离子交换树脂对铬离子的吸附及解吸研究

阴离子交换树脂对铬离子的吸附及解吸研究
阴离子交换树脂对铬离子的吸附及解吸研究

阴离子交换树脂对铬离子的吸附及解吸研究

阴阳离子交换树脂

【新树脂的预处理】 新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、铜等重金属离子。当树脂与水、酸、碱或其它溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。所以,新树脂在投运前要进行预处理。 1、阳离子树脂的预处理:首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐水中浸泡18-20小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;其次再用2-4%NaOH溶液,其量与上相同,在其中浸泡2-4小时(或小流量清洗),放尽碱液后,冲洗树脂直至排出水接近中性为止;最后用5%HCL溶液,其量亦与上同,浸泡4-8小时,放尽酸液,用清水漂流至中性待用。 2、阴离子树脂的预处理:首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐水中浸泡18-20小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;而后用5%HCL浸泡4-8小时,然后放尽酸液,用水清洗至中性;而后用2%-4% NaOH溶液浸泡4-8小时后,放尽碱液,用清水洗至中性待用。 分类产品名 称 功能基团 体积交换 容量 mmol/ml≥ 出场形 式 国外树脂对应 牌号主要用途 强酸性苯乙烯系阳离子树脂001*4 -SO3H 4.50 Na+ Amberlite IR-118 高纯水制备及抗菌素提炼等002-sc Amberlite IR-122 抗菌素提取与D113SC配套双层床 大孔弱酸性丙烯酸系阳离子树脂D111 -COOH 9.5 H+ Amberlite IRC-84 循环水处理、废水处理、脱色110 11.5 Amberlite IRC-84 用于提取链霉素及分离碱性抗菌素、 硬水软化、纯水制备 122 4.00 用于提纯维生素B12、钼酸铵精制、 链霉素、土霉素、四环素等抗菌素的 脱色味精脱色 强碱性苯乙烯系阴离子树脂201*4 -N+/(CH3)3 3.80 CL- Amberlite IRA-401 纯水、高纯水置备、糖液脱色、生化 制品的制备等 202 -N+/(CH3)2 \C2H4OH 3.10 Amberlite IRA-900 纯水制备、配套双层床 大孔强碱性苯乙烯系阴离子树脂D296 3.60 CL- 用于有机物脱色和纯水制备 D202 -N+/(CH3)2 \C2H4OH 3.50 Amberlite IRA-910 纯水制备、放射性元素提取、稀有元 素分离 大孔弱碱性苯乙烯系阴离子树脂330 -N+/(CH3) 2.H2O 9.00 Wofatit L-165 用在链霉素提炼中起中和作用、也可 用于中和有机酸及用于制备纯水 离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。 阳离子交换树脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。例如苯乙烯和二乙烯苯的高聚物经磺化处理得到强酸性阳离子交换树脂,其结构式可简单表示为R—SO3H,式中R代表树脂母体,其交换原理为 2R—SO3H+Ca2+—(R—SO3)2Ca+2H+(这也是硬水软化的原理)

离子交换树脂被污染的原因

离子交换树脂被污染的原因、预防措施及再生方法 离子交换树脂具有化学稳定性好、机械强度高、交换能力大等优点,因而在锅炉用水处理及除盐水、纯净水的生产中得到了广泛的应用。但在使用过程中,常出现清洗水不断增加,出水水质差,周期性制水量不断下降,颜色变深,树脂交换容量不断下降等现象。根据以上现象,可认定为树脂受到污染。如果不及时采取合理措施使其再生,就会造成树脂失效,甚至报废,影响正常生产。笔者结合生产实践,谈谈造成树脂污染的原因、预防措施及处理方法。离子交换树脂表面被有机物等杂质覆盖或树脂内部的交换孔道被堵塞而使树脂的工作容量明显降低,但树脂结构无变化的现象叫树脂的污染[1]。 1 污染原因分析 1.1 有机物引起的污染 有机物主要是存在天然水中的腐殖酸、相对分子量从500~5000的高分子化合物及多元有机羧酸等,这些物质在水中往往带有负电,成为阴离子交换树脂污染的主要物质。这类污染从COD的监测中可检出。 1.2 油脂引起的污染 水中往往含有油类物质,形成膜状物,堵塞或包裹了树脂的微孔,阻碍微孔中的活性集团进行离子交换。 1.3 胶体物质引起的污染 水中胶体颗粒常带负离子,使阴离子树脂受到污染。胶体物质中以胶体硅对树1脂的危害最大,它吸附并聚合在树脂的表面上阻止交

换。 1.4高价金属离子引起的污染 原水中的高价金属离子(如混凝剂中高价金属离子的后移等),如Al+、Fe3+等扩散进入阳离子交换树脂的内部,由于这些高价金属离子的交换势能高,与树脂中的固定离子SO3-牢固结合形成Al (SO3)3、Fe(SO3)3等,从而使这些固定离子失去作用,丧失了离子交换能力。 1.5 再生剂不纯引起的污染 再生剂往往混有很多杂质,如Fe3+、NaCI、Na2CO3等,对阴离子交换树脂的影响最为严重。 2 污染鉴别方法 2.1 查看树脂外观 发生污染的树脂,从外观上看,颜色由透明的黄色(阳离子树脂)或乳白色(阴离子树脂)明显变深甚至成为黑色。 2.2 化验指标 阴床出水电导率逐渐增加,pH值逐渐下降(可低至5.4-5.7)。因为再生时未除去的有机物,在恢复运行时会游离出来而进入水中。 2.3 分析树脂中的铁含量 由于铁污染最为常见,可分析树脂中的铁含量,如果Fe<0.01%,没有受到铁污染;如果Fe>0.1%,表示受到严重污染。 2.4 浸泡检验 用清水浸泡树脂,观察水面“颜色”,如果有“彩色”出现,说明受到

717阴离子交换树脂的正确使用方法及注意事项

717阴离子交换树脂的正确使用方法及其他注意事项 一、三大工作步骤 1、吸附俗称吃水。含钒母液通过离子交换树脂进行交换,钒酸根离子被树脂吸附,水从底部排出,一般而言,进柱母液水含钒克/升浓度不宜过高,氯化钠含量绝对不能超标,进柱前母液水应测定克/升浓度。定时检查排放尾水,以防尾水跑钒。当树脂达到一定量后(一吨树脂吸附容量约为60~80公斤),停止吸附。 2、反冲也叫反洗。是指在停止吸附后,用清水从交换柱(俗名树脂桶)底部进入进行冲洗。解脱前后均须反冲,解脱前把交换柱的泥浆、悬浮物冲洗干净,保证解脱产品的无杂纯度;解脱后把交换柱中的盐冲洗至和清水一致。 3、解脱俗称洗脱、脱钒。把树脂彻底清洗干净后,应及时把饱和树脂中的钒洗脱出来,使其再生。才能进行下轮的正常吸附,同时也能起到活化树脂和提高树脂工作效益的效果。 二、正确使用方法 1、吸附 1-1、含钒母液进入交换柱最好经过滤,除去杂质和机械物。母液水克/升浓度不宜过高,氯化钠含量绝对不能超标,否则会引起树脂的吸附不正常。 1-2、母液水不能集成一束进入交换柱中,这样会使树脂往两旁分散,缩短吸附行程,影响交换效果。 1-3、溶液禁止由交换柱口溢出。吸附过程中,应控制好交换柱上方的进水阀门和交换柱底部的出水阀门。 1-4、在吸附过程中不能进行吊空吸附(即液水低于树脂面,现出树脂,)这样会进入空气,也会影响交换效果。 1-5、在吸附一段时间或吸附达到一定量后,排放尾水克/升浓度会逐渐由低转告,属正常现象。一般而言,解脱后吸附6-8小时不会出现此现象(特殊情况除外),要定时检查尾水,掌握母液水中钒的吸附和排放的金属平衡。 2、反冲 2-1解脱前反冲主要是洗尽交换柱中的泥浆和悬浮物,保证产品的纯度。应用清澈透明的自来水或地下水。 2-2、反冲水量应控制在一定量的流速,不可时大时小;也忌水开的大时无人看管(反冲

铬离子的回收

铬离子的回收 实验目的 1.了解铬离子的危害性,掌握如何从含铬废液中回收铬。 2.学会利用各个离子不同的性质来提取分离某一离子。 3.培养设计实验的能力与锻炼严谨的思维能力。 一、实验原理 由于要处理的废液中主要是Cr3+、Fe3+ 、Sn4+,铬的回收受到这两种离子的影响,所以利用各金属离子的差异,将其进行分离: 一:PKsp的不同及各金属氢氧化物碱溶性的差异,如下表: 二:利用溶解度及其他性质的不同: 溶解度:: SnCl4:酸性较低时易水解为HCl和锡的氢氧化物,酸性较大时 溶解度很大,在重铬酸钾结晶时不会结晶。 由此表可知,加酸时加HCl而不加H2SO4,碱加KOH而不加NaOH(NaCl溶解度随温度变化不大,但低温时溶解度大于KCl) 还有就是三价铬离子的与双氧水在碱性条件下反应生成六价铬(铬酸根:CrO4 2-),而其他离子则不发生该反应。 2 Cr(OH) 3 +3 H2O2 + 4 OH- =2CrO42- +8 H2O 三:在酸性条件下结晶析出重铬酸钾

反应流程图如下: PH调到5.6以上即可将铬离子和铁离子全部沉淀(当然锡离子早已沉淀),抽滤后得到三种沉淀,PH=8时氢氧化铬不会溶解,至于氢氧化锡溶解一点也关系。沉淀加入过氧化氢后(理论量1.5倍的6%的过氧化氢),再加入适量NaOH,使其PH=10,使得三价铬变为六价铬,锡不溶解和铁一起到滤渣中更好,若稍有溶解,因为四氯化锡的溶解度很大,只要PH足够低(本验中锡离子的量不是很多,PH=1~2即可),四氯化锡就不会水解生成沉淀,而四氯化锡的溶解度又很大,不会与重铬酸钾一起结晶析出。 四、铬的总量测定 利用氧化剂过硫酸钾把铬离子氧化为六价的铬酸根离子,然后用FeSO4滴定,即可得到铬的总量。反应如下: Cr2(SO4)3十3K2S2O8十8H2O=2H2CrO4十3K2SO4十6H2SO4 二、实验步骤 1.预处理取废液加入适量活性炭,去色后过滤,取滤液。 2.取滤液加入适量溴百里酚蓝指示剂调节溶液由黄变蓝即可将其PH调 到7到8(也可以边加边测)。抽滤,洗涤取沉淀,加入x ml6%H2O2, 和适量KOH(后者应该缓慢加入),至溶液中PH=10。然后加热、过滤, 取滤液,加入适量百里酚蓝指示剂,加入HCl调节PH=1~2(为避 免结晶吸附指示剂,可以边加边测PH),然后加热浓缩至有少量晶体析 出,趁热过滤,热水洗涤晶体(晶体是KCl),滤液至于冰浴上,结晶,过 滤,冰水洗涤。即可得到重铬酸钾晶体。 3.铬的总量的测定 取50ml预处理后的含铬废液与100ml小烧杯,加入过量的K2S2O8固体, 加热氧化,加热半个小时至溶液颜色变为黄色,过滤除去过量的 K2S2O8固体,冷却后用适量稀硫酸转移至容量瓶,定容为100ml,用标准 (NH4)2Fe(SO4)2溶液滴定,计算铬总量。

阴离子交换树脂

阴离子交换树脂 离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的的 一种可逆性化学反应,当液相中的某些离子较为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。 离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.1~1mm,其离子交换能力依其交换能力特征可分: 1. 强碱型阴离子交换树脂:主要是含有较强的反应基如具有四面体铵盐官能基之-N+(CH3)3,在氢氧形式下,-N+(CH3)3OH-中的氢氧离子可以迅速释出,以进行交换,强碱型阴离子交换树脂可以和所有的阴离子进行交换去除。 如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 2. 弱碱型阴离子交换树脂:这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)如氨基,仅能去除强酸中的阴离子如SO42-,Cl-或NO3-,对于HCO3-,CO32-或SiO42-则无法去除。 3 .对阴离子的吸附 强碱性阴离子树脂对无机酸根的吸附的一般顺序为: SO42-> NO3->Cl-> HCO3-> OH- 弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:

离子交换树脂的变质

离子交换树脂的变质、污染与复苏 一、离子交换树脂的变质 离子交换树脂在水处理系统运行的过程中,由于氧化或降解,树脂结构遭受破坏,这是一种不可逆的树脂的劣化,成为树脂的变质。 (一)阳离子交换树脂的氧化 1.阳树脂氧化的原因和现象 阳树脂氧化的主要原因是由于水中有氧化剂,如游离氯、硝酸根等,水中重金属离子能起催化作用,当温度高时,树脂受氧化剂浸蚀更为严重,其结果是使树脂交换基团降解和交换骨架断裂,树脂颜色变淡和其体积增大。 2.防止树脂被氧化的方法 (1)活性炭过滤用活性炭过滤水进行脱氧是防止树脂被氧化的常用方法,其原理是基于吸附作用,并在被吸附的活性炭表面上进行下面的化学反应。其反应为: C---+HOCl→CO-+HCl 活性炭脱氯是一种简单、经济、行之有效的方法,故得到普通应用。 (2)化学还原法化学还原法是在含有余氯的水中,投加一定量还原剂(如SO2或Na2SO3)进行脱氯。 (3)选用高交联度的大孔阳树脂。 (4)避免使用质量差的盐酸其中含有氧化剂对阳树脂造成危害。 (二)强碱性阴树脂的降解 在离子交换水处理系统中,强碱性阴树脂通常是置于阳树脂后使用,一般是遭受水中溶解氧的氧化,以及再生过程中碱中所含的氧化剂(如ClO3-和FeO42-)的氧化,其结果是强碱性季铵基团逐渐降解,但不会发生骨架的断链。在化学除盐工艺中,强碱性阴树脂的降解主要表现为对中性盐的分解容量,特别是对硅的交换容量下降。 季铵基团受氧化后,按叔、仲、伯胺顺序降解的过程如下: CH3 CH3

R—N CH3 [O] R—N [O] R═N—CH3 [O]R≡N 非碱性物质 CH3 CH3 2.防止强碱性阴树脂降解的方法 (1) 真空除气法通过使用真空除气器,减少阴床进水中的氧含量。 (2)降低再生液中含铁量降低再生液中含铁良,必须认真做好碱液系统中的铁的腐蚀控制。 (3)选用隔膜法生产的烧碱,降低碱液中NaClO3的含量(可降至6~7㎎/L)。 二、离子交换树脂的污染与复苏 在离子交换处理系统中,由于水中杂质浸入,至使树脂性能下降,因尚未涉及树脂结构的破坏,故这种劣化现象称树脂的污染。树脂的污染是一个可逆的过程,也就是当树脂被污染后,通过适当的处理,可以恢复其交换性能,这种处理称为树脂的复苏。 (一)铁对树脂的污染 1.污染的现象 阳阴树脂都可能发生铁的污染,被铁污染的树脂的颜色明显变深,甚至呈黑色;铁污染 会使树脂床层的压降增加和可能导致偏流;严重降低交换容量和再生效率;会使树脂含水量增加;还会使阴树脂加速降解。 2.污染的原因 在阳树脂的使用中,原水带入的铁离子大部分以Fe2+存在,它们被树脂吸附后,部分被氧化为Fe3+,再生时这些铁离子不能完全被H+交换出来。这是由于形成的高价铁化合物,牢固地沉积在树脂内部和表面,堵塞了树脂微孔,从而影响了孔道扩散,造成铁的污染。在水的预处理中,使用铁盐作混凝剂时,部分矾花被带入阳床,由于树脂层的过滤作用,矾花被积聚在树脂表面,再生时,酸液溶解了矾花,使之成为Fe3+也会形成铁污染。一般用于软化水处理的纳离子交换的阳树脂,更容易受到铁的污染。 铁对阴树脂污染的原因主要是再生用的烧碱溶液中含有Fe2O3和NaClO3,它们生成高铁酸盐(如FeO43+)。高铁酸盐随碱液进入阴床后,因pH值降低,发生分解反应: 2FeO 42++10H+ 2Fe3++3/2O 2 +5H 2 O

阴阳离子交换树脂的保存和预处理

阳离子交换树脂 树脂的贮存: 离子交换树脂肪内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水。如贮存过程中树脂脱了水,应先用浓食盐水(-10%)浸泡,再逐渐稀释,不直接放于水中,以免树脂急剧膨胀而破碎。 在长期贮存中,强型树脂应转变成盐型,弱型树脂可转变成相应的氢型或游离碱型也可转为盐型,然后浸泡在洁净的水中。树脂在贮存或运输过程中,应保持在5-40°C的温度环境中,避免过冷或过热,影响质量。若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水的温度可根据气温而定。 新树脂的预处理: 新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸铁、铝、铜等重金属离子。当树脂与水、酸、碱或其他溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。所以,新树脂在投运前要进行预处理。 阳树脂预处理步骤如下: 首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐溶液中浸泡18-20小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;其次再用2%-4%NaOH溶液,其量与上相同,在其中浸泡2-4小时(或作小流量清洗),放尽碱液后,冲洗树脂直至排出水接近中性为止。最后用5%HCL溶液,其量亦与上述相同,浸泡4-8小时,放尽酸液,用清水漂流至中性待用。 阴离子交换树脂 树脂的贮存: 离子交换树脂肪内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水。如贮存过程中树脂脱了水,应先用浓食盐水(-10%)浸泡,再逐渐稀释,不得直接放于水中,以免树脂急剧膨胀而破碎。 在长期贮存中,强型树脂应转变成盐型,弱型树脂可转变成相应的氢型或游离碱型也可转为盐型,然后浸泡在洁净的水中。树脂在贮存或运输过程中,应保持在5-40°C的温度环境中,避免过冷或过热,影响质量。若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水的温度可根据气温而定。 新树脂的预处理: 新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、铜等重金属离子。当树脂与水、酸、碱或其他溶液 相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。所以,新树脂在投运前要进行预处理。 阴树脂的预处理 其预处理方法中的第一步与阳树脂预处理方法中的第一步相同;而后用5%HCL浸泡4-8 小时,然后放尽酸液,用水清洗至中性;而后用2%-4%NaOH溶液浸泡4-8小时后,放尽碱液,用清水洗至中性待用。 离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。常用的离子交换设备装填的树脂大都是201x7强碱性苯乙烯系阴离子交换树脂及001x7强酸性苯乙烯系阳离子交换树脂。如果在水质要求特别高的场合则使用抛光树脂。 树脂保存方法

阴离子交换树脂

阴离子交换树脂 离子交换法2007年02月05日星期一23:04一、前言 离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的的一 种可逆性化学反应,当液相中的某些离子较为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。 离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.1~1mm,其离子交换能力依其交换能力特征可分: 1. 强碱型阴离子交换树脂:主要是含有较强的反应基如具有四面体铵盐官能基之-N+(CH3)3,在氢氧形式下,-N+(CH3)3OH-中的氢氧离子可以迅速释出,以进行交换,强碱型阴离子交换树脂可以和所有的阴离子进行交换去除。 如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 2. 弱碱型阴离子交换树脂:这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生) 如氨基,仅能去除强酸中的阴离子如SO42-,Cl-或NO3-,对于HCO3-,CO32-或SiO42-则无法去除。 3 . 对阴离子的吸附 强碱性阴离子树脂对无机酸根的吸附的一般顺序为: SO42-> NO3-> Cl-> HCO3-> OH- 弱碱性阴离子树脂对阴离子的吸附的一般顺序如下: OH-> 柠檬酸根3-> SO42-> 酒石酸根2->草酸根2-> PO43->NO2-> Cl->醋酸根-> HCO3- 注意事项 1、离子交换树脂含有一定水份,不宜露天存放,储运过程中应保持湿润,以免风干脱水,使树脂破碎,如贮存过程中树脂脱水了,应先用浓食盐水(10%)浸泡,再逐渐稀释,不得直接放入水中,以免树脂急剧膨胀而破碎。 2、冬季储运使用中,应保持在5-40℃的温度环境中,避免过冷或过热,影响质量,若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水浓度可根据气温而定。 3、离子交换树脂的工业产品中,常含有少量低聚合物和未参加反应的单体,还含有铁、铅、铜等无机杂质,当树脂与水、酸、碱或其它溶液接触时,上述物质就会转入溶液中,影响出水质量,因此,新树脂在使用前必须进行预处理,一般先用水使树脂充分膨胀,

各种型号离子交换树脂

几种常用的离子交换树脂型号 一、001x7Na(732)阳离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有磺酸基(-SO 3 H)的离子交换树脂,它具有交换容量高、交换速度快、机械强度好等特点。 本产品相当于美国Amberlite IR-120;Dowex-50,德国:Lewatit-100.日本:精品文档,超值下载 Diaion SK-1,法国AllassionCS;Duolite C-20,前苏联ky-3;SDB-3,相当于我国老牌号:732;强酸1号、2号、3号、4号;010。 用途:本产品主要用于硬水软化、脱盐水、纯水和高纯水的制备,也用于催化剂和脱水剂,以及湿法冶金、分离提纯稀有元素、食品、制药、制糖工业等。 二、201x7(717)强碱性阴离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有季铵基[N(CH 3) 3 OH]的阴离子 交换树脂,该树脂具有机械强度好,耐热性能高等特点。 本产品相当于美国Amberlite IRA-400,德国:Lewatit M500,日本:Diaion SA-10A,法国Allassion AG217,前苏联AB-17,相当于我国老牌号:717、702、强碱2号、4号、2041号。 用途:本产品主要用于纯水、高纯水的制备,废水处理,生化制品的提取,放射性元素提炼,抗菌素分离等。 三、D201大孔强碱阴离子交换树脂 本产品的性能与201×7强碱性阴离子交换树脂相似,但有更好的物理及化学稳定性(耐渗透压力,耐磨损等)及抗污染性能,由于具有大孔结构,因此可用于吸附分子尺寸较大的杂质以及在非水溶液中使用。 本产品相当于美国Amberlite IRA-900,德国:Lewatit MP-500日本:Diaion PA 308。相当于我国老牌号:D231;DK251;731;290。 用途:本产品主要用于高纯水的制备(尤其适用于高速混床)及用于凝结水净化装置(H-OH或NH 4 -OH混床系统),也用于废水处理,回收重金属,生化药物分离和糖类提纯。 四、D301大孔弱碱性苯乙烯系阴离子交换树脂 本产品是大孔结构的苯乙烯一二乙烯苯共聚体上带有叔胺基[-N(CH3)2]的离子交换树脂,其碱性较弱,能在酸性、近中性介质中有效地交换无机酸及硅酸根,并能吸附分子尺寸较大的杂质以及在非水溶液中使用,该树脂具有再生效率高、碱水耗低、交换容量大、抗有机物污染及抗氧化能力强、机械强度好等优点。 本产品相当于美国Amberlite IRA-93,德国Lewatit MP-60,日本Diaion WA-30,法国Duolite A305,前苏联AH-89×77Ⅱ,英国Zerolite MPH,相当于我国老牌号:D354、D351、710、D370。 用途:本产品主要用于纯水及高纯水的制备,用于阴复床、阴双层床系统,对含盐量较高的水源尤为合适,并能保护强碱阴树脂不受有机物污染,以及糖液脱色含铬废水的处理及回收等等。

阴阳离子交换树脂分离技术

阴阳离子交换树脂分离技术 在化学除盐系统中由于设备缺陷或树脂存放时误装等原因,容易造成床内阴、阳树脂混合,使除盐系统再生不合格或制水水质变差。本文利用阴、阳树脂的比重差,采用浮选法将混合过后的阴、阳树脂进行分离,从而恢复除盐系统出水品质,同时避免了更换树脂造成的浪费。 标签:阴树脂;阳树脂;氯化钠;搅拌;分离 1 現状 汽水二车间化水专业一级除盐设备F系列发现阴床出水电导率、pH、碱度均高,阴床再生后正洗、循环时间较长,且设备周期制水量明显下降,由原来的24小时降为19小时。 2 原因排查 通过对F系列制水系统出水水质、系统流程的梳理,并且对阴床树脂进行取样分析鉴别,发现阴床内部树脂里确实含有部分阳树脂。 分析阴床内阳树脂的混入途径,结合反洗过程的工艺流程,进行查找。因反洗罐只有一台,当阴阳床树脂交替输入反洗罐时,存在树脂存留现象,这样就会造成阳树脂混入阴床。确认是在阴阳床大反洗过程中交替输入反洗罐时发生了树脂混杂。 3 解决措施 ①将F系列阳床反洗系统进行改造。将F系列阳床反洗系统与老系统阳反洗系统进行改造,解决共用一台反洗罐的问题,杜绝了阳树脂再次混入阴床内的途径; ②将阴床内混入的阳树脂进行分离。对阴、阳树脂的性质加以研究,确定实施方案。 4 一级除盐系统阴阳树脂的分离方案 4.1 阴阳树脂的物理特性 阴阳树脂均呈球状颗粒,阴树脂粒度在0.45~0.9mm,阳树脂粒度在0.63~1.25mm,阴树脂密度在湿态状态下的颗粒密度为1.05~1.11g/mL,阳树脂密度在湿态状态下的颗粒密度为1.24~1.28g/mL(如表1)。 从表1可以看出阴阳树脂的颗粒粒径范围有交叉不能采用筛分法。

离子交换树脂的使用说明

离子交换树脂的使用说明 一、贮存与运输 离子交换树脂一般是在充分膨胀、湿润的球粒状态下供应,在贮存、运输过程中要保持包装完好无损,避免树脂脱水、冻裂及污染。不能露天存放,存放处的温度为0—40℃,当存放处温度稍低于0℃时,应向包装内加入澄清的饱和食盐水,浸泡树脂。此外,当存放处温度过高时,不但使树脂易于脱水,还会加速阴树脂的降解。一旦树脂失水,使用时不能直接加水,可用澄清的饱和食盐水浸泡,然后再逐步加水稀释,洗去盐分,贮存期间应使其保持湿润。 二、脱水树脂复苏 树脂干燥失水是最大危险之一,失水树脂用10%食盐水浸泡1—2小时,然后稀释,再投入使用,以防止树脂水合急剧膨胀而破损。 三、树脂鉴别 使用单位存放树脂和填装时发生混淆,必须鉴别,确认后,投入装置,以充分发挥树脂的工作性能。 1、鉴别001×7和201×7两种树脂,可以利用湿真密度不同而区别,取一点树脂放入饱和食盐盐水中,浮在上面的是201×7阴树脂,下沉的则是001×7阳树脂。 2、鉴别强弱型阳树脂,一是外观,强酸性阳树脂为棕黄色,弱酸性阳树脂为乳白色或淡黄色,二是用转型膨胀率判断,阳树脂用盐酸转为H型,再用烧碱转为Na型,是其体积膨胀,弱酸性树脂明显大于强酸性树脂。 3、鉴别强弱型阴树脂,可以利用加酚酞的氢氧化钠浸泡10min,用无离子水洗净后,强型阴树脂呈紫色,大孔强型阴树脂呈粉红色,弱型阴树脂不变色。 四、树脂预处理 将准备装柱使用的新树脂,先用热水(清洁的自来水也可)反复清洗,阳离子交换树脂可用70—80℃的热水,阴离子交换树脂的而热性能较差一些,可用50—60℃热水。开始浸洗时,每隔15分钟换水一次,浸洗时要不时搅动,换水4—5次后,可隔约30分钟换水一次,总共换水7—8次,浸洗至浸洗水不带褐色,泡沫很少时为止。 水洗后,再经酸碱处理,阳离子交换树脂可按下述步骤处理: 1、用1N盐酸缓慢流过树脂,用量约为强酸阳树脂体积的2—3倍,弱酸阳树脂体积的3—5倍,每小时1.5倍床层体积流过。 2、用水冲洗,出水PH为5左右,用3倍树脂体积5%的NaCl溶液流过树脂,流速与1相同。 3、用1NNaOH流过树脂,用量及流速与1相同。 4、用水冲洗至出水PH为9左右。 5、用1N盐酸或硫酸,将树脂转成H-型,用量为树脂体积的3—5倍,流速与1相同。 6、酸流完后,用去离子水冲洗至出水PH值为6以上时,即可投入使用。 对于阴离子交换树脂水洗后的酸、碱处理次序,可采用碱→酸→碱次序,酸、碱用量及流速,与阳树脂相对应,弱碱阴树脂与弱酸阳树脂相对应。 五、离子交换树脂的复活处理 1、铁污染:树脂被铁污染后,颜色变深甚至发黑,可以用二倍树脂体积10%的盐酸,以约0.6m/h流速通过树脂层,然后用同样流速40℃的清水清洗,最后用过量的NaOH再生(阳树脂)。 2、硅污染:被树脂吸附的硅酸,在低PH的条件下,容易聚合为高聚物沉淀于树脂中,可用40—50℃,6%—8%NaOH溶液浸泡,再用清水洗,为避免硅污染,应适当提高再生剂的浓度和温度。

废羊毛对三价铬离子络合物的吸附研究

印染助剂TEXTILE AUXILIARIES Vol.34No.1Jan.2017 第34卷第1期2017年1月晋平平,贺江平,伍展辉 (西安工程大学,陕西西安710048) 摘要:选取磺基水杨酸钠、 柠檬酸和草酸作为配体与Cr 3+配位,然后用剥鳞的废弃羊毛吸附该络合物。对该吸附过程建立了适当的模型,描述了其吸附行为,对吸附机理进行了探究。采用Langmuir 及Freundlich 吸附等温线模型对试验数据进行拟合,结果表明Cr 3+的吸附行为以Langmuir 等温吸附为主;吸附动力学表明拟二级动力学方程能较好地描述Cr 3+的吸附行为;热力学参数表明Cr 3+的吸附为可自发进行的吸热反应,升温有利于反应的进行;Cr 3+络合物的红外光谱表明,配体中草酸根的配位能力最强;剥鳞废弃羊毛吸附前后的红外光谱表明,吸附是静电结合以及络合作用的结果;最后废羊毛对三种配体吸附效果评定为柠檬酸-铬络合物> 草酸-铬络合物>磺基水杨酸-铬络合物。关键词:吸附;Cr 3+;废弃羊毛;废水;配位 中图分类号:X788文献标识码:A 文章编号:1004-0439 (2017)01-0012-06Study on adsorption of waste wool on trivalent chromium ion complexes JIN Pingping,HE Jiangping,WU Zhanhui (Xi ′an Engineering University,Xi ′an 710048,China) Abstract:Citric acid and oxalic acid were chosen as ligands to coordinate with Cr 3+,and then the com ? plex was adsorbed by scraped wool.A proper model was established for the adsorption process.The adsorp ?tion behavior was described and the adsorption mechanism was discussed.The adsorption data were fitted by Langmuir and Freundlich adsorption isotherm equation,the result proved that the Langmuir adsorption iso ?therm was the main adsorption behavior of Cr 3+.The adsorption kinetics data showed that the pseudo sec ?ond-order equation could well describe the adsorption behavior.The thermodynamic parameters showed that the adsorption of Cr 3+was a spontaneous endothermic reaction,increasing temperature was conducive to the reaction.The infrared spectroscopy of Cr 3+complex showed that the coordination ability of oxalate was the strongest.The infrared spectroscopy of waste wool before and after adsorption indicated that adsorption was the result of the electrostatic binding and complexation.Finally,the adsorption of waste wool to three kinds of ligand was evaluated as citric acid-chromium complex>oxalic acid-chromium complex>sulfosalicylic acid-chro ?mium complex. Key words:adsorption;trivalent chromic ion;waste wool;waste water;coordination 处理重金属废水有多种方法[1],如吸附法、化学 法、膜分离法和离子交换法等。这些方法中有的易造 成二次污染,或是成本高、再生困难,因而应用较少。 而其中的吸附法具有很好的优势,操作简单、环保性 强,是最近几年许多企业青睐的一种废水处理方式。Cr 3+作为一种典型的非反应活性过渡元素,在水中的存在形式是Cr 3+与水的络合物,所以吸附材料直接吸附水中的Cr 3+是十分困难的。受到酸性媒介染料染色机理[2]的启发,选择具有较强配位能力的配体可取代配位水分子,从而提高Cr 3+活性。本文采用磺基废羊毛对三价铬离子络合物的吸附研究 收稿日期:2016-04-22 作者简介:晋平平,女,山西介休人,在读硕士,主要从事助剂研究开发工作。 万方数据

离子交换树脂的变质

离子交换树脂的变质、污染与复 一、离子交换树脂的变质 离子交换树脂在水处理系统运行的过程中,由于氧化或降解,树脂结构遭受破坏,这是一种不可逆的树脂的劣化,成为树脂的变质。 (一)阳离子交换树脂的氧化 1.阳树脂氧化的原因和现象 阳树脂氧化的主要原因是由于水中有氧化剂,如游离氯、硝酸根等,水中重金属离子能起催化作用,当温度高时,树脂受氧化剂浸蚀更为严重,其结果是使树脂交换基团降解和交换骨架断裂,树脂颜色变淡和其体积增大。 2.防止树脂被氧化的方法 (1)活性炭过滤用活性炭过滤水进行脱氧是防止树脂被氧化的常用方法,其原理是基于吸附作用,并在被吸附的活性炭表面上进行下面的化学反应。其反应为: C---+HOCl→CO-+HCl 活性炭脱氯是一种简单、经济、行之有效的方法,故得到普通应用。 (2)化学还原法化学还原法是在含有余氯的水中,投加一定量还原剂(如SO2或Na2SO3)进行脱氯。 (3)选用高交联度的大孔阳树脂。 (4)避免使用质量差的盐酸其中含有氧化剂对阳树脂造成危害。 (二)强碱性阴树脂的降解 在离子交换水处理系统中,强碱性阴树脂通常是置于阳树脂后使用,一般是遭受水中溶解氧的氧化,以及再生过程中碱中所含的氧化剂(如ClO3-和FeO42-)的氧化,其结果是强碱性季铵基团逐渐降解,但不会发生骨架的断链。在化学除盐工艺中,强碱性阴树脂的降解主要表现为对中性盐的分解容量,特别是对硅的交换容量下降。 季铵基团受氧化后,按叔、仲、伯胺顺序降解的过程如下: CH3 CH3

R—N CH3 [O]R—N [O] R═N—CH3 [O]R≡N 非碱性物质 CH3 CH3 2.防止强碱性阴树脂降解的方法 (1) 真空除气法通过使用真空除气器,减少阴床进水中的氧含量。 (2)降低再生液中含铁量降低再生液中含铁良,必须认真做好碱液系统中的铁的腐蚀控制。 (3)选用隔膜法生产的烧碱,降低碱液中NaClO3的含量(可降至6~7㎎/L)。 二、离子交换树脂的污染与复 在离子交换处理系统中,由于水中杂质浸入,至使树脂性能下降,因尚未涉及树脂结构的破坏,故这种劣化现象称树脂的污染。树脂的污染是一个可逆的过程,也就是当树脂被污染后,通过适当的处理,可以恢复其交换性能,这种处理称为树脂的复。 (一)铁对树脂的污染 1.污染的现象 阳阴树脂都可能发生铁的污染,被铁污染的树脂的颜色明显变深,甚至呈黑色;铁污染 会使树脂床层的压降增加和可能导致偏流;严重降低交换容量和再生效率;会使树脂含水量增加;还会使阴树脂加速降解。 2.污染的原因 在阳树脂的使用中,原水带入的铁离子大部分以Fe2+存在,它们被树脂吸附后,部分被氧化为Fe3+,再生时这些铁离子不能完全被H+交换出来。这是由于形成的高价铁化合物,牢固地沉积在树脂部和表面,堵塞了树脂微孔,从而影响了孔道扩散,造成铁的污染。在水的预处理中,使用铁盐作混凝剂时,部分矾花被带入阳床,由于树脂层的过滤作用,矾花被积聚在树脂表面,再生时,酸液溶解了矾花,使之成为Fe3+也会形成铁污染。一般用于软化水处理的纳离子交换的阳树脂,更容易受到铁的污染。 铁对阴树脂污染的原因主要是再生用的烧碱溶液中含有Fe2O3和NaClO3,它们生成高铁酸盐(如FeO43+)。高铁酸盐随碱液进入阴床后,因pH值降低,发生分解反应: 2FeO42++10H+ 2Fe3++3/2O2+5H2O

第五章 离子交换分离法

第五章离子交换分离法 本章的教学目的与要求:了解离子交换分离法的原理及应用 授课主要内容:1)离子交换树脂的作用、性能和分类;2)离子交换的基本理论;3)离子交换分离操作方法;4)柱上离子交换分离法;5)离子交换分离实例;6)离子交换层析法 重点、难点及对学生的要求: 掌握离子交换分离法的原理及分离条件的选择 主要外语词汇:ion change resin; cation resin; anion resin 辅助教学情况:多媒体课件 复习思考题习题:1)离子交换树脂的作用、性能和分类;2)子交换树脂的分类;3)离子交换树脂选择;4)如何利用离子交换树脂进行去离子水的制备、试样中总盐量的测定、干扰组分的分离、痕量组分的富集。5)什么是树脂的交联度?如何表示?参考教材:《工业分析》机械工业出版社、重庆大学出版社,1997年,第一版 《分离及复杂物质分析》邵令娴编,化学工业出版社,1984年,第一版 课时安排:4学时 离子交换分离是目前最重要和应用最广泛的分离方法之一,不但能用于分离性质相近的无机离子,而且可以用来分离多种有机化合物,可用于分析分离,也可用于制备。 离子交换分离是应用极广的,如净化水,分离和提取物质,离子交换色谱等。 1850年,Thompson及Way最早发现和研究了离子交换现象,研究了土壤中Ca、Mg与水中K+、NH4+的交换现象。 1903年Harms合成了硼铝酸盐作为离子交换剂,Gans把天然及合成硅酸盐用于软化水及糖的净化,以后出现了磺化煤阳离子交换剂。 1933年Adams首先用人工合成酚醛类的阴阳离子交换树脂 1945年合成了聚乙烯树脂。 离子交换的理论研究在这时打下了基础。 离子交换分离的特点: 1、分离效率高(能用于带相反电荷离子分离,又能用于带相同电荷及性质相近离子的分离) 2、应用范围广(既可用于分离,又可用于富集,还可用高纯物制备及蛋白质、核酸、酶等生物活性物的纯化。无机、有机及高纯物的制备) 3、树脂可反复使用(具有再生能力) 4、操作烦,周期长,耗费洗脱液的量多(所以仅用于解决分析中较困难的分离问题) 第一节概论 离子交换剂: 1. 离子交换剂的类型 有有机、无机两种: 1).无机离子交换剂 有磺化煤、活性炭,水合氧化物,氧化锆,Al2O3,氧化锡,氧化锑,高价金属盐、磷酸锆、钨酸锆、磷酸钛等 杂多酸盐、磷钼酸盐对Cs 选择性 亚铁氰化物:主要用于碱金属 铝硅酸盐。 这些都是现在正在发展的无机离子交换剂,以后还要介绍。最主要还是高分子聚合物的离子交换树脂。 无机离子交换剂的缺点:1、交换能力低;2、化学稳定性差;3、机械稳定性差 有机离子交换剂的特点:1、网状结构;2、难溶(水、酸、碱、有机溶剂);3、稳(热、机械、化学);

离子交换树脂受到污染的原因

离子交换树脂受到污染的原因离子交换在运行过程中,如果发现颜色变深;树脂交换容量不断地下降;清洗水不断地增加;出水水质变差;周期性制水容量不断地下降等现象,可以认为树脂受到污染。污染的原因主要有: (1).有机物引起的污染有机物质在水中往往带有负电,成为阴离子交换树脂污染的主要物质.有机物主要存在于天然水中的腐殖酸,胶团性的有机杂质,相对分子质量从500到5000的高分子化合物以及多元有机羚酸等,这些物质吸附在树脂上,有的占据或者结合了树脂上的活性基团,有的使树脂的强碱活性基团碱性降低而降解,使树脂降低了离子交换能力。这类污染从COD的监测中可以检出。 (2).油脂引起的污染水中往往含有油类物类物质,形成膜状物,堵塞或包裹了树脂的微孔中的活性基团进行离子交抽象. (3).悬浮物引起的污染水中悬浮物质,紧裹着树脂表面的液膜层,从而隔断了树脂的离子交换过程,使树脂受到污染,这种污染以阳离子交换树脂为多。离子交换树脂,软化水处理设备,树脂 (4).胶体物质引起的污染水中胶体颗粒常带负离子,使阴离子交换树脂受到污染,胶体物质中以胶体硅对树脂的危害最大,它吸附并在树脂的表面上聚合,阻止树脂进行离子交换. (5).高价金属离子引起的污染原水中的高价金属离子(如混凝剂中高价金属离子的后移等),如A13+、Fe3+等圹散进入阳离子

交换树脂的内部,同于这些高价金属离子的交换势能高,与树脂中的固定离子-SO32-牢固结合形成AL(SO3)3、Fe(SO3)3等,从而使用这部分的固定离子失去作用,丧失了离了子交换能力。 (6).再生剂不纯引起的污染离子交换树脂的再生剂不纯往往混有许多杂质,龙其是烧碱(NaOH)中的杂质甚多,如Fe3+纯、NaCl、Na2CO3等,对阴离子交换树脂的污染最为严重。

离子交换树脂的种类

离子交换树脂的种类 离子交换剂是指具有离子交换能力的固体物质,依其可交换离子的种类,可分为阳离子剂和阴离子剂两大类。最主要的当属合成树脂。离子交换树脂可分别按照功能、内部结构、聚合物单体种类和用途分类。其中,以功能和内部结构分类为主流方式,故此处以这两种分类方式对离子交换树脂的种类作出说明。 1按功能分类 1.1阳离子交换树脂 首先,离子交换树脂可分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。而阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂则可分为强碱性和弱碱性两类。人工合成的阳离子树脂的官能团是有机酸,并按照酸性的强弱,分为强酸性和弱酸性两类。强酸性的官能团是苯磺酸,弱酸性的官能团则包括有机磷酸、羟基酸和酚等。酸主要以H+的形式与其他阳离子进行交换。例如,用H+与金属离子交换会使树脂变成盐的形式。强阳离子树脂除了酸形式R-O H外,生产厂家也会以钠盐R-O Nα的形式出售,分别称为氢型和钠型强阳离子交换树脂。 强酸性阳离子树脂含有大量的强酸性基团,如磺酸基?SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如?SO3H,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。树脂在使用一段时间后,要进行再生处理,即使用化学药品使离子交换反应向相反的方向进行,使树脂的官能基团恢复到原来的状态,以便重复利用。例如,上述的阳离子树脂一般使用强酸进行再生处理,此时树脂释放出被吸附的阳离子并与H+结合,进而恢复到原来的组成。 弱酸性阳离子树脂含有弱酸性基团,如羧基-COOH,能在水中离解出H+而呈酸性,但因其解离程度不高,因此一般仅程弱酸性,故而属于弱酸性阳离子树 -(R为碳氢链基团),可与溶液中脂。树脂离解后余下的负电基团,如R COO 的其他阳离子吸附结合,从而产生阳离子交换作用。如上所述,此类树脂的酸性即离解性较弱,在低pH下难以离解进而进行离子交换,只能在碱性、中性或微酸性溶液中(如pH值为5~14)起作用。这类树脂也是用酸进行再生,其再生性较强阳离子交换树脂更好。 1.2阴离子交换树脂 阴离子交换树脂的官能团包括有各种胺类,强碱性的官能团是季胺;弱碱性的官能团则有伯胺、仲胺和叔胺等。季胺一般为氯盐和氢氧根型,即R-N(CH3)3Cl,R-N(CH3)3OH,其中R代表碳链骨架。

相关文档
最新文档