电流的磁场优秀教案

电流的磁场优秀教案
电流的磁场优秀教案

《电流的磁场》教学设计

课题:电流的磁场

课时:1课时

教学三维目标:

1、知识与技能:(1)了解奥斯特实验,理解通电导体周围存在磁场;

(2)理解通电导体周围磁场的方向与电流方向有关;

(3)学会利用安培定则判定通电螺线管的极性;

(4)了解电磁在生产生活中的运用。

2、过程与方法:(1)帮助学生建立空间物理模型;

(2)让学生通过实验学会分析、比较、归纳研究物理问题;

(3)让学生掌握学习科学的重要方法——对比法;

(4)培养学生合作探究、自主学习、交流分享的学习能力。

3、情感态度与价值观:(1)通过观察探究,培养学生对自然科学的兴趣和热爱,初步知道

探索研究自然规律的重要方法是观察和实验;

(2)指导学生学习科学家严谨治学、谦虚谨慎的学习态度;

(3)让学生树立环保意识,从身边做起,从小事做起。

教学重点:奥斯特实验演示及分析。

教学难点:通电螺线管极性的判断(安培定则)及运用。

教学准备:奥斯特实验演示装置条形磁体(1根)小磁针(2颗)

螺线管磁场演示仪(2套) PPt课件

(4)闭合开关,改变电流的方向,指导学生观察小磁针的偏转方向。

(5)分析论证:通电导体周围的磁场方向与电流方向有关4、奥斯特简介(出示幻灯片)

第二环节:讲解通电直导体周围的磁场

1、通电直导体周围的磁场是以导体为圆心的环形磁场;

2、通电直导体周围的磁场方向的判定(安培定则一):

用右手握直导体,让大拇指所指的方向与电流方向一致,则四指弯曲的方向就是该点的磁场方向。

(出示幻灯片演示判断方法)

第三环节:讲解通电螺线管

1、板书:通电螺线管

2、介绍螺线管结构

3、演示实验:对比通电螺线管和条形磁铁

(1)将条形磁铁放入磁场演示仪中,让学生观察小磁针北极指向;

(2)将通电后的螺线管放入磁场演示仪中,让学生观察小磁针北极指向;

(3)改变磁场仪中通电螺线管的电流方向,让学生观察小磁针北极指向。

(4)分析论证:通电螺线管外部的磁场与条形磁铁相似,也有两个磁极;极性与电流方向有关。

(出示幻灯片)

4、通电螺线管极性的判断:安培定则二

用右手握螺线管,让四指弯向螺线管中电流的方向,则大拇指所指的那一端就是螺线管的N极。

(出示幻灯片)

5、指导学生齐声朗读教材113页“安培定则”的内容,并理解运用。

6、归纳:

第四环节:典例精讲

1、通过幻灯片出示例题1;

2、分析思路:(1)标出电流方向;

(2)利用安培定则判断出螺线管的S、N极;

(3)根据磁体外部磁场方向的规定标出磁感线方

向;

(4)根据小磁针在磁场中的受力方向或者磁极间

的相互作用规律标出小磁针的N极。

3、通过幻灯片出示例题2;

4、分析思路:(1)根据磁极间的相互作用规律确定螺线管的S、

N极;

(2)利用安培定则确定螺线管的电流方向并标出;

(3)根据电流方向正确绕线。

第五环节:讲解“物体磁性从哪里来”

1、引导学生回顾原子结构;

2、引导学生理解环形电流的形成,从而理解原子中的磁场;

3、介绍磁体有磁性的原因。

三、课内交流

(出示幻灯片)

四、电磁的运用

播放视频和展示图片

五、课内小结:

1、指导学生对本节课所学内容进行归纳总结;

2、为学生答疑解惑。

六、课后拓展

见导学案

七、课后反馈

八、板书设计

7.2电流的磁场

一、奥斯特实验

表明:1、通电导体周围存在磁场

2、通电导体周围的磁场方向与电流方向有关

二、安培定则:

1、通电直导体:

2、通电螺线管:

三、磁性的产生

九年级物理全册 第14章 第三节 电流的磁场教案2 (新版)北师大版

《电流的磁场》 教学目的: 1、知识和技能 (1)认识电流的磁效应。 (2)知道通电导体的周围存在磁场,通电螺线管的磁场与条形磁铁的磁场相似。 (3)会用安培定则确定相应磁体的磁极和螺线管的电流方向。 2、过程和方法 (1)观察和体验通电导体与磁体之间的相互作用,初步了解电和磁之间有某种联系。 (2)探究通电螺线管外部磁场的方向。 3、情感、态度、价值观 通过认识电与磁之间的相互联系,使学生乐于探索自然界的奥妙。 教学重点: (1)奥斯特实验; (2)通电螺线管的磁场; (3)安培定则。 教学难点: 安培定则的使用。 教具 课件,一根硬直导线,干电池2~4节,小磁针,螺线管,开关,导线若干。 教学过程: 1、复习提问,引入新课 (1)重做第一节课本上的演示实验,提问: 当把小磁针放在条形磁体的周围时,观察到什么现象?其原因是什么?(观察到小磁针发生偏转。因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转。)(2)进一步提问引入新课 小磁针只有放在磁体周围才会受到磁力作用而发生偏转吗?也就是说,只有磁体周围存在着磁场吗?其他物质能不能产生磁场呢?这就是我们本节课要探索的内容。 2、进行新课 (1)磁与电的关系(利用多媒体演示并做说明) (2)奥斯特实验 a、演示实验:将一根与电源、开关相连接的直导线用架子架高,沿南北方向水平放置。将小磁针平行地放在直导线的上方和下方,请同学们观察直导线通、断电时小磁针的偏转情况。利用多媒体重复演示。 提问:观察到什么现象?(观察到通电时小磁针发生偏转,断电时小磁针又回到原来

的位置。)进一步提问:通过这个现象可以得出什么结论呢? 师生讨论:通电后导体周围的小磁针发生偏转,说明通电后导体周围的空间对小磁针产生磁力的作用。 结论:通电导线和磁体一样,周围也存在着磁场。 教师指出:以上实验是丹麦的科学家奥斯特首先发现的,此实验又叫做奥斯特实验。这个实验表明,除了磁体周围存在着磁场外,电流的周围也存在着磁场,即电流的磁场,本节课我们就主要研究电流的磁场。 提问:我们知道,磁场是有方向的,那么电流周围的磁场方向是怎样的呢?它与电流的方向有没有关系呢? b、重做上面的实验:请同学们观察当电流的方向改变时,小磁针N极的偏转方向是否发生变化。 提问:同学们观察到什么现象?这说明什么? (观察到当电流的方向变化时,小磁针N极偏转方向也发生变化,说明电流的磁场方向也发生变化。) 结论:电流的磁场方向跟电流的方向有关。当电流的方向变化时,磁场的方向也发生变化。(利用多媒体演示奥斯特实验的结论,并介绍奥斯特) 提问:奥斯特实验在我们现在看来是非常简单的,但在当时这一重大发现却轰动了科学界,这是为什么呢? 学生看完介绍奥斯特后讨论后回答: 因为它揭示了电现象和磁现象不是各自孤立的,而是紧密联系的,从而说明表面上互不相关的自然现象之间是相互联系的,这一发现,有力推动了电磁学的研究和发展。 (3)研究通电螺线管周围的磁场 奥斯特实验用的是一根直导线,后来科学家们又把导线弯成各种形状,通电后研究电流的磁场,其中有一种在后来的生产实际中用途最大,那就是将导线弯成螺线管再通电。那么,通电螺线管的磁场是什么样的呢?请同学们观察下面的实验: 演示实验:在螺线管周围放一小磁针,给螺线管通电,请同学们观察小磁针的偏转方向是否发生变化。利用多媒体演示通电螺线管的磁场 提问:同学们观察到什么现象? 结论:通电螺线管外部的磁场和条形磁体的磁场一样。 提问:怎样判断通电螺线管两端的极性呢?它的极性与电流的方向有没有关系呢? 演示实验:将小磁针放在螺线管的两端,通电后,请同学们观察小磁针的N极指向,从而引导学生判别出通电螺线管的N、S极。 再改变电流的方向,观察小磁针的N极指向有没有变化,从而说明通电螺线管的极性与电流的方向有关。

电流的磁场教案设计

电流的磁场-教案设计 (一)教学目的 1.知道电流周围存在着磁场。 2.知道通电螺线管外部的磁场与条形磁铁相似。 3.会用安培定则判定相应磁体的磁极和通电螺线管的电流方向。 (二)教具一根硬直导线,干电池2~4节,小磁针,铁屑,螺线管,开关,导线若干。 (三)教学过程 1.复习提问,引入新课 重做第二节课本上的图117的演示实验,提问: 当把小磁针放在条形磁体的周围时,观察到什么现象?其原因是什么? (观察到小磁针发生偏转。因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转。) 进一步提问引入新课 小磁针只有放在磁体周围才会受到磁力作用而发生偏转吗?也就是说,只有磁体周围存在着磁场吗?其他物质能不能产生磁场呢?这就是我们本节课要探索的内容。 2.进行新课 (1)演示奥斯特实验说明电流周围存在着磁场 演示实验:将一根与电源、开关相连接的直导线用架子架高, 沿南北方向水平放置。将小磁针平行地放在直导线的上方和下方,请同学们观察直导线通、断电时小磁针的偏转情况。

提问:观察到什么现象? (观察到通电时小磁针发生偏转,断电时小磁针又回到原来的位置。) 进一步提问:通过这个现象可以得出什么结论呢? 师生讨论:通电后导体周围的小磁针发生偏转,说明通电后导体周围的空间对小磁针产生磁力的作用,由此我们可以得出:通电导线和磁体一样,周围也存在着磁场。 教师指出:以上实验是丹麦的科学家奥斯特首先发现的,此实验又叫做奥斯特实验。这个实验表明,除了磁体周围存在着磁场外,电流的周围也存在着磁场,即,本节课我们就主要研究。 板书:第四节 一、奥斯特实验 1.实验表明:通电导线和磁体一样,周围存在着磁场。 提问:我们知道,磁场是有方向的,那么电流周围的磁场方向是怎样的呢?它与电流的方向有没有关系呢? 重做上面的实验,请同学们观察当电流的方向改变时,小磁针N极的偏转方向是否发生变化。 提问:同学们观察到什么现象?这说明什么? (观察到当电流的方向变化时,小磁针N极偏转方向也发生 变化,说明方向也发生变化。) 板书:2.方向跟电流的方向有关。当电流的方向变化时,磁场的方向也发生变化。 提问:奥斯特实验在我们现在看来是非常简单的,但在当时这一重大发现却轰动了科学界,这是为什么呢?

通电导线在磁场中受到的力教学设计.doc

通电导线在磁场中受到的力 一、教材分析 安培力和下一节的洛伦兹力是本章的核心内容,这些知识不仅在学习《物理选修3-2》各章要用到,在工农业生产和高新科技发展中都有广泛的应用。安培力的方向和大小是本节 的重点,弄清安培力,电流,磁感应强度三者的空间关系是本节的难点。安培力的方向一定 与电流,磁感应强度的方向都垂直,但电流方向与磁感应强度的方向可以成任意的角度,当电流的方向与磁感应强度的方向垂直时,安培力最大。对此学生常常混淆。例如,在解决实际问题时,误以为安培力,电流,磁感应强度一定是两两垂直的等,另外,空间想象能力对 本节的学习至关重要。要使学生能够看懂立体图,熟悉各种角度的侧视图,俯视图和剖面图, 需要一定的训练巩固。 二、教学目标 (一)知识与技能 1、会推导磁场中安培力的表达式,会计算磁场中安培力的大小。 2、知道左手定则的内容,并会用它判断安培力的方向。 3、了解磁电式电流表的工作原理。 (二)过程与方法 通过演示实验归纳、总结安培力的方向与电流、磁场方向的关系——左手定则。 (三)情感、态度与价值观 1、通过推导一般情况下安培力的公式F=ILBsinθ,使学生形成认识事物规律要抓住一般性的科学方法。 2、通过了解磁电式电流表的工作原理,感受物理知识的相互联系。 三、教学的重点和难点 安培力的方向和大小是本节的重点,弄清安培力,电流,磁感应强度三者的空间关系是本 节的难点。 四、教学方法:实验观察法、逻辑推理法、归纳总结法、讨论探究法、讲解法。 五、学情分析 学生通过前面的学习已经掌握了电流、磁感应强度的相关知识,已经知道通电导线在磁场中会受到的力的作用,通过本节学习进一步知道这个力是安培力,会判断方向,会计算大小。本节需要学生有一定的空间想象能力,通过一定的训练巩固。 六、教学用具:蹄形磁铁、导线和开关、电源、铁架台、线圈、视频展台,白板等多媒体 辅助教学设备 七、教学过程: 【复习】复习引导、创设情境、激发兴趣 通过本章的第一节学习,我们知道通电导线在磁场中会受到的力的作用,这节课我们来具体研究 一下这个力。 【授新课】

几种常见的磁场 说课稿 教案

第三节几种常见的磁场 教学目标: (一)知识与技能 1、知道什么是磁感线。 2、知道条形磁铁、蹄形磁铁、直线电流、环形电流和通电螺线管的分布情况。 3、会用安培定则判断直线电流、环形电流和通电螺线管的磁场方向。 4、知道安培分子电流假说是如何提出的。 5、会利用安培假说解释有关的现象。 6、理解磁现象的电本质。 7、知道磁通量定义,知道Φ=BS的适用条件,会用这一公式进行计算。 (二)过程与方法 1、通过模拟实验体会磁感线的形状,培养学生的空间想象能力。 2、由电流和磁铁都能产生磁场,提出安培分子电流假说,最后都归结为磁现象的电本质。 3、通过引入磁通量概念,使学生体会描述磁场规律的另一重要方法。 (三)情感、态度与价值观 1、通过讨论与交流,培养对物理探索的情感。 2、领悟物理探索的基本思路,培养科学的价值感。 教学重点:会用安培定则判断磁感线方向,理解安培分子电流假说。 教学难点:安培定则的灵活应用即磁通量的计算。 教学方法:类比法、实验法、比较法 教学用具:条形磁铁、直导线、环形电流、通电螺线管、小磁针若干、投影仪、展示台、学生电源 教学过程:(一)引入新课 教师:电场可以用电场线形象地描述,磁场可以用什么来描述呢? 学生:磁场可以用磁感线形象地描述? 教师:那么什么是磁感线?又有哪些特点呢?这节课我们就来学习有关磁感线的知识。 (二)进行新课 1、磁感线

教师:什么是磁感线呢? 学生阅读教材,回答:所谓磁感线是在磁场中画一些有方向的曲线,曲线上每一点的切线方向表示该点的磁场方向。 [演示]在磁场中放一块玻璃板,在玻璃板上均匀地撒一层细铁屑,细铁屑在磁场里被磁化成“小磁针”,轻敲玻璃板使铁屑能在磁场作用下转动。 [现象]铁屑静止时有规则地排列起来,显示出磁感线的形状。如图3.3-1所示:[用投影片出示条形磁铁和蹄形磁铁的磁感线分布情况] 如图所示: [问题]磁铁周围的磁感线方向如何? [学生答]磁铁外部的磁感线是从磁铁的北极出来,进入磁铁的南极。 [教师补充]磁感线是闭合曲线,磁铁外部的磁感线是从北极出来,回到磁铁的南极,内部是从南极到北极。 [用投影片出示通电直导线周围的磁感线分布情况]如图3.3-2所示: [问题]通电直导线周围的磁感线如何分布? [学生答]直线电流磁场的磁感线是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上。 [问题]直线电流周围的磁感线分布和什么因素有关系? [学生答]直线电流周围的磁感线方向和电流方向有关系。 [问题]直线电流的方向跟电的磁感线方向之间的关系如何判断呢? [出示投影片]直线电流的方向和电的磁感线方向之间的关系可用安培定则(也叫右手

九年级物理《 电流的磁场》教学设计

《电流的磁场》教学设计 【教学目标】 知识与技能: 1、知道电流周围存在磁场,知道通电螺线管对外相当于一个磁体,会用安 培定则确定相应磁体的磁极和通电螺管的电流方向。 2、培养学生初步的观察能力、实验能力、分析概括、空间想象能力。 过程与方法: 1.通过观察奥斯特实验了解电流的磁场,知道电流磁场方向跟电流方向有 关系,培养学生的观察实验能力。 2.通过观察通电螺线管的实验,发现通电螺线管的磁极跟电流方向的关系, 总结出安培定则,培养学生的分析概括能力。 3.从安培定则的应用,培养学生的空间想象能力。 情感态度与价值观: 养成实事求是,尊重自然规律的科学态度,在解决问题的过程中,有克服困 难的信心和决心,能体验战胜困难、解决物理问题的喜悦。 【教学重点】 奥斯特实验,通电螺线管周围的磁场,安培定则。 【教学难点】 安培定则的运用 【教学准备】 小磁针,螺线管,铁屑,通电螺线管周围磁感线的演示教具,干电池组,铜导线,多媒体系统。 【教学方法】 科学探究、启发式教学法 【教学过程】 一、引入新课 课件展示:电荷间的相互作用规律,磁极间的相互作用规律。 提出问题:从刚才的课件展示中,同学们可以发现电荷间的相互作用与磁极间的相互作用有些什么相似之处? (学生思考、讨论,回答问题) 那么电和磁之间会有一定的联系吗? (学生进行猜想与假设) 演示实验:把导线缠绕在铁钉上,闭合开关,发现铁钉可以吸引几个大头针,断开开关,大头针掉下来。为什么? 那么,电和磁之间究竟有什么联系呢?由此导入课题。 二、进行新课 1、奥斯特实验 引导学生对上述问题进行猜想与假设。 总结学生的猜想与假设,然后指出:最早揭开这个奥秘的是丹麦物理学家——奥斯特。(通过多媒体展示,回顾历史) 指导学生分组完成奥斯特实验: (1)设计实验 在实验中需要用到哪些器材?怎样连接?在实验中同学们要注意观察什么?通过观察什么现象来探究电与磁联系?(多媒体展示实验电路图)

电流的磁场优秀教案

《电流的磁场》教学设计 课题:电流的磁场 课时:1课时 教学三维目标: 1、知识与技能:(1)了解奥斯特实验,理解通电导体周围存在磁场; (2)理解通电导体周围磁场的方向与电流方向有关; (3)学会利用安培定则判定通电螺线管的极性; (4)了解电磁在生产生活中的运用。 2、过程与方法:(1)帮助学生建立空间物理模型; (2)让学生通过实验学会分析、比较、归纳研究物理问题; (3)让学生掌握学习科学的重要方法——对比法; (4)培养学生合作探究、自主学习、交流分享的学习能力。 3、情感态度与价值观:(1)通过观察探究,培养学生对自然科学的兴趣和热爱,初步知道 探索研究自然规律的重要方法是观察和实验; (2)指导学生学习科学家严谨治学、谦虚谨慎的学习态度; (3)让学生树立环保意识,从身边做起,从小事做起。 教学重点:奥斯特实验演示及分析。 教学难点:通电螺线管极性的判断(安培定则)及运用。 教学准备:奥斯特实验演示装置条形磁体(1根)小磁针(2颗) 螺线管磁场演示仪(2套) PPt课件

(4)闭合开关,改变电流的方向,指导学生观察小磁针的偏转方向。 (5)分析论证:通电导体周围的磁场方向与电流方向有关4、奥斯特简介(出示幻灯片) 第二环节:讲解通电直导体周围的磁场 1、通电直导体周围的磁场是以导体为圆心的环形磁场; 2、通电直导体周围的磁场方向的判定(安培定则一): 用右手握直导体,让大拇指所指的方向与电流方向一致,则四指弯曲的方向就是该点的磁场方向。 (出示幻灯片演示判断方法) 第三环节:讲解通电螺线管 1、板书:通电螺线管 2、介绍螺线管结构 3、演示实验:对比通电螺线管和条形磁铁 (1)将条形磁铁放入磁场演示仪中,让学生观察小磁针北极指向; (2)将通电后的螺线管放入磁场演示仪中,让学生观察小磁针北极指向; (3)改变磁场仪中通电螺线管的电流方向,让学生观察小磁针北极指向。 (4)分析论证:通电螺线管外部的磁场与条形磁铁相似,也有两个磁极;极性与电流方向有关。 (出示幻灯片) 4、通电螺线管极性的判断:安培定则二 用右手握螺线管,让四指弯向螺线管中电流的方向,则大拇指所指的那一端就是螺线管的N极。 (出示幻灯片) 5、指导学生齐声朗读教材113页“安培定则”的内容,并理解运用。 6、归纳: 第四环节:典例精讲 1、通过幻灯片出示例题1;

《电流的磁场》教案及教学反思

电流的磁场教案及教学反思 一、背景和教学任务分析: 经过一个学期的物理学习,学生对物理这门学科充满兴趣,也逐步了解了学习物理的基本方法,但也有个别学生基础较弱,动手探究能力有待进一步提高。 本节课的任务是通过实验,体验和探究通电直导线和通电螺线管周围的磁场。学生在课前应掌握磁极之间的相互作用规律、磁场的基本性质、条形磁铁周围的磁场分布等相关知识,并具备电学实验的相关操作技能。 二、教学目标: 1、知识与技能: (1)知道电流周围存在磁场 (2)知道通电螺线管对外相当于一个条形磁铁 (3)知道右手螺旋定则 2、过程与方法: (1)通过观察和体验通电导体与磁体之间的相互作用,初步了解电和磁之间的关系(2)通过合作探究通电螺线管的磁场分布情况,感悟建立模型的方法 3、情感、态度价值观: 通过图片、漫画让学生感悟到奥斯特善于发现问题,勇于科学探索的精神;通过体验电和磁之间的联系,初步使学生乐于探索自然界的奥秘。 三、教学重点和难点: 教学重点:通电螺线管的磁场教学难点:右手螺旋定则 四、教学设计思路和教学流程: 本节课是在学生学完磁铁周围的磁场的基础上,进一步学习电流的磁场。要突出的重点是通电螺线管的磁场,方法是通过实验探究并与条形磁铁磁场进行对比,帮助学生理解。要突破的难点是判别通电螺线管周围的磁场方向,概括出右手螺旋定则。方法是让每位学生自己绕制螺线管,借助实物,结合多媒体动画,让学生对右手螺旋定则有深入的理解。本设计重视学生科学情意教育,动漫简介奥斯特的事迹,激发学生积极探索的欲望。在探究的过程中培养学生互相合作与交流的能力。完成本设计的内容需要1课时。 教学流程图:

高二物理:第四节电流的磁场 教案一(参考文本)

( 物理教案 ) 学校:_________________________ 年级:_________________________ 教师:_________________________ 教案设计 / 精品文档 / 文字可改 高二物理:第四节电流的磁场 教案一(参考文本) Physics covers a wide range. There are many occupations related to physics. A good study of physics also provides better conditions for employment.

高二物理:第四节电流的磁场教案一(参 考文本) (一)教学目的 1.知道电流周围存在着磁场。 2.知道通电螺线管外部的磁场与条形磁铁相似。 3.会用安培定则判定相应磁体的磁极和通电螺线管的电流方向。 (二)教具 一根硬直导线,干电池2~4节,小磁针,铁屑,螺线管,开关,导线若干。 (三)教学过程 1.复习提问,引入新课

重做第二节课本上的图11-7的演示实验,提问: 当把小磁针放在条形磁体的周围时,观察到什么现象?其原因是什么? (观察到小磁针发生偏转。因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转。) 进一步提问引入新课 小磁针只有放在磁体周围才会受到磁力作用而发生偏转吗?也就是说,只有磁体周围存在着磁场吗?其他物质能不能产生磁场呢?这就是我们本节课要探索的内容。 2.进行新课 (1)演示奥斯特实验说明电流周围存在着磁场 演示实验:将一根与电源、开关相连接的直导线用架子架高,沿南北方向水平放置。将小磁针平行地放在直导线的上方和下方,请同学们观察直导线通、断电时小磁针的偏转情况。 提问:观察到什么现象? (观察到通电时小磁针发生偏转,断电时小磁针又回到原来的

《电流的磁场》教学设计

《电流的磁场》教学设计 【课标细目与教学目标】 课标要求: 1.通过实验,了解电流周围存在磁场; 2.探究并了解通电螺线管外部磁场的方向。 课标细目: B层细目: 1.了解奥斯特的发现——电流周围存在磁场; 2.了解磁场方向和电流方向有关; 3.理解通电直导线的磁场和通电螺线管磁场的关系; 4.能用安培定则,判断通电螺线管的磁场方向; 5.能判断电流方向、磁场方向、小磁针方向三者关系。 C层细目: 1.了解奥斯特实验的价值,知道电与磁不是独立的现象; 2.认识到通电螺线管外部的磁场方向和小磁针的指向; D层细目: 1.知道奥斯特实验中的直导线应该南北走向放置,以减少地磁场对实验的干扰; 2.了解右手螺旋定则,理解直导线周围的磁场分布特征; 3.理解安培提出的“分子电流”假说,从而理解物体磁性的本质; 4.理解“接触”、“电流”两种使物体磁化的方法。 【教材分析】 本节包括两部分内容:电流的磁效应和通电螺线管的磁场。电流的磁效应是另外一种磁现象,而通电螺线管的磁场是在通电直导线磁场的基础上演化而来。教材首先介绍了奥斯特实验的历史,紧接着介绍了计算机模拟从直导线电流的磁场到通电螺线管磁场的演化过程,然后通过实验探究通电螺线管的磁场方向,总结电流与极性的关系。最后追寻磁性的本质,介绍了分子电流假说,体现了从现象到规律再到本质的探究过程。 【学情分析】 该阶段学生已具备一定的动手实验能力和运用所学知识解决简单实际问题的能力,已基本能够运用观察、分析、归纳、比较等科学方法来探求新知识。在上一节课,学生已经学会利用小磁针来分析磁场的特点,能够描绘磁感线,对磁场已经有了初步的认识。 在此基础上,本节课可以让学生去探究,用自己的语言表述出电流和磁场的关系以及通电螺线管的极性与电流方向之间的关系,培养学生的观察能力、空间想象能力和语言表达能力。 【重难点】 重点:探究电流周围是否存在磁场;掌握通电螺线管的极性、电流方向和小磁针指向间的关系; 难点:灵活运用通电螺线管的极性、电流方向和小磁针指向间的关系。 【教学资源】 自制教具——通电螺线管磁场分布演示仪、自制教具——通电螺线管、磁动力小火车、奥斯特实验历史动画短片、电流磁场动画、ppt、平板、投屏软件等。

感应电流的方向教案

第一章第二节探究感应电流的方向 [课时安排]第1课时 [教学目标]: (一)知识与技能 (1)探究感应电流方向的规律; (2)楞次定律。 (二)过程与方法 (1)通过实验和对实验现象的分析,归纳出感应电流方向与磁场变化方向的关系。 (2)通过典型题目的练习,让学生自己在练习过程中学会如何应用楞次定律,进而转化为技能技巧,达到熟练掌握的目的。)由感性到理性,由具体到抽象的认识方法分析出产生感应电流的条件。 (三)情感、态度与价值观 让学生经历从实验观察到抽象归纳得出理论的过程,体验物理学的规律是怎样得出来的。 [教学重点]1.理解楞次定律内容; 2.会用楞次定律解决有关问题。 [教学难点]:1.探究影响感应电流的实验; 2.应用楞次定律判断感应电流的方向。 [教学器材]:演示电流计、线圈、条形磁铁,导线 [教学方法]:实验演示法,多媒体辅助教学 [教学过程]

(一)引入新课 提问1.什么是感应电流? 提问2. 产生感应电流的条件是什么? (二)新课教学 1.引出课题:产生的感应电流的方向与哪些 因素有关呢?如何判断感应电流的方向? 板书:探究感应电流的方向 板书:一、探究感应电流的方向 演示实验如图示,让学生观察实验,经过讨论后得出结论: 2.学生讨论问题并完成表格后总结:感应电流的方向该如何判断? 可以从以下几个方面入手: (1)、磁体的磁场方向是怎么样的? (2)、穿过线圈的磁通量怎么变化? (3)、感应电流的方向是如何的? (4)、感应电流的磁场是如何的? 根据提示设计并完成表格

板书:实验结论 ( 1 ) 当原磁场穿过闭合电路的磁通量增加时,感应电流的磁场就和原磁场方向相反。 ( 2 ) 当原磁场穿过闭合电路的磁通量减少时,感应电流的磁场就和原磁场方向相同。 板书:二、楞次定律:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。---------增反减同 3.试一试:用楞次定律判断课本P13图1-15中的现象,如图示。并利用楞次定律解释。 当磁体的N 极靠近铝环时会发生什么现象?铝环中是否产 生感应电流?如果产生了,电流方向是如何的? 总结利用楞次定律判断感应电流的步骤 板书:三、判断感应电流的步骤

《电流的磁场》教案 教科版物理

2.电流的磁场教学目标 知识要点 课标要求 1.奥斯特的发现知道奥斯特实验验证了电流周围存在磁场;知道电流周围存在磁场 2.通电螺线管的磁场掌握通电螺线管的磁场和安培定则;会用安培定则确定相应磁体的磁极和螺线管的电流方向 3.物体磁性从哪里 来 了解物体磁性的来源 教学过程 情景导入 带电体和磁体有一些相似的性质,这些相似是一种巧合呢?还是它们之间存在着某些联系呢? 科学家们基于这种想法,一次又一次地寻找电与磁的联系。1820年丹麦物理学家奥斯特终于用实验证实通电导体的周围存在着磁场。这一重大发现轰动了科学界,使电磁学进入一个新的发展时期。 合作探究 探究点一奥斯特的发现 活动1:针对导课的问题,老师让学生交流、讨论如何设计实验来验证你的猜想?需要哪些实验器材? 总结:选取电源、导线和开关、小磁针。将电源、导线、开关连接成一个闭合电路,将小磁针放在周围,观察小磁针是否发生偏转。 活动2:根据学生所设计的实验,让学生动手验证。根据实验现象,阐明你的

猜想。 总结:导线通电后,发现小磁针发生偏转,说明通电导体周围能够产生磁场。活动3:要想让小磁针偏转的方向相反,然后如何操作?自己动手实验验证,这又说明说明什么问题? 总结:通电导体电流的方向改变,周围磁场的方向也随之改变。 归纳总结:电流周围存在磁场,磁场的方向跟电流的方向有关。这就是电流的磁效应。 拓宽延伸:电流的磁效应是丹麦物理学家奥斯特第一个发现的,所以该实验叫奥斯特实验,它揭示了电和磁不是孤立的,而是有密切的联系。 活动4:其实我们今天研究的问题早在1820年丹麦伟大的物理学家奥斯特在一次偶然的实验中就发现了电和磁之间是有联系的,他是怎样做这个实验的呢?我们一起来看看视频吧!播放视频! 探究点二通电螺线管的磁场 活动1:看了这个视频实验后,大家觉得与我们刚才做的实验相比,有哪些不同吗?视频中的小磁针偏转的角度那么大,而我们实验的时候却那么小,可能是什么原因形成的?小组之间交流、发言。 总结:在实验中利用短路获得较强的电流来增加磁性。 活动2:在一般情况下是不允许的,在实际生活中 人们一般把导线弯成各种形状,发现把导线绕成一圈一圈的螺线管状,磁场就会强得多,这样在生产生活中用途就大,下面我们也来制作一个螺线管。 总结:展示每个小组制作的螺线管。

电流的磁场教案

第 1 页

第 2 页教学过程 一、复习预习 复习上节内容:磁现象,磁场有关知识预习本节内容:电流的磁场,通电螺线管的磁场;安培定则相关知识 二、知识讲解 课程引入: 当把小磁针放在条形磁体的周围时,观察到什么现象?其原因是什么?(观察到小磁针发生偏转。因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转。) (2)进一步提问引入新课 小磁针只有放在磁体周围才会受到磁力作用而发生偏转吗? 也就是说,只有磁体周围存在着磁场吗?其他物质能不能产生磁场呢?这就是我们本节课要探索的内容。 考点/易错点1、奥斯特实验 a.演示实验:将一根与电源、开关相连接的直导线用架子架高,沿南北方向水平放置。将小磁针平行地放在直导线的上方和下方,请同学们观察直导线通、断电时小磁针的偏转情况。 观察到通电时小磁针发生偏转,断电时小磁针又回到原来的位置。通过这个现象可以得出什么结论呢?

通电后导体周围的小磁针发生偏转,说明通电后导体周围的空间对小磁针产生磁力的作用。 第 3 页结论:通电导线和磁体一样,周围也存在着磁场。 以上实验是丹麦的科学家奥斯特首先发现的,此实验又叫做奥斯特实验。这个实验表明,除了磁体周围存在着磁场外,电流的周围也存在着磁场,即电流的磁场,本节课我们就主要研究电流的磁场。 提问:我们知道,磁场是有方向的,那么电流周围的磁场方向是怎样的呢?它与电流的方向有没有关系呢? b.重做上面的实验:观察当电流的方向改变时,小磁针N极的偏转方向是否发生变化。 (观察到当电流的方向变化时,小磁针N极偏转方向也发生变化,说明电流的磁场方向也发生变化。) 结论:电流的磁场方向跟电流的方向有关。当电流的方向变化时,磁场的方向也发生变化。 因为它揭示了电现象和磁现象不是各自孤立的,而是紧密联系的,从而说明表面上互不相关的自然现象之间是相互联系的,这

几种常见的磁场教案完美版

[选修3-1第三章磁场教案] 第三节几种常见的磁场(2课时) 一、教学目标 (一)知识与技能 1.知道什么叫磁感线。 2.知道几种常见的磁场(条形、蹄形,直线电流、环形电流、通电螺线管)及磁感线分布的情况 3.会用安培定则判断直线电流、环形电流和通电螺线管的磁场方向。 4.知道安培分子电流假说,并能解释有关现象 5.理解匀强磁场的概念,明确两种情形的匀强磁场 6.理解磁通量的概念并能进行有关计算 (二)过程与方法 通过实验和学生动手(运用安培定则)、类比的方法加深对本节基础知识的认识。 (三)情感态度与价值观 1.进一步培养学生的实验观察、分析的能力. 2.培养学生的空间想象能力. 二、重点与难点: 1.会用安培定则判定直线电流、环形电流及通电螺线管的磁场方向. 2.正确理解磁通量的概念并能进行有关计算 三、教具:多媒体、条形磁铁、直导线、环形电流、通电螺线管、小磁针若干、投影仪、展示台、学生电源 四、教学过程: (一)复习引入 要点:磁感应强度B的大小和方向。 [启发学生思考]电场可以用电场线形象地描述,磁场可以用什么来描述呢? [学生答]磁场可以用磁感线形象地描述.----- 引入新课 (老师)类比电场线可以很好地描述电场强度的大小和方向,同样,也可以用磁感线来描述磁感应强度的大小和方向 (二)新课讲解 【板书】1.磁感线 (1)磁感线的定义

在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致,这样的曲线叫做磁感线。 (2)特点: A 、磁感线是闭合曲线,磁铁外部的磁感线是从北极出来,回到磁铁的南极,内部是从南极到北极. B 、每条磁感线都是闭合曲线,任意两条磁感线不相交。 C 、磁感线上每一点的切线方向都表示该点的磁场方向。 D 、磁感线的疏密程度表示磁感应强度的大小 【演示】用铁屑模拟磁感线的形状,加深对磁感线的认识。同时与电场线加以类比。 【注意】①磁场中并没有磁感线客观存在,而是人们为了研究问题的方便而假想的。 ②区别电场线和磁感线的不同之处:电场线是不闭合的,而磁感线则是闭合曲线。 2.几种常见的磁场 【演示】 ①用铁屑模拟磁感线的演示实验,使学生直观地明确条形磁铁、蹄形磁铁、通电直导线、通电环形电流、通电螺线管以及地磁场(简化为一个大的条形磁铁)各自的磁感线的分布情况(磁感线的走向及疏密分布)。 ②用投影片逐一展示:条形磁铁(图1)、蹄形磁铁(图2)、通电直导线(图3)、通电环形电流(图4)、通电螺线管以及地磁场(简化为一个大的条形磁铁) (图5)、※辐向磁场(图 6)、还有二同名磁极和二异名磁极的磁场。 (1)条形、蹄形磁铁,同名、异名磁极的磁场周围磁感线的分布情况(图1、图2) (2)电流的磁场与安培定则 ①直线电流周围的磁场

人教版物理选修3-1《几种常见的磁场》教案

几种常见的磁场教案 一、教材分析 磁场的概念比较抽象,应对几种常见的磁场使学生加以了解认识,学好本节内容对后面的磁场力的分析至关重要。 二、教学目标 (一)知识与技能 1.知道什么叫磁感线。 2.知道几种常见的磁场(条形、蹄形,直线电流、环形电流、通电螺线管)及 磁感线分布的情况 3.会用安培定则判断直线电流、环形电流和通电螺线管的磁场方向。 4.知道安培分子电流假说,并能解释有关现象 5.理解匀强磁场的概念,明确两种情形的匀强磁场 6.理解磁通量的概念并能进行有关计算 (二)过程与方法 通过实验和学生动手(运用安培定则)、类比的方法加深对本节基础知识的认识。 (三)情感态度与价值观 1.进一步培养学生的实验观察、分析的能力. 2.培养学生的空间想象能力. 三、教学重点难点 1.会用安培定则判定直线电流、环形电流及通电螺线管的磁场方向. 2.正确理解磁通量的概念并能进行有关计算

四、学情分析 磁场概念比较抽象,学生对此难以理解,但前面已经学习过了电场,可采用类比的方法引导学生学习。 五、教学方法 实验演示法,讲授法 六、课前准备: 演示磁感线用的磁铁及铁屑,演示用幻灯片 七、课时安排:1课时 八、教学过程: (一)预习检查、总结疑惑 (二)情景引入、展示目标 要点:磁感应强度B的大小和方向。 [启发学生思考]电场可以用电场线形象地描述,磁场可以用什么来描述呢? [学生答]磁场可以用磁感线形象地描述.----- 引入新课 (老师)类比电场线可以很好地描述电场强度的大小和方向,同样,也可以用磁感线来描述磁感应强度的大小和方向 (三)合作探究、精讲点播 【板书】1.磁感线 (1)磁感线的定义 在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致,这样的曲线叫做磁感线。 (2)特点:

电流的磁效应(教案)

郴州技师学院 理论课程教师教案本(2015—2016 学年第一学期) 专业名称电气工程 课程名称电工基础 授课教师邹滔 学校郴州技师学院

课程名称电工基础授课形式新授 授课章节 名称 磁场与电磁感应授课课时2课时 使用教具ppt、黑板等 教学目的1、认识磁体与磁感线 2、了解直线电流、环形电流和通电螺线管电流的磁场,以及磁场方向与电流的关系。 3、掌握右手定则 4、了解磁场的主要物理量以及计算 教学重点右手定则磁场的主要物理量的计算教学难点右手定则磁场的主要物理量的计算 主要内容板书设计 电流的磁效应 一、磁体的性质 二、磁场 三、磁感线 四、电流的磁场 1.直线电流的磁场

甲甲 2、环形电流的磁场 课堂教学安排 教 学 过 程 主要教学内容及步骤

图2-1-7 a)条形磁铁的磁感线图2-1-7 b)条形磁铁的磁感线 2.特点 (1) 磁感线的切线方向表示磁场方向,其疏密程度表示磁场的强弱。 (2) 磁感线是闭合曲线,在磁体外部,磁感线由N极出来,绕到S极;在磁体内部,磁感线向由S极指向N极。 (3) 任意两条磁感线不相交。 说明:磁感线是为研究问题方便人为引入的假想曲线,实际上并不存在。 电磁炉,电动机是我们生活中经常见到的用电设备,电磁起动机我们在电视上经常看我们发现这些用电设备离不开电,有了电他们才能正常工作,但我们又从他们的名称上,他们的工作原理上得知,这些用电设备离不开磁。 提问:电和磁有关系吗,难道有了电就会有磁产生吗?今天我们就是要验证:电流是产生磁场?

三、电流的磁场 1.直线电流产生的磁场 奥斯特实验:把一条导线平行的放在磁针的上面,给导线通电,观察磁针偏转的情况;给导加相反的电压,观察磁针偏转的情况。 现象: (1)导线通电后,小磁针发生偏转,调换电流的方向后,小磁针的偏转方向与先前方向相反(2)通过的电流越大,距导线越近,磁针偏转的角度愈大。 结论: (1)通电直导线周围存在着磁场,且磁场具有方向。规定,在磁场的任一点,小磁针N极的受向,即下磁针N极的指向,就是该点的磁场方向。 (2)通电直导线的磁场可以用安培定则来确定。即用右手握住导线,让拇指指向电流方向,所指的方向就是磁感线的环绕方向。 2.环形电流产生的磁场 通电螺线管的极性跟电流方向的关系,可以用右手螺旋定则来判定。 电流方向

电流的磁场--优质获奖教案

《电流的磁场》教案 (一)教学目的 1.知道电流周围存在着磁场。 2.知道通电螺线管外部的磁场与条形磁铁相似。 3.会用安培定则判定相应磁体的磁极和通电螺线管的电流方向。 (二)教具 一根硬直导线,干电池2~4节,小磁针,铁屑,螺线管,开关,导线若干。 (三)教学过程 1.复习提问,引入新课 重做第二节课本上的图11�;7的演示实验,提问: 当把小磁针放在条形磁体的周围时,观察到什么现象?其原因是什么? (观察到小磁针发生偏转。因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转。) 进一步提问引入新课 小磁针只有放在磁体周围才会受到磁力作用而发生偏转吗?也就是说,只有磁体周围存在着磁场吗?其他物质能不能产生磁场呢?这就是我们本节课要探索的内容。 2.进行新课 (1)演示奥斯特实验说明电流周围存在着磁场 演示实验:将一根与电源、开关相连接的直导线用架子架高,沿南北方向水平放置。将小磁针平行地放在直导线的上方和下方,请同学们观察直导线通、断电时小磁针的偏转情况。 提问:观察到什么现象? (观察到通电时小磁针发生偏转,断电时小磁针又回到原来的位置。) 进一步提问:通过这个现象可以得出什么结论呢? 师生讨论:通电后导体周围的小磁针发生偏转,说明通电后导体周围的空间对小磁针产生磁力的作用,由此我们可以得出:通电导线和磁体一样,周围也存在着磁场。

教师指出:以上实验是丹麦的科学家奥斯特首先发现的,此实验又叫做奥斯特实验。这个实验表明,除了磁体周围存在着磁场外,电流的周围也存在着磁场,即电流的磁场,本节课我们就主要研究电流的磁场。 板书:第四节电流的磁场 一、奥斯特实验 1.实验表明:通电导线和磁体一样,周围存在着磁场。 提问:我们知道,磁场是有方向的,那么电流周围的磁场方向是怎样的呢?它与电流的方向有没有关系呢? 重做上面的实验,请同学们观察当电流的方向改变时,小磁针N极的偏转方向是否发生变化。 提问:同学们观察到什么现象?这说明什么? (观察到当电流的方向变化时,小磁针N极偏转方向也发生变化,说明电流的磁场方向也发生变化。) 板书:2.电流的磁场方向跟电流的方向有关。当电流的方向变化时,磁场的方向也发生变化。 提问:奥斯特实验在我们现在看来是非常简单的,但在当时这一重大发现却轰动了科学界,这是为什么呢? 学生看书讨论后回答: 因为它揭示了电现象和磁现象不是各自孤立的,而是紧密联系的,从而说明表面上互不相关的自然现象之间是相互联系的,这一发现,有力推动了电磁学的研究和发展。 (2)研究通电螺线管周围的磁场 奥斯特实验用的是一根直导线,后来科学家们又把导线弯成各种形状,通电后研究电流的磁场,其中有一种在后来的生产实际中用途最大,那就是将导线弯成螺线管再通电。那么,通电螺线管的磁场是什么样的呢?请同学们观察下面的实验: 演示实验:按课本图11�;13那样在纸板上均匀地撒些铁屑,给螺线管通电,轻敲纸板,请同学们观察铁屑的分布情况,并与条形磁体周围的铁屑分布情况对比。 提问:同学们观察到什么现象?

沪科版九年级物理《电流的磁场》优质教案

第二节电流的磁场 教学目标 知识与技能: 1.知道电流周围存在磁场。 2.掌握通电螺线管的磁场和右手螺旋定则。 3.会用右手螺旋定则确定相应磁体的磁极和螺线管的电流方向。 4.知道奥斯特实验验证了电流周围存在磁场。 教学重点:探究通电螺线管的磁场规律。 教学难点:右手螺旋定则及其运用。 教具准备 一根硬直导线,干电池2~4节,小磁针,铁屑,螺线管,开关,导线若干。 教学过程 一、情境引入 当把小磁针放在条形磁体的周围时,观察到什么现象?其原因是什么? (观察到小磁针发生偏转。因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转。) 进一步提问引入新课。 小磁针只有放在磁体周围才会受到磁力作用而发生偏转吗?也 就是说,只有磁体周围存在着磁场吗?其他物质能不能产生磁场呢?这就是我们本节课要探索的内容。

二、新课教学 探究点一奥斯特实验 演示奥斯特实验说明电流周围存在着磁场。 演示实验:将一根与电源、开关相连接的直导线用架子架高,沿南北方向水平放置。将小磁针平行地放在直导线的上方和下方,请同学们观察直导线通、断电时小磁针的偏转情况。 提问:观察到什么现象? (观察到通电时小磁针发生偏转,断电时小磁针又回到原来的位置。) 进一步提问:通过这个现象可以得出什么结论呢? 师生讨论:通电后导体周围的小磁针发生偏转,说明通电后导体周围的空间对小磁针产生磁力的作用,由此我们可以得出:通电导线和磁体一样,周围也存在着磁场。 教师指出:以上实验是丹麦的科学家奥斯特首先发现的,此实验又叫作奥斯特实验。这个实验表明,除了磁体周围存在着磁场外,电流的周围也存在着磁场,即电流的磁场,本节课我们就主要研究电流的磁场。 总结:奥斯特实验表明:通电导线和磁体一样,周围存在着磁场。 提问:我们知道,磁场是有方向的,那么电流周围的磁场方向是

九年级物理8.2电流的磁场教案(一)

§8.2电流的磁场(一) 执教时间: 一、教学任务分析 本节教学是九年级物理第8章第2节《电流的磁场》中的第一课时,学习内容主要包括磁体、磁极和磁场。磁是初中阶段的基本知识之一,本节知识是本章后续知识如电流的磁场、通电螺线管的磁场等学习的基础。 磁现象是学生在实际生活中接触较多的一种物理现象,同时在《科学》学习中,学生对于磁体磁极有了初步的了解。磁场比较抽象,学生认识存在一定困难,本知识内容也是本节课的重点和难点,通过分层探究,逐步深入,引导学生理解磁场。 本节教学通过学生参与、体验活动,经历实验、观察、分析、归纳的过程,认识物理研究的方法,提升科学研究的素养。通过生活实践与物理知识相联系的过程,感受物理知识在生活中的广泛应用。通过了解中国古代对磁现象的认识和运用,提高学习物理的兴趣,并激发民族自豪感。 二、教学目标 1.知识与技能 ⑴知道磁体、磁极。 ⑵知道磁场,磁感线。 2.过程与方法 通过探究磁场,感受“实验、观察、分析、归纳”的科学研究方法。 3.情感、态度与价值观 ⑴通过了解我国古代对磁现象的认识、运用以及磁与现代生产生活的密切联系,激发民族自豪感,并感受物理知识与社会发展的紧密性。 ⑵通过了解地磁保护、动物罗盘等实例,懂得人与自然的和谐。 三、教学重点和难点 教学重点:磁场 教学难点:磁场的描述 四、教学资源 1、学生实验器材:条形磁铁、小磁针、磁环等。 2、演示实验器材:条形磁铁、马蹄形磁铁、大头针、铁块、铁屑、玻璃板等。 3、自制演示PPT幻灯片。

五、教学设计思路 本设计的内容主要包括磁体、磁极、磁场等知识。 本设计的基本思路是:从生活中的电磁起重机和身边的银行卡入手,激发学生的学习兴趣,引出磁现象;通过磁体间排斥和吸引的演示实验、学生的体验活动,完善磁体、磁极的认识,了解磁极间的相互作用;再由“磁体间的相互吸引或排斥作用,并不需要直接接触”引入磁场,并通过通过实验探究,认识磁场的方向、强弱。 本设计要突出的重点是:磁场。方法是:通过“磁体间的相互作用不需要直接接触”的认识,知道磁体周围存在磁场。通过观察磁体周围小磁针的N极指向,了解磁场方向。随后在磁极的基础上分析得出磁场的强弱分布是不均匀的。最后通过地磁场的介绍,巩固磁场概念。 本设计中要突破的难点是:磁场。方法是:教师通过演示实验,引导学生观察发现小磁针在放入铝条和条形磁铁时N极的不同指向,思考产生这种不同的原因,认识到磁铁周围存在磁场,并在教师的引导下进一步了解用磁感线描述磁场的方法。 六、教学流程 七、教案 (一)引入

教科版九年级物理 电流的磁场教案

义务教育基础课程初中教学资料 《电流的磁场》教案 教学目标: 1、通过对电器设备的观察,知道电与磁有密切的联系。通过学习能说出电流周围存在磁场。 2、通过探究实验,了解通电螺线管的磁场与条形磁铁相似性。 3、通过学习会用右手螺旋定则确定通电螺线管的磁极或螺线管上的电流方向。在认识通电螺线管特性的基础上了解电磁铁的构造。 重点、难点: 重点:通电螺线管的磁场及其应用。 难点:会用右手螺旋定则确定通电螺线管的磁极或螺线管上的电流方向。教学准备: 多媒体课件,《学案》,一根硬直导线,干电池2-4节,小磁针、铁屑、螺线管、开关、导线若干。 教学设计: 预习指导:本节学习电流的磁场这一重要的物理现象及通电螺线管和电磁铁这些重要的电磁学器材,应掌握的知识较多。请同学们参考《学案》,自主学习本课内容,并把学习成果填写在《学案》上,时间5分钟。 知识回顾:当把小磁针放在条形磁铁的周围时,观察到什么现象?其原因是 什么? 设问引入:小磁针只有放在磁铁周围才会受到磁力作用而发生偏转吗?也就是说,只有磁铁周围存在着磁场吗?其他物质能不能产生磁场呢? 请同学们带着这个问题,参考《学案》,自主学习本课内容,并把学习成果填写在《学案》上,时间5分钟。 奥斯特实验:带电体和磁体有一些相似的性质,这些相似是一种巧合呢?还是它们之间存在着某些联系呢?科学家们基于这种想法,一次又一次地寻找电与磁的联系。1820年丹麦物理学家奥斯特终于用实验证实通电导体的周围存在着磁场。这一重大发现轰动了科学界,使电磁学进入一个新的发展时期。现在我们重做这个实验。 1、指导实验进行的方法、步骤,要求把磁针放在导线的上方和下方,分别观察通电、断电时,小磁针N极的指向有什么变化。 2、改变电流方向再观察小磁针N极的指向有什么变化? 讲述:奥斯实验的物理意义在于,揭示了电现象与磁现象不是各自孤立的,而是有密切联系的,这一发现激发了各国科学家探索电磁本质的热情,有力推动了电磁学的深入研究。 实验探究、归纳实验结果得出:

相关文档
最新文档