概率论复习题

概率论复习题
概率论复习题

一. 单项选择题

1. 3抛掷枚均匀对称的硬币,恰好有一枚正面向上的概率是( ) A .0.125 B .0.25 C .0.375 D .0.5

2. 设A 与B 是任意两个互不相容事件,则下列结论中正确的是( )

A .()()P A 1P

B =-

B .()()P B-A P A =

C .()()()P AB P A P B =

D .()()P A B P A -= 3.下列函数中可作为随机变量分布函数的是( )

A .11,01()0,

x F x ≤≤?=?

?其他 B .21,

0(),01

1,1x F x x x x -

=≤

C .30,0(),01

1,1x F x x x x

=≤

D .40,0()2,01

2,1x F x x x x

=≤

4.设2(,4)X N μ,2(,5)Y

N μ。记1{4}p P X μ=≤-,2{5}p P Y μ=≥+,则

A. 对任意实数μ,都有12p p =

B. 对任意实数μ,都有12p p >

C. 对任意实数μ,都有12p p <

D.对个别实数μ才有12p p = 5. 设随机变量X 与Y 独立,都服从()0,θ上的均匀分布,则[min(,)]E X Y = A.

2θ B. θ C. 3θ D. 4

θ

6. X Y 设二维随机变量(,)的概率密度为1

,02,02

(,)40,

x y f x y ?≤≤≤≤?=???其他,

{}01,02P X Y <<<<=则( )

A. 14

B. 12

C. 3

4 D.1 7.

00X Y D X D Y >>设(,)为二维随机变量,且(),(),则下列等式成立的是

( )

A .·E XY E X E Y =()()()

B .cov(,)()()

XY X Y D X D Y ρ=

C .

D X Y D X D Y +=+()()()

D .()()cov 2,24cov ,X Y X Y =

二、填空题

1. A B ()()()0.3()P AB P AB P A P B ===已知事件,满足,且,则( )

2. X X 服从标准正态分布,那么分布密度函数为( )

3(,)f x y X 设是二维连续型随机变量的联合密度函数,则关于随机变量的边缘分

()Y f y =布密度函数( ).

4. ()DX 2DY 1X Y D 2X 2Y ==-已知,,且和相互独立,则=( )。

5. ||1XY ρ=的充分必要条件是( )

6. 设4DX =,9DY =,0.5XY ρ=,则(23)D X Y -=( )

7. 设随机变量(,1,2,

,;2)ij X i j n n =≥独立同分布,且2ij EX =

11

121212221

2

n n n n nn

X X X X X X Y X X X =

,则EY =( )

8. 设12

,,

,,

n X X X 为独立随机变量序列,且都服从参数为λ的泊松分布,则

1

lim {()/}n

n i i P X n x λ→∞=-≤=∑( )

三、计算题 1.

325%某工厂有甲,乙,丙个车间,生产同一种产品,每个车间的产量分别占全厂的,35%40%35%6%8%,,个车间中产品的废品率分别为,,, 求全厂产品的废品率。

2. 现有两箱同类型产品,第一箱装50件,其中10件一等品;第二箱装30件,其中18件一等品.现从两箱中任取一箱,然后从该箱中任取两次,每次取一件,不放回。试求下列事件的概率。 (1)第一次取到的产品是一等品;

(2)第二次取到的产品是一等品;

(3)在第一次取到一等品的条件下,第二次取到一等品; (4)在第二次取到一等品的条件下,第一次取到一等品。

3. X (),(0)x f x Ae x -=<<+∞连续型随机变量的概率密度为,求:1A ()常数, 2X 023X ()落在区间(,)内的概率;()的分布函数。

4.(,),X Y X Y αβ设的分布律由下表给出,问为何值时与相互独立?

5. 4Y X =-,求Y 的密度函数。

6. 设随机变量X 与Y 独立且具有相同的分布律

,}X Y ,V XY =的分布律。

7. 设随机变量X 与Y 独立,都服从()0,1上的均匀分布,求使方程220

a Xa Y ++=有实根的概率。 8.

22,~(1,3)~(0,4)X Y X Y X N Y N (,)服从二维正态分布,。与的相关系数

1

,3XY ρ=-34

X Y

Z =

+。1(),()2X Z E Z D Z 求(

);()与的相关系数。 9. (,)ξη设随机变量的联合密度函数02, (,)?

A

x y x

f ξη?<<<=?

?其他

()()() 12()3,A f y x ηξξη求常数;条件密度函数;讨论的相关性和独立性。 四、证明题

1. ()()()

A B 0P A 1P B A P B A <<=设,是两个随机事件,,,

A B 证明:与相互独立。

2. 设随机变量ξ的方差()D ξ存在,证明:对任意0ε>,有

{}2

()

()D P E ξξξεε

-≥≤

3. 设X 为随机变量,证明:2()DX E X C ≤-,其中C 为任意常数。

概率论试题

一 、选择题(选择正确答案,并将其代号写在题干后面的括号里.每小题 3 分,共 15 分) 1.设随机变量()2,1~-N X ,()2,1~N Y ,而且X 与Y 不相关,令Y aX U +=, bY X V +=,且U 与V 也不相关,则有【. C 】 ()A .0==b a ; ()B .0≠=b a ; ()C .0=+b a ; ()D .0=ab 2.对两台仪器进行独立测试,已知第一台仪器发生故障的概率为1p ,第二台仪器发生故 障的概率为2p .令X 表示测试中发生故障的仪器数,则()=X E 【A 】 ()A .21p p +; ()B .()()122111p p p p -+-; ()C .()211p p -+; ()D .21p p . 3.若Y X ,ρ表示二维随机变量()Y X , 的相关系数,则“1,=Y X ρ”是“存在常数a 、b 使得{ }1=+=bX a Y P ”的【C 】 ()A .必要条件,但非充分条件; ()B .充分条件,但非必要条件; ()C .充分必要条件; ()D .既非充分条件,也非必要条件. 4.设总体X 与Y 相互独立,且都服从正态分布()10,N .()91X X ,,Λ是从总体X 中抽取的一个样本,()91Y Y ,,Λ是从总体Y 中抽取的一个样本,则统计量 ~29 2191Y Y X X U ΛΛ+++= 【C 】 ()A ()92 χ; ()B ()82χ; ()C ()9t ; ()D ()8t 5.设总体X 服从参数10=λ的泊松(Poisson )分布,现从该总体中随机选出容量为20一个样本,则该样本的样本均值的方差为【B 】 ()A . 1; ()B . 5.0; ()C . 5; ()D . 50. 二、填空题(每小题 3 分,共 15 分)

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

学习概率论总结报告(个人总结)

实用汇总报告 学习概率论心得思想到 在大二刚开学我接触到了概率论与数理统计这门课程,虽然在高中时已经接触到了许多跟概率相关的东西,比如随机事件、古典概型以及一系列的计算方法但是在接触到更加高深的层次后还是有许多不一样的感受。 在课程开始之初老师就告诉我们这门课不是很难,关键还在于上课认真听讲。通过老师的简单介绍,我了解到概率论与数理统计是研究随机现象统计规律性的一门数学学科,其理论与方法的应用非常广泛,几乎遍及所有科学技术领域、工农业生产、国民经济以及我们的日常生活。对于作为信息管理与信息系统专业的我,其日后的帮助也是很大的,尤其是对于日后电脑方面的操作有着至关重要的辅助作用。 在这门课程中我们首先研究的是随机事件及一维随机变量二维随机变量的分布和特点。而在第二部分的数理统计中,它是以概率论为理论基础,根据试验或者观察得到的数据来研究随机现象,对研究对象的客观规律性做出种种估计和判断。整本书就是重点围绕这两个部分来讲述的。初学时,就算觉得理解了老师的讲课内容,但是一联系实际也会很难以应用上,简化不出有关所学知识的模型。在期末复习中,自己重新对于整个书本的流程安排还有每个章节的重点重新复习一遍,才觉得有了点头绪。 在长达一个学期的学习中,我增长了不少课程知识,同时也获得了好多关于这门课程的心得思想到。整个学期下来这门课程给我最深刻的思想到就是这门课程很抽象,很难以理解,但是这门课程给我带来了一种新的思维方式。前几章的知识好多都是高中讲过的,接触下来觉得挺简单,但是后面从第五章的大数定理及中心极限定理就开始是新的内容了。我觉得学习概率论与数理统计最重要的就是要学习书本中渗透的一种全新的思维方式。统计与概率的思维方式,和逻辑推理不一样,它是不确定的,也就是随机的思想。这也是一我思维能力最主要的体现,整个学习过程中要紧紧围绕这个思维方式进行。这些都为后面的数理统计还有参数估计、检验假设打下了基础。其次,在所有数学学科中,概率论是一门具有广泛应用的数学分支,是一门真正是把实际问题转换成数学问题的学科。在最后一章中,假设检验就是一个很好的例子。由前面所讲的伯努利大数定律知,小概率事件在N次重复试验中出现的概率很小,因此我们认为在一次试验中,小概率事件一般不会发生,如果发生了就该怀疑这件事件的真实性。正是根据这个思想去解决实际中的检验问题,总之概率与数理统计就是一门将现实中的问题建立模型然后应用理论知识解决掉的学科,具有很强的实际应用性。 在整个学期学习过程中,老师生动的讲解让我一直对这门课程保持着浓厚的兴趣,课上总是会讲解一些实际中的问题,比如抽奖先后中奖概率都一样,扔硬币为什么正反面的概率都是二分之一……一些问题还会让我们更理性的对待实际中的一些问题,比如赌博赢的概率很小,彩票中奖概率也是微乎其微,所以不能迷恋那些,不能期望用投机取巧来赚取钱财。总之,概率论与数理统计给予我的帮助是很大的。不仅拓展了我的数学思维,而且还帮助我把课堂上的知识与生活中的例子联系了起来。当然,这些与老师的辛勤劳动是分不开的,在此,十分感谢马金凤老师对我们一学期以来的谆谆教诲。 1 / 1

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

福州大学历届概率论试卷(史上最全版)

福州大学概率统计(54学时)试卷(080116) 一、 单项选择(共21分,每小题3分) 1. 设A 、B 是任意两个事件,则P (A - B )= ( ) A. ()()P A P AB - B. ()()()P A P B P AB -+ C. ()()()P A P B P A B +-U D. ()()()P A P B P AB +- 2. 对于随机变量X ,Y ,若E (XY )=E (X )E (Y ),则 ( ) A. DY DX XY D ?=)( B.DY DX Y X D +=+)( C. X 与Y 独立 D. X 与Y 不独立 3.任何一个连续型随机变量的概率密度)(x ?一定满足( )。 A 、1)(0≤≤x ? B 、在定义域内单调不减 C 、 1)(=? +∞ ∞ -dx x ? D 、1)(>x ? 4. n X X X ,,,21Λ为总体X 的简单随机样本,是指( )。 A 、n X X X ,,,21Λ相互独立; B 、n X X X ,,,21Λ中任一i X 与X 分布相同; C 、n X X X ,,,21Λ相互独立且n X X X ,,,21Λ中任一i X 与X 分布相同; D 、n X X X ,,,21Λ相互独立或n X X X ,,,2 1Λ中任一i X 与X 分布相同。 5.设21,X X 为取自总体)1,(~μN X 的简单随机样本,其中μ为未知参数,下面四个关于μ的估计量中为无偏估计的是( )。 A 、 213432X X + B 、214241X X + C 、214143X X - D 、215 3 52X X +

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

概率论经典实例

概率论经典实例 概率论的研究问题大多与现实世界联系十分密切,有的甚至引人入胜,非常值得我们探讨以便激发我们对概率论学习的兴趣,同时引导我们对生活的思考,这对我们每一个大学生思维能力的培养有着重要的意义。下面我列举几个典型的概率实例加以说明其重要意义。 1990 年9 月9 日,美国一家报纸检阅提出一个有趣的概率问题:电视主持人指着三扇关着的门说,其中一扇后是汽车,另两扇后各有一只山羊。你可随意打开一扇,后面的东西就归你了。你当然想得到汽车。当你选定一扇门,如1 号门(但未打开) ,这时主持人打开有山羊的另一个扇门,不妨说是3号门( 主持人清楚哪扇门后是汽车) ,并对你说:现在再给你一次机会,允许你改变原来的选择。你为了得到汽车是坚持1号门还是改选2号门?问题及答案公诸于众后引发了出乎意料的轰动,编辑部收到了上万封从小学二年级的学生到大学教授的来信,给出了不尽相同的答案(当然正确的答案是唯一的),热烈讨论持续两年之久。此时,无论是一号门还是二号门都有可能门后是汽车,看上去好像每一个都是一半的几率。但从主持人的角度看,他不会让你轻易就得到汽车,于是打开三号门来迷惑你的思想,让你放弃一号门。由此看出,可能一号门的几率会大一点。若从主持人的话语中判断出他没有那种想法,则可以这样思考这个问题。将一号门看成一部分,里面有汽车的概率为0.33,将二号门和三号门看成另一部分,里面有汽车的概率为0.67。当发现三号门里没有汽车时,则一号门和二号门有汽车的概率分别为0.33和0.67。因此,选择二号门比较理智。 稍加留意就会发现若利用概率统计提供的科学思维方法就会大大提高获胜的几率。比如抛两颗均匀骰子,规定如下规则:总数之和小于6为出现小点,大于6为大点,则每局可押大点或小点,若押对了,以出现的点数为对应的奖品数目,若押不中则同样以出现的点数为惩罚品的数目。可以这样思考,当假设骰子理论意义上是均匀的,则六面中点数少的面较重,在抛出后点数多的面朝上的可能性较大,从而抛出点数大的情况的概率应大一些,这样,即可作如下观察:(1)随机抛2颗骰子若干次,观察出现的点数,若点数大于6的次数占多数,则初步判断骰子是均匀的。(2) 当比赛开始时,可做以下决策:刚开始可先押大点,无论押中或不中,第二轮可接着押大点,然后观察一轮,当出现小点后,可继续押大点,当然也可在连续出现几个大点后押一次小点,也有取胜的把握。这是因为,出现大点的机会要多于出现小点的机会,开始出现大点的概率要大一些,故应押大点,当出现几次大点后,小概率的事件也是会发生的,故可押一次小点,若一次不中可继续押,此时出现小点的概率将变大。另外,当连续出现几次小点或大点,则情况即将发生转变,应考虑押相反的情况。运用概率的思想来解决此类问题让我们更有把握赢得我们所要的东西,对此类问题,一味的乱猜,只能让我们处于劣势。 在第二次世界大战中,美国曾经宣布:一个优秀的数学家的作用超过10 个师的兵力,这句话有一个非同寻常的来历。1943年以前,在大西洋的英美运输船队常常受到德国潜艇的袭击。当时,英美两国限于实力,无力增派更多的护航舰,一时间德国的潜艇战搞得盟军焦头烂额。为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后,舰队与潜艇相遇是一个随机事件。从数学角度来看这一问题,它具有一定的规律性,一定数量的船(为100艘),编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌

《概率统计》试题及答案

西南石油大学《概率论与数理统计》考试题及答案 一、填空题(每小题3分,共30分) 1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 . 2、设()0.7,()0.3P A P AB ==,则()P A B =________________. 3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 . 4、设随机变量X 的分布律为(),(1,2,,8),8 a P X k k ===则a =_________. 5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= . 6、设随机变量X 的分布律为,则2Y X =的分布律是 . 2101 1811515515 k X p -- 7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ . 8、设129,,,X X X 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是 . 二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件是次品,乙 企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取 1件进行检验.求: (1)求取出的产品为次品的概率; (2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为 ,03()2,342 0, kx x x f x x ≤

《概率统计》期末考试题(有答案)

《概率论》期末 A 卷考试题(免费) 一 填空题(每小题 2分,共20 分) 1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0.8,则目标被击中的概率为( ). 2.设()0.3,()0.6P A P A B == ,则()P A B =( ). 3.设随机变量X 的分布函数为??? ? ? ????> ≤≤<=2,120,sin 0,0)(ππx x x a x x F ,则=a ( ), ()6 P X π > =( ). 4.设随机变量X 服从参数为2=λ的泊松分布,则=-)1(2 X E ( ). 5.若随机变量X 的概率密度为2 36 ()x X p x -= ,则(2)D X -=( ) 6.设Y X 与相互独立同服从区间 (1,6)上的均匀分布,=≥)3),(max(Y X P ( ). 7.设二维随机变量(X,Y )的联合分布律为 X Y 1 2 ?i p 0 a 12 1 6 1 1 3 1 b 则 ( ), ( ).a b == 8.设二维随机变量(X,Y )的联合密度函数为? ? ?>>=--其它 00,0),(2y x ae y x f y x ,则 =a ( ) 9.若随机变量X 与Y 满足关系23X Y =-,则X 与Y 的相关系数X Y ρ=( ). 10.设二维随机变量)0,4,3,2,1(~),(N Y X ,则=-)52(Y X D ( ). 二.选择题(每小题 2分,共10 分) 1.设当事件C B 和同时发生时事件A 也发生,则有( ).

) ()()(1 )()()()(1)()()()() ()()(C B P A P d C P B P A P c C P B P A P b BC P A P a =-+≤-+≥= 2.假设事件B A 和满足1)|(=B A P ,则( ). (a ) B 是必然事件 (b )0)(=-A B P (c) B A ? (d ) 0)|(=B A P 3.下列函数不是随机变量密度函数的是( ). (a )sin 0()20 x x p x π? <=( ). 1 11() 1 () () ()4 28 a b c d 三、解答题(1-6小题每题9分,7-8小题每题8分,共70分) 1.某工厂有甲、乙、丙三车间,它们生产同一种产品,其产量之比为5:3:2, 已知三 车间的正品率分别为0.95, 0.96, 0.98. 现从全厂三个车间生产的产品中任取一件,求取到一件次品的概率。 2.设10件产品中有3件次品,从中不放回逐一取件,取到合格品为止.(1)求所需取件次数X 的概率分布 ;(2)求X 的分布函数()F x . 3.设随机变量X 的密度函数为(1) 01()0 A x x f x -<. 4.设随机变量X 的密度函数为sin 0()20 x x f x π? <

概率论知识点总结及心得体会

概率论总结及心得体会 2008211208班 08211106号 史永涛 班内序号:01 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

概率论基础(第三版)-李贤平-试题+答案-期末复习

第一章 随机事件及其概率 一、选择题: 1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( ) A .A B A C + B .()A B C + C .ABC D .A B C ++ 2.设B A ? 则 ( ) A .()P A B I =1-P (A ) B .()()()P B A P B A -=- C . P(B|A) = P(B) D .(|)()P A B P A = 3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一 定独立 A .()()()P A B P A P B =I B .P (A|B )=0 C .P (A|B )= P (B ) D .P (A|B )= ()P A 4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( ) A .a-b B .c-b C .a(1-b) D .b-a 5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( ) A .A 与 B 互不相容 B .A 与B 相互独立 C .A 与B 互不独立 D .A 与B 互不相容 6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ?,则一定成立的关系式是( ) A .P (A| B )=1 B .P(B|A)=1 C .(|A)1p B = D .(A|)1p B = 7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )

A .()A B B A -=U B .()A B B A -?U C .()A B B A -?U D .()A B B A -=U 8.设事件A 与B 互不相容,则有 ( ) A .P (A B )=p (A )P (B ) B .P (AB )=0 C .A 与B 互不相容 D .A+B 是必然事件 9.设事件A 与B 独立,则有 ( ) A .P (A B )=p (A )P (B ) B .P (A+B )=P (A )+P (B ) C .P (AB )=0 D .P (A+B )=1 10.对任意两事件A 与B ,一定成立的等式是 ( ) A .P (A B )=p (A )P (B ) B .P (A+B )=P (A )+P (B ) C .P (A|B )=P (A ) D .P (AB )=P (A )P (B|A ) 11.若A 、B 是两个任意事件,且P (AB )=0,则 ( ) A .A 与 B 互斥 B .AB 是不可能事件 C .P (A )=0或P (B )=0 D .AB 未必是不可能事件 12.若事件A 、B 满足A B ?,则 ( ) A .A 与 B 同时发生 B .A 发生时则B 必发生 C .B 发生时则A 必发生 D .A 不发生则B 总不发生 13.设A 、B 为任意两个事件,则P (A-B )等于 ( ) A . ()()P B P AB - B .()()()P A P B P AB -+ C .()()P A P AB - D .()()()P A P B P AB -- 14.设A 、B 、C 为三事件,则AB BC AC U U 表示 ( ) A .A 、 B 、 C 至少发生一个 B .A 、B 、C 至少发生两个 C .A 、B 、C 至多发生两个 D .A 、B 、C 至多发生一个 15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( ) A .A 与 B 互不相容 B .A 与B 相互独立

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

概率论复习题答案

一、单项选择题 1 已知随机变量X 在(1,5)之间服从均匀分布,则其在此区间的概率密度为( C ) A. B. C. D 4 2 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<1)之间服从均匀分布,则其在此区间的概率密度为( B ) A. 0 B. 2 C. D 1 3 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<2)之间服从均匀分布,则其不在此区间的概率密度为( A ) A. 0 B. 2 C. 1 D 4 4 已知P(A)= ,则)(A A P ? 的值为( D ) (A) (B) (C) 0 (D) 1 5 已知P(A)= ,则)(A A P 的值为( C ) (A) 1 (B) (C) 0 (D) Φ 6.,,A B C 是任意事件,在下列各式中,成立的是( C ) A. A B =A ?B B. A ?B =AB C. A ?BC=(A ?B)(A ?C) D. (A ?B)(A ? B )=AB 7 设随机变量X~N(3,16), 则P{X+1>5}为( B ) A. Φ B. 1 - Φ C. Φ(4 ) D. Φ(-4) 8 设随机变量X~N(3,16), Y~N(2,1) ,且X 、Y 相互独立,则P{X+3Y<10}为( A ) A. Φ B. 1 - Φ C. Φ(0 ) D. Φ(1) 9. 已知随机变量X 在区间(0,2)的密度函数为, 则其在此区间的分布函数为( C ) A. 2x B. C. 2x D. x 10 已知随机变量X 在区间(1,3)的密度函数为, 则x>3区间的分布函数为( B ) A. 2x B. 1 C. 2x D. 0 11. 设离散型随机变量X 的分布律为 P{X=n}=! n e n λλ, n=0,1,2…… 则称随机变量X 服从( B ) A. 参数为λ的指数分布 B. 参数为λ的泊松分布 C. 参数为λ的二项式分布 D. 其它分布 12. 设f (x )为连续型随机变量X 的密度函数,则f (x )值的范围必须( B )。 (A) 0≤ f (x ) ≤1; (B) 0≤ f (x ); (C )f (x ) ≤1; (D) 没有限制

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=??

分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ), 称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()(Y (n 可 以取∞) 2.概率的一些重要性质: (i ) 0)(=φP (ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( Y (n 可以取∞)

(广外)概率论试题答案+答案

---------------------------------------------------------------最新资料推荐------------------------------------------------------ (广外)概率论试题答案+答案 一、填空: (20%) 1.设 A、 B 为随机事件, P(A)=0. 5, P(B/A )= 0. 4,则 P()=。 2.两封信随机的向编号为Ⅰ 、Ⅱ 、Ⅲ、Ⅳ的 4 个邮筒投寄,前两个邮筒中各有一封信的概率是。 3. 设三次独立重复的伯努利试验中事件 A 发生的概率均为 p,若已知 A 至少发生一次的概率为 19/27,则 p = _______________。 4.设三个相互独立的事件 A、 B、 C 都不发生的概率为 1/27,而且 P(A)=P(B)=P(C),则 P(A)=。 5.设连续型随机变量 X 的概率密度函数为: ax+1 0x2 f (x) = 0 其他 , 则 a = ________________。 6.已知 E =3, E =3,则 E(3 -4 +3) =____________。 7. 设随机变量 X 在[-6, 6]上服从均匀分布,则 DX=______。 8.某汽车站每天出事故的次数 X 服从参数为的泊松分布,且已知一天内发生一次事故和发生两次事故的概率相同,则= 。 9.设随机变量服从均值为 10,方差为202. 0的正态分布,即 ~ ()202. 0 ,10N,已知(5 . 2)9938. 00=,则落在区间(, 1 / 7

10.05)上的概率 ()10.05P X = ____________ 10.设随机变量在 [2, 5] 服从均匀分布,现在对进行四次独立观测,则恰好有两 次观测值大于 3 的概率为_______________。 二、单项选择题: (20%) 1. A、 B 为相互独立的事件, P(A) =0. 4, P (A + B) =0. 7,则 P(B) = 。 () A. 0.5 2.某人购买某种奖券,已知中奖的 概率为 P,若此人买奖券直到中奖时停止,则其第 k 次才中奖的 概率为: () B. 0.6 C. 0.7 D. 0.8 A. P k-1(1-P) B. P(1 -P)k - 1 C. Pk D. (1-P )k 3.下列函数中,()可以作 为连续型随机变量 X 的概率密度函数: () A.其它 B.其它 C.其它x D.其它 4.设)(1xF 与)(2xF分别为随机变量1X 与2X 的分布函数,为使 ( )( )x( ) xbFaFxF21+=是某随机变量的分布函数在下列给定的各组数值中应 取。 ( ) 1=a ,21=a,2 A.211=a ,21=b B. 21=b C. 2=a,21=b D. 21=b 5.设

相关文档
最新文档