(整理)坐标变换的原理和实现方法.

(整理)坐标变换的原理和实现方法.
(整理)坐标变换的原理和实现方法.

由第二讲的内容可知,在三相静止坐标系中,异步电动机数学模型是一个多输入、多输出、非线性、强耦合的控制对象,为了实现转矩和磁链之间的解耦控制,以提高调速系统的动静态性能,必须对异步电动机的数学模型进行坐标变换。

3.1 变换矩阵的确定原则

坐标变换的数学表达式可以用矩阵方程表示为

y=ax (3-1)

式(3-1)表示利用矩阵a将一组变量x变换为另一组变量y,其中系数矩阵a称为变换矩阵,例如,设x是交流电机三相轴系上的电流,经过矩阵a的变换得到y,可以认为y是另一轴系上的电流。这时,a称为电流变换矩阵,类似的还有电压变换矩阵、阻抗变换矩阵等,进行坐标变换的原则如下:

(1)确定电流变换矩时,应遵守变换前后所产生的旋转磁场等效的原则;

(2)为了矩阵运算的简单、方便,要求电流变换矩阵应为正交矩阵;

(3)确定电压变换矩阵和阻抗变换矩阵时,应遵守变换前后电机功率不变的原则,即变换前后功率不变。

假设电流坐标变换方程为:

i=ci′ (3-2)

式中,i′为新变量,i称为原变量,c为电流变换矩阵。

电压坐标变换方程为:

u′=bu (3-3)

式中,u′为新变量,u为原变量,b为电压变换矩阵。

根据功率不变原则,可以证明:

b=ct (3-4)

式中,ct为矩阵c的转置矩阵。

以上表明,当按照功率不变约束条件进行变换时,若已知电流变换矩阵就可以确定电压变换矩阵。

3.2 定子绕组轴系的变换(a-b-c<=>α-β)

所谓相变换就是三相轴系到二相轴系或二相轴系到三相轴系的变换,简称3/2变换或2/3变换。

三相轴系和二相轴系之间的关系如图3-1所示,为了方便起见,令三相的a轴与两相的α

轴重合。假设磁势波形是按正弦分布,或只计其基波分量,当二者的旋转磁场完全等效时,合成磁势沿相同轴向的分量必定相等,即三相绕组和二相组绕的瞬时磁势沿α、β轴的投影应该相等,即:

(3-5)

式中,n3、n2分别为三相电机和两相电机每相定子绕组的有效匝数。

经计算并整理之后可得:

(3-6)

(3-7)

图3-1 三相定子绕组和二相定子绕组中磁势的空间矢量位置关系

用矩阵表示为:

(3-8)

如果规定三相电流为原电流i,两相电流为新电流i′,根据电流变换的定义式(3-2),式(3-8)具有i′=c-1i的形式,为了通过求逆得到c就要引进另一个独立于isα和isβ的新变量,记这个新变量为io,称之为零序电流,并定义为:

(3-9)

式中,k为待定系数。

补充io后,式(3-8)变为:

(3-10)

则:

(3-11)

将c-1求逆,得到:

(3-12)

其转置矩阵为:

(3-13)

根据确定变换矩阵的第三条原则即要求c-1=ct,可得和,从而有

和,代入相应的变换矩阵式中,得到各变换矩阵如下:

二相—三相的变换矩阵:

(3-14)

三相—二相的变换矩阵:

(3-15)

对于三相y形不带零线的接线方式有,ia+ib+ic=0则,ic=-ia-ib,由式(3-8)可

以得到:

(3-16)

而二相—三相的变换可以简化为:

(3-17)

图3-2表示按式(3-16)构成的三相—二相(3/2)变换器模型结构图。

图3-2 3/2变换模型结构图

3/2变换、2/3变换在系统中的符号表示如图3-3所示。

图3-3 3/2变换和2/3变换在系统中的符号表示

如前所述,根据变换前后功率不变的约束原则,电流变换矩阵也就是电压变换矩阵,还可以证明,它们也是磁链的变换矩阵。

3.3 转子绕组轴系变换()

图3-4(a)是一个对称的异步电动机三相转子绕组。图中ωsl为转差角频率。在转子对称多相绕相中,通入对称多相交流正弦电流时,生成合成的转子磁势fr,由电机学可知,转子磁势与定子磁势具有相同的转速、转向。

图3-4 转子三相轴系到两相轴系的变换

根据旋转磁场等效原则及功率不变约束条件,同定子绕组一样,可把转子三相轴系变换到两相轴系。具体做法是,把等效的两相电机的两相转子绕组d、q相序和三相电机的三相转子绕组a、b、c相序取为一致,且使d轴与a轴重合,如图3-4(b)所示。然后,直接使用定子三相轴系到两相轴系的变换矩阵(参见式3-15)。

3.4 旋转变换

在两相静止坐标系上的两相交流绕组α和β和在同步旋转坐标系上的两个直流绕组m和t 之间的变换属于矢量旋转变换。它是一种静止的直角坐标系与旋转的直角坐标系之间的变换。这种变换同样遵守确定变换矩阵的三条原则。

转子d、q两相旋转轴系,根据确定变换矩阵的三条原则,也可以把它变换到静止的α-β轴系上,这种变换也属于矢量旋转坐标变换。

3.4.1 定子轴系的旋转变换

图3-5 旋转变换矢量关系图

在图3-5中,fs是异步电动机定子磁势,为空间矢量。通常以定子电流is代替它,这时定子电流被定义为空间矢量,记为is。图中m、t是任意同步旋转轴系,旋转角速度为同步角速度ωs。m轴与is之间的夹角用θs表示。由于两相绕组α和β在空间上的位置是固定的,因而m轴和α轴的夹角是随时间变化的,即,其中为任意的初始角。在矢量控制系统中,通常称为磁场定向角。

以m轴为基准,把is分解为与m轴重合和正交的两个分量ism和ist,分别称为定子电流的励磁分量和转矩分量。

由于磁场定向角是随时间变化的,因而is在α轴和β轴上的分量isα和isβ也是随时间变化的。由图3-5可以看出,isα、isβ和ism和ist之间存在着下列关系:

写成矩阵形式为:

(3-18)

简写:

式中,为同步旋转坐标系到静止坐标系的变换矩阵。

变换矩阵c是正交矩阵即ct=c-1,因此,由静止坐标系变换到同步旋转坐标系的矢量旋转变换方程式为:

简写:

式中,为静止坐标系到同步旋转坐标系的变换矩阵。

电压和磁链的旋转变换矩阵与电流的旋转变换矩阵相同。

根据式(3-18)和式(3-19)可以绘出矢量旋转变换器模型结构,如图3-6所示。

图3-6 矢量旋转变换器模型结构图

由图3-6可知,矢量旋转变换器由四个乘法器和两个加法器及一个反号器组成,在系统中用符号vr,vr-1表示,如图3-7所示。在德文中,矢量旋转变换器叫做矢量回转器用符号vd 表示。

图3-7 矢量旋转变换器在系统中的符号表示

3.4.2 转子轴系的旋转变换

转子d-q轴系以角速度旋转,根据确定变换矩阵的三条原则,可以把它变换到静止不动的α-β轴系上,如图3-8所示。

图3-8 转子两相旋转轴系到静止轴系的变换

转子三相旋转绕组(a-b-c)经三相到二相变换得到转子两相旋转绕组(d-q)。假设两相静止绕组αr、βr除不旋转之外,与d、q绕组完全相同。根据磁场等效的原则,转子磁势fr沿α轴和β轴给出的分量等式,再除以每相有效匝数,可得:

写成矩阵形式

(3-20)

如果规定ird、irq为原电流,irα、irβ为新电流,则式中:

(3-21)

c-1的逆矩阵为:

若存在零序电流,由于零序电流不形成旋转磁场,只需在主对角线上增加数1,使矩阵增加一列一行即可

(3-22)

需要指出的是,由于转子磁势fr和定子磁势fs同步,可使αr、βr与αs、βs同轴。但是,实际上转子绕组与α、β轴系有相对运动,所以αr绕组和βr绕组只能看作是伪静止绕组。需要明确的是,在进行这个变换的前后,转子电流的频率是不同的。变换之前,转子电流i rd、irq的频率是转差频率,而变换之后,转子电流irα、irβ的频率是定子频率。可证明如下:

(3-23)

利用三角公式,并考虑到θr=ωrt则有:

(3-24)

从转子三相旋转轴系到两相静止轴系也可以直接进行变换。转子三相旋转轴系a-b-c到静止轴系α-β-ο的变换矩阵可由式(3-15)及式(3-21)相乘得到:

(3-25)

求c-1的逆,得到

(3-26)

c是一个正交矩阵,当电机为三相电机时,可直接使用式(3-25)给出的变换矩阵进行转子三相旋转轴系(a-b-c)到两相静止轴系(α-β)的变换,而不必从(a-b-c))到(d-q-o),再从(d-q-o)到(α-β-ο)那样分两步进行变换。

3.5 直角坐标—极坐标变换(k/p)

在矢量控制系统中常用直角坐标—极坐标的变换,直角坐标与极坐标之间的关系是:

(3-27)

(3-28)

式中,θs为m轴与定子电流矢量is之间的夹角。

由于θs取值不同时,的变化范围为0~∞,这个变化幅度太大,难以实施应用,因此常改用下列方式表示θs值。

因为:,

所以:(3-29)

根据式(3-27)和式(3-29)构成的直角坐标一极坐标变换的模型结构图(德语称为矢量分析器vector analyzer-va)如图3-9所示。

图3-9 直角坐标—极坐标变换器模型结构图

由图可知,直角坐标一极坐标变换是由两个乘法器、两个求和器和一个除法器组成,符号表示如图3-10所示。

图3-10 直角坐标—极坐标变换器在系统中的符号表示

matlab图像处理——距离变换

V ol. , No Month year. 卷 第 期 年 月 距离变换的应用(选自陆宗骐的论文) 粘连区域的分割需要解决的问题有两个,即在何处分割以及如何进行分割。文献[4]介绍了一种较为简单、直观的粘连区域分割方法——等值线跟踪法。此方法对二值图象作距离变换,根据局部极大的特点搜索区域核心代替极限腐蚀,用等值线跟踪代替条件膨胀,利用跟踪过程中前后两次周长的跃变发现两区域合并的时间,从而确定分割点的位置,最后用作区域连接段骨架垂线的方法进行粘连部分的分割。此方法不仅处理速度快,所得分割区域的形状也大为改观,见图1(d)。 当然,确定分割点也并非一定要采用等值线跟踪才行。也可根据粘连区域连接段象素的特点,设计相应的分析算法不经跟踪直接寻得。本文在完成了一幅存在粘连的钢筋端面图象分割的基础上,总结得出若干分割原则。限于篇幅,本文只介绍象素属性分析法中分割位置的搜索算法,后续分割部分参见文献[4]。 2 术语定义 2.1 三个检测环 为了识别象素的属性,需要考察该象素所在邻域内相关象素的状态,本分割方法中需使用三个检测环。它们是以当前待测象素为中心的3×3、5×5 点,见图2。它们分别称为内环、中环与外环。图中,中心象素用星号表示,内环用数字1~8表示,中环用小写字母a~p 表示,外环用大写字母A~Z 和数字1~6表示。主要用以测试环上数据的跳变,以及数值的大小关系与某类象素数目的多少等。 2.2 象素类型 为行文方便起见,对不同类型的象素与数据定 义若干专用名词。 ·边界点:图象中距离值为1的点。 ·背景点:图象中距离值为0的点。 ·(粘连区域)连接线:连接粘连两区域的(单点宽或双点宽)骨架,它们应取同一距离值。 ·当前点:处于邻域中央,考察其是否在连接线上的那个象素。 ·等值点:指在检测邻域内数值等于当前点的距离值的那些象素,连接线上的点必须是等值点。 ·内点、外点:指在检测邻域内距离值分别大于、小于当前点的距离值的那些象素。 ·角点:内环上只有两个与当前点等值的点,并且它们构成直角三角形时,称当前点为角点。 ·图象的最大距离值:全图象素中最大的距离值,它大致等于图象中最大区域的等效半径。 图3给出了三个检测点及其所在邻域的例子,图中数据为象素的距离值。为清楚起见,图中中心象素加粗后再加下划线,中环象素用粗体字表示。在图3(a)中, 带下划线的7为当前点,中环上面水平线上的两个7为等值点,其间的8为内点,当前点周围的5、6为外点,而此时当前点7是一个角点。 3 分割点的特征

(完整版)平面直角坐标系规律题(带答案)

1. 2. 3. 平面直角坐标系规律题 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图 中方向排列,如(1, 0), (2 , 0), ( 2, 1) , (1 , 1), (1 , 2), (2 , 2) ??…根据这个规律,第2016个点的坐标为什么? 如图,一个质点在第一象限及x轴、y轴上运动,一秒钟后,它从原点运动 到(0,1),然后接着按图中箭头所示方向运动[即(0,0)T( 0,1) T( 1,1) T( 1,0) T…],且每秒运动一个单位长度,那么第2016秒后质点所在位置的坐标是( 如图,在平面直角坐标系上有点 A (1, 0),点A第一次跳动 至点A1( -1 ,1),第四次向右跳动5个单位至点A4( 3,2 ),???, 依此规 律跳动下去,点A第100次跳动至点A100的坐标是 .第2016次呢? ) 6 5 % 5 -4 -3-2 -1 ° 1 2 3 4 5'玄 如图,在平面直角坐标系上有个点P ( 1 , 0),点P第1次向上跳动1个单位至点P1 (1, 1),紧接着第2次向左跳动2个单位至点P2 (-1 , 1 ),第3次向上跳动1个单位,第4次向 J A ----------------------------- 右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单 位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是()。电------------- 第2016个点的坐标是( ) 4 -------------- 4. 5、如图,在平面直角坐标系中,一动点从原点0出发,按向上、向右、向 下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0, 1),A2(1, 1),A3(1, 0),A4(2, 0),…,那么点A4n +1(n是自然数)的坐标为_________

平面直角坐标系找规律解析

平面直角坐标系找规律题型解析 1、如图,正方形ABCD 的顶点分别为A(1,1) B(1,-1) C(-1,-1) D(-1,1),y 轴上有一点P(0,2)。作点P 关于点A 的对称点p1,作p1关于点B 的对称点p2,作点p2关于点C 的对称点p3,作p3关于点D 的对称点p4,作点p4关于点A 的对称点p5,作p5关于点B 的对称点p6┅,按如此操作下去,则点p2011的坐标是多少? 解法1:对称点P1、P2、P3、P4每4个点,图形为一个循环周期。 设每个周期均由点P1,P2,P3,P4组成。 第1周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2) 第2周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2) 第3周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2) 第n 周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2) 2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0) 解法2:根据题意,P1(2,0) P2(0,-2) P3(-2,0) P4(0,2)。 根据p1-pn 每四个一循环的规律,可以得出: P4n (0,2),P4n+1(2,0),P4n+2(0,-2),P4n+3(-2,0)。 2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0) 总结:此题是循环问题,关键是找出每几个一循环,及循环的起始点。此题是每四个点一循环,起始点是p 点。 2、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示. (1)填写下列各点的坐标:A4( , ),A8( , ),A10( , ),A12( ); (2)写出点A 4n 的坐标(n 是正整数); (3)按此移动规律,若点Am 在x 轴上,请用含n 的代数式表示m (n 是正整数) (4)指出蚂蚁从点A 2011到点A 2012的移动方向. (5)指出蚂蚁从点A 100到点A 101的移动方向.(6)指出A 106,A 201的的坐标及方向。 解法:(1)由图可知,A4,A12,A8都在x 轴上, ∵小蚂蚁每次移动1个单位, ∴OA4=2,OA8=4,OA12=6, ∴A4(2,0),A8(4,0),A12(6,0);同理可得出:A10(5,1) (2)根据(1)OA4n=4n÷2=2n,∴点A4n 的坐标(2n ,0); (3)∵只有下标为4的倍数或比4n 小1的数在x 轴上, ∴点Am 在x 轴上,用含n 的代数式表示为:m=4n 或m=4n-1; (4)∵2011÷4=502…3, ∴从点A2011到点A2012的移动方向与从点A3到A4的方向一致,为向右. (5)点A100中的n 正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0)和A101(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上。 (6)方法1:点A1、A2、A3、A4每4个点,图形为一个循环周期。 设每个周期均由点A1,A2,A3,A4组成。 第1周期点的坐标为:A1(0,1), A2(1,1), A3(1,0), A4(2,0) 第2周期点的坐标为:A1(2,1), A2(3,1), A3(3,0), A4(4,0) 第3周期点的坐标为:A1(4,1), A2(5,1), A3(5,0), A4(6,0) O 1 A 1 A 2 A 3 A4 A5 A6 A7 A8 A9 A 10 A 11 A 12 x y

(整理)坐标变换的原理和实现方法

由第二讲的内容可知,在三相静止坐标系中,异步电动机数学模型是一个多输入、多输出、非线性、强耦合的控制对象,为了实现转矩和磁链之间的解耦控制,以提高调速系统的动静态性能,必须对异步电动机的数学模型进行坐标变换。 3.1 变换矩阵的确定原则 坐标变换的数学表达式可以用矩阵方程表示为 y=ax (3-1) 式(3-1)表示利用矩阵a将一组变量x变换为另一组变量y,其中系数矩阵a称为变换矩阵,例如,设x是交流电机三相轴系上的电流,经过矩阵a的变换得到y,可以认为y是另一轴系上的电流。这时,a称为电流变换矩阵,类似的还有电压变换矩阵、阻抗变换矩阵等,进行坐标变换的原则如下: (1)确定电流变换矩时,应遵守变换前后所产生的旋转磁场等效的原则; (2)为了矩阵运算的简单、方便,要求电流变换矩阵应为正交矩阵; (3)确定电压变换矩阵和阻抗变换矩阵时,应遵守变换前后电机功率不变的原则,即变换前后功率不变。 假设电流坐标变换方程为: i=ci′ (3-2) 式中,i′为新变量,i称为原变量,c为电流变换矩阵。 电压坐标变换方程为: u′=bu (3-3) 式中,u′为新变量,u为原变量,b为电压变换矩阵。 根据功率不变原则,可以证明: b=ct (3-4)

式中,ct为矩阵c的转置矩阵。 以上表明,当按照功率不变约束条件进行变换时,若已知电流变换矩阵就可以确定电压变换矩阵。 3.2 定子绕组轴系的变换(a-b-c<=>α-β) 所谓相变换就是三相轴系到二相轴系或二相轴系到三相轴系的变换,简称3/2变换或2/3变换。 三相轴系和二相轴系之间的关系如图3-1所示,为了方便起见,令三相的a轴与两相的α 轴重合。假设磁势波形是按正弦分布,或只计其基波分量,当二者的旋转磁场完全等效时,合成磁势沿相同轴向的分量必定相等,即三相绕组和二相组绕的瞬时磁势沿α、β轴的投影应该相等,即: (3-5) 式中,n3、n2分别为三相电机和两相电机每相定子绕组的有效匝数。 经计算并整理之后可得: (3-6) (3-7)

管理学原理与方法周三多第六版

第一篇 第一章管理与管理学 第一节人类的管理活动 一:人类活动的特点(目的性、依存性、知识性) 二:管理的必要性 三:管理的概念 第二节管理的职能与性质 一:管理的职能(计划、组织、领导、控制、创新) 二:管理的自然属性 三:管理的社会属性 第三节管理者的角色与职能 一:管理者的角色(人际角色、信息角色、决策角色) 二:管理者的职能 罗伯特卡次的研究,管理者必须具备三种技能:(技术技能、人际技能、概念机能)第四节管理学的对象与方法 一:管理学的研究对象 二:管理学的研究方法 (一)归纳法(二)试验法(三)演绎法 第二章管理思想的发展 第一节中国传统管理思想 一:中国传统思想形成的社会文化背景 二:中国传统管理思想的要点 第二节西方传统管理思想 一:西方早期管理思想的产生 1:亚当斯密《国富论》1776(英国) 2:查理巴贝奇(英国) 3:罗伯特。欧文(英国的空想主义家) 二:科学管理理论的产生和发展(19世纪末20世纪初) (一)“泰罗”的科学管理理论——科学管理之父 亨利。甘特:布雷斯及他的妻子: (二)对“泰罗制”的评价 (三)法约尔的“组织管理理论” 第三节西方现代管理思想的发展 一:行为科学学派 霍桑试验: 1:需求层次理论——马斯洛 2:双因素理论——赫茨伯格 3:X、Y理论 4:Z理论——威廉。大内 二:“管理科学”学派 三:“决策理论”学派 四:对现代管理理论的思考 五:新经济时代管理思想的变革

(一)管理思想的创新 (二)管理原则的创新 (三)经营目标创新 (四)经营战略创新 (五)生产系统创新 (六)企业组织创新 第三节中国现代管理思想的发展 一:中国现代管理思想形成的历史背景 (一)中国官僚资本企业和民族资本企业的管理 (二)我国革命根据地公营企业的管理 (三)全面学习西方的管理模式 (四)探索中国现在管理模式 二:社会主义经济管理体制改革 (一)由国内管理向国际化管理转化 (二)由科学管理向信息化管理转化 (三)由首长管理向人性化管理转化 (四)由政府管理向民营化管理转化 (五)由封闭式实体管理向开放式虚拟管理转化 第三章管理的基本原理 第四章第一节管理原理的特征 第五章一:管理原理的主要特征 第六章二:研究管理原理的意义 第七章第二节系统原理 第八章一:系统的概念 第九章二:系统的特征 第十章三:系统原理要点 第十一章第三节人本原理 第十二章一:职工是企业的主体 第十三章二:有效管理的关键是职工参与 第十四章三:现代管理的核心是使人性得到最完美的发展 第十五章四:管理是为人服务的 第十六章第四节责任原理 第十七章一:明确每个人的职责 第十八章二:职位设计和权限委任要合理 第十九章三:奖惩要分明,公正而及时 第二十章第五节效益原理 第二十一章一:效益的概念 第二十二章二:效益的评价 第二十三章三:效益的追求 第四章信息化管理 第一节信息与信息化 一、信息的含义 二、信息化的内涵 三、信息化的影响

集成形态学重建和测地距离变换的DEM内插方法

第41卷第7期2016年7月武汉大学学报·信息科学版 Geomatics and Information Science of Wuhan University Vol.41No.7 July  2016收稿日期:2015-01- 26项目资助:国家自然科学基金(41371405);国家测绘地理信息局基础测绘项目(A 1506);中央级公益性科研院所基本科研业务费专项资金(7771413 )。第一作者:林祥国,副研究员,主要从事遥感数据信息提取的理论与方法研究。linxiangg uo@gmail.comDOI:10.13203/j.whugis20140097文章编号:1671-8860(2016)07-0896- 07集成形态学重建和测地距离变换的DEM内插方法 林祥国1 1 中国测绘科学研究院摄影测量与遥感研究所,北京,1 00830摘 要:等高线是获取数字高程模型(DEM)常用的数据源之一,但内插方法对DEM生成精度有显著的影响。基于形态学重建和测地距离变换运算,提出一种等高线数据生成DEM的内插方法。形态学重建用于获取与空间一点对应的最邻近的上等高线和下等高线的高程值,测地距离变换用于获取该点到上下两条等高线的测地距离;使用沿流水线的线性内插获取该点的高程值。实验表明,在只使用等高线数据生成DEM的情况下,本文提出的内插方法获取的DEM精度更高。关键词:形态学重建;测地距离变换;测地距离;DEM;内插中图法分类号:P208;P232 文献标志码:A 数字高程模型(dig ital elevation model,DEM) 是对地球表面地形的一种离散的数字表达[1] 。自20世纪50年代后期被提出以来,D EM受到极大的关注,并在测绘、土木工程、地质、矿山工程、景观建筑、道路设计、防洪、农业、规划、军事工程、飞行器与战场仿真等领域得到了广泛的应用。一般而言,不同数据源需要不同的内插方法来生成DEM。目前,生成DEM的数据主要来源于地形图、遥感数据(既包括航天航空影像数据,又包括合成孔径雷达干涉测量数据和激光雷达数 据)、地面测量、既有DEM等[2] ; 从地形图上获取D EM是目前应用最为广泛的一种方法。我国测绘部门就分别利用1∶1万、1∶5万和1∶25万比例尺的数字线划图生成了多种分辨率的DEM。 通常,由地形图获取DEM时, 基于等高线的分布特征,有三种方式生成DEM[1] : 等高线离散化、等高线内插和等高线构建Delaunay不规则三角网(triangulated irregular network,TIN)。等高线离散化方法实质是将等高线看作不规则分布 的数据,并没有考虑等高线本身的地形特性[ 1] ,这导致生成的DEM可能会出现一些异常;基于等高线数据生成DEM的最陡坡度(流水线)内插算法的内插原理比较简单,但由于数字化的等高线远远没有纸质地形图等高线直观,因此,该方法实 现起来还存在许多问题[ 2] 。由于直接由等高线构建的TIN存在“ 平坦三角形”(即水平三角形)问题[ 3] ,因此,目前工程生产中普遍采用基于等高线和附加的“特征数据”(如地形结构线和特征数据点诸如山顶点、凹陷点、鞍部点等)构建TIN的方法。 近几年提出了很多新的内插方法,胡鹏[ 4] 、胡海[5] 等人的研究成果比较具有代表性。“特征数 据”本质上是等高线的对偶形式,并不是必须的;而且在工程生产中,很难控制特征数据的密度以平衡DEM的精度和工作量。因此,可利用地图代数直接由等高线内插生成DEM,即MADEM。 地图代数是建立在距离变换[ 6] 运算基础上的一种图像操作;它用来内插生成DEM时,不仅不需要额外的辅助特征数据,而且生成的DEM具有较 高的精度,满足“高程序同构”[7,8] 的DEM精度评 价标准。 但是基于地图代数的内插方法也存在亟待改进之处。由于该方法是通过迭代求取半距等高线(即到两相邻等高线距离相等的线)Cl/2、Cl/4、Cl/8、Cl/16、Cl/32…(Cl为地形图上等高线的基本等高距)来生成DEM的,即迭代地求取两相邻等高线的Voronoi图的边界、 并将两等高线的平均值赋予该边界;至再分已无必要时,以1/2 n+1 Voronoi图为界( n为最大迭代次数),分层赋相应高程[ 9] ,本质上这也是一种线性内插方法。但是,

平面直角坐标系规律题41840

平面直角坐标系规律题 1、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是() 第1题第6题第9题 2、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换: 1、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3); 2、g(a,b)=(b,a).如:g(1,3)=(3,1); 3、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3). 按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于() 3、在坐标平面内,有一点P(a,b),若ab=0,则P点的位置在() 4、点P到x轴的距离为3,到y轴的距离为2,则点P的坐标一定为() A、(3,2) B、(2,3) C、(﹣3,﹣2) D、以上都不对 5、若点P(m,4﹣m)是第二象限的点,则m满足() 6、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是() 7、已知点P(3,a﹣1)到两坐标轴的距离相等,则a的值为() 8、若,则点P(x,y)的位置是() 9、如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为() 10、若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是() 11、在直角坐标系中,适合条件|x|=5,|x﹣y|=8的点P(x,y)的个数为() 12、在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于(2,﹣3),则经两次跳动后,它不可能跳到的位置是() 13、观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100

坐标变换就是两种坐标类型

坐标变换就是两种坐标类型、不同参照体系之间的变换 坐标变换因不同的坐标类型、体系变换方法不一样,没有固定的公式 比方说测量地球,就有多种坐标体系: 1。以地心为原点的空间直角坐标 2。经纬度坐标 3。把地球表面分成很多格子,对于一个小格子区,球面接近平面,在这个平面上设一个平面直角坐标系,就是北京54坐标等坐标形式 这些坐标来回转换,比较复杂,甚至是学术性的问题,一般根据不同的观点和精度,有一些小程序,做转换工作 工程施工过程中,常常会遇到不同坐标系统间,坐标转换的问题。目前国内常见的转换有以下几种:1,大地坐标(BLH)对平面直角坐标(XYZ);2,北京54全国80及WGS84坐标系的相互转换;3,任意两空间坐标系的转换。其中第2类可归入第三类中。所谓坐标转换的过程就是转换参数的求解过程。常用的方法有三参数法、四参数法和七参数法。以下对上述三种情况作详细描述如下: 1,大地坐标(BLH)对平面直角坐标(XYZ) 常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。一般的工程中3度带应用较为广泛。对于中央子午线的确定有两种方法,一是取平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。如x=3250212m, y=395121123m,则中央子午线的经度=39*3=117度。另一种方法是根据大地坐标经度,如果经度是在155.5~185.5度之间,那么对应的中央子午线的经度=(155.5+185.5)/2=117度,其他情况可以据此3度类推。 另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。 确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。 2,北京54全国80及WGS84坐标系的相互转换 这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。

管理学原理与方法课后习题答案11905

第一章 1.人类活动的特点是什么?为什么管理实践与人类历史同样悠久? 答:三个基本特点:目的性、依存性、知识性。这三个特点为人类的管理实践提供了客观条件,所以管理实践与人类历史同样悠久。 2.何谓管理?管理的基本特征是什么? 答:管理是管理者为了有效地实现组织目标、个人发展和社会责任,运用管理职能进行协调的过程。特征:1、管理是人类有意识有目的的活动2、管理应当是有效的3、管理的本质是协调4、协调是运用各种管理职能的过程。 3. 管理活动具有哪些基本职能?它们之间的关系是什么? 答:基本职能有:计划、组织、领导、控制、创新。每一项管理工作一般都是从计划开始,经过组织、领导到控制结束。各职能之间同时相互交叉渗透,控制的结果可能又导致新的计划,开始又一轮新的管理循环。创新在这管理循环之中处于轴心的地位,成为推动管理循环的原动力。 4.分析管理二重性的基本内容。 答:管理的自然属性,管理的出现是由人类活动的特点决定的,管理性质并不以人的意志为转移,也不因社会制度意识形态的不同而有所改变。管理的社会属性,管理是为了达到预期目的而进行的具有特殊职能的活动,是为了使人与人之间的关系以及国家、集体和个人的关系更加和谐。 5.一个有效的管理者需要扮演哪些角色?需要具备哪些技能? 答:有人际角色、信息角色、决策角色。技能:技术技能、人际技能、概念技能。 6.分析管理学的研究对象及其方法目标。 答:各种管理工作中普遍适用的原理和方法。方法:归纳法、实验法、演绎法。 第二章 1.理解中国古代管理思想要点的主要内容,并思考对现代企业经营有何启示。比如,中国古代法制思想的基本原则是什么? 答:顺“道”、重人、人和、守信、利器、求实、对策、节俭、法治。现代企业做到这几点才能在企业中得人心,每个人都积极做好自己的工作,企业工作效率才会提高。“明法、一法”明法是法律公布于世。一法是在法律面前人人平等。 2.请综合分析斯密与巴贝奇关于劳动分工的研究。 答:斯密认为日用必需品供应情况的好坏,决定于两个因素:一是这个国家的人民的劳动熟练程度、劳动技巧和判断力的高低;二是从事游泳劳动的人数和从事无用劳动人数的比例。巴贝奇提出了“边际熟练”原则认为分工可以减少支付工资这一好处。 3.科学管理理论为什么会在19世纪末的美国产生?泰罗为什么要研究并提出科学管理理论?其理论的实质是什么?其理论的主要内容是什么?并谈谈科学管理理论对目前我国企业管理的启发。 答:因为当时随着生产的发展,科学技术的进步,自由竞争的资本主义也逐步走向垄断的资本主义。单凭经验进行生产和管理已经不能适应这种剧烈争夺的局面了。泰罗认为单凭经验进行管理的方法是不科学的,必须加以改变。实质是谋求最高工作效率。内容:1.对工人提出科学的操作方法,以便合理利用工时,提高工效。2.在工资制度上实行差别计件制。3.对工人进行科学的选择、培训和提高。4.制定科学的工艺规程,并用文件形式固定下来以利推广。5.使管理和劳动分离,把管理工作称为计划职能,工人的劳动称为执行职能。

基于distanceTransform-距离变换的区域中心提取

基于distanceTransform-距离变换的区域中心提取 这几天在做一个手势识别的项目,其中最的关键一步是提取手掌中心。获得手掌重心通常的做法是计算整个手部的重心,并以该重心位置近似手掌重心,这种方法只适用于没有手指伸出或只有一个手指伸出的情况,否则获得的手掌重心位置将严重偏离真实位置。 距离变换的基本含义是计算一个图像中非零像素点到最近的零像素点的距离,也就是到零像素点的最短距离。因此可以基于距离变换提取手掌重心。 算法基本思想: (1)将手掌图像二值化,手掌内的区域设为白色,外部区域设为黑色。 (2)将二值化后的图像经过distanceTransform变换,得到dist_image,其中每个像素点的值是该像素点到其最近的零像素点的距离。 (3)找到dist_image的最大值(即圆的半径R),并记录下位置(即圆心坐标)。 代码如下: [cpp] view plaincopy#include "opencv2/opencv.hpp" #include <opencv2/core/core.hpp> #include

<opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <vector> using namespace cv; using namespace std; pair<Point,double> DetectInCircles(vector<Point> contour,Mat src) { Mat dist_image; distanceTransform(src,dist_image,CV_DIST_L2,3); int temp=0,R=0,cx=0,cy=0; int d; for (int i=0;i<src.rows;i++) for (int j=0;j<src.cols;j++) { /* checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary*/ d = pointPolygonTest(contour, Point2f(j, i), 0); if (d>0) { temp=(int)dist_image.ptr<float>(i )[j]; if (temp>R) { R=temp; cy=i; cx=j; } } } return make_pair(Point(cx,cy),R); } int main() { // Read input binary image

平面直角坐标系中的规律问题经典练习题

【题型6】坐标中的规律问题 已知,点A(-2,3)、B(4,3)、C(-1,-3). (1)求A 、B 两点之间的距离. (2)求点C 到x 轴的距离. (3)求△ABC 的面积. (4)观察线段AB 与x 轴的关系,若点D 是线段AB 上一点,则点D 的纵坐标有什么特点? 【变式训练】 1.如图,写出平行四边形ABCD 的顶点A 和顶点B 的坐标,并判断A 与B 、C 与D 的坐标有什么关系. 2.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示. (1)填写下列各点的坐标:A 4( , ),A 8( , ),A 12( , ); (2)写出点A 4n 的坐标(n 是正整数) ; (3)蚂蚁从点A 100到点A 101的移动方向是 . 3.在平面直角坐标系中,有若干个横坐标为整数的点,其顺序按图中箭头所示方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,那么第23个点的坐标是 . 4.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x 轴正半轴的交点依次记作A 1(1,0),A 2(5,0),…,A n ,图形与y 轴正半轴的交点依次记作B 1(0,2),B 2(0,6),…,B n ,图形与x 轴负半轴的交点依次记作C 1(-3,0),C 2(-7,0),…, O 1 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12 x y

C n ,图形与y 轴负半轴的交点依次记作 D 1(0,-4),D 2(0,-8),…,D n .经研究,他发现其中包含了一定的数学规律. 请你根据其中的规律完成下列题目: (1)请分别写出下列各点的坐标:A 3 ,B 3 ,C 3 ,D 3 ; (2)请分别写出下列各点的坐标:A n ,B n ,C n ,D n ; (3)请求出四边形A 5B 5C 5D 5的面积. 6.如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1232008P P P P ,,, ,的位置,则点2008P 的横坐标为 . 7.如图,已知A l (1,0)、A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、A 5(2,-1)、….则点A 2007 第3题 第4题 第6题

坐标转换方法

经纬度转西安80坐标系坐标转换方法 一、分带划分 1.我国采用6度分带和3度分带: 1∶2.5万及1∶5万的地形图采用6度分带投影,即经差为6度,从零度子午线开始,自西向东每个经差6度为一投影带,全球共分60个带,用1,2,3,4,5,……表示.即东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度。 1∶1万的地形图采用3度分带,从东经1.5度的经线开始,每隔3度为一带,用1,2,3,……表示,全球共划分120个投影带,即东经1.5~ 4.5度为第1带,其中央经线的经度为东经3度,东经4.5~7.5度为第2带,其中央经线的经度为东经6度.我省位于东经113度-东经120度之间,跨第38、39、40共计3个带,其中东经115.5度以西为第38带,其中央经线为东经114度;东经115.5~118.5度为39带,其中央经线为东经117度;东经118.5度以东到山海关为40带,其中央经线为东经120度。

地形图上公里网横坐标前2位就是带号,例如:1∶5万地形图上的横坐标为2 0345486,其中20即为带号,345486为横坐标值。 2.当地中央经线经度的计算 六度带中央经线经度的计算:当地中央经线经度=6°×当地带号-3°,例如:地形图上的横坐标为20345,其所处的六度带的中央经线经度为:6°×20-3°=117°(适用于1∶2.5万和1∶5万地形图)。 三度带中央经线经度的计算:中央经线经度=3°×当地带号(适用于1∶1万地形图)。 3、如何计算当地的中央子午线? 当地中央子午线决定于当地的直角坐标系统,首先确定您的直角坐标系统是3 度带还是6度带投影公式推算: 6度带中央子午线计算公式:当地经度/6=N;中央子午线L=6 * N (带号)当没有除尽,N有余数时,中央子午线L=6*N - 3 3度带中央子午线计算公式:当地经度/3=N;中央子午线L=3 X N 我国的经度范围西起73°东至135°,可分成 六度带十一个(13号带—23号带),各带中央经线依次为(75°、81°、 (1) 23°、129°、135°); 三度带二十二个(24号带—45号带)。各带中央经线依次为(72°、75°、……132°、135°); 六度带可用于中小比例尺(如1:250000)测图,三度带可用于大比例尺(如1:10000)测图,城建坐标多采用三度带的高斯投影 二、以以下经纬度为例:

平面直角坐标系点变化规律

嗨!我是数学小博士,下面将由我来陪伴大家学习! 师生共用讲学稿 年级:七年级 学科:数学 姓名: 设计:张竹宇 内容:平面直角坐标系中点坐标变化规律探索 课型:新授 时间:2012年2月28日 学习目标:○ 1深刻理解平面直角坐标系和点坐标的意义 ○ 2探索各个象限的点和坐标轴上的点其坐标符号规律 ○ 3探索关于平面直角坐标系中有关对称,平移等变化的点的坐标变化规律。 ○ 4培养合作探究,团结协作的学习精神,让学生在自主探索归纳中体会学习数学的快乐成就感。 学习重点: 探索各个象限的点和坐标轴上的点其坐标符号规律 学习难点: 探索关于平面直角坐标系中有关对称,平移等变化的点的坐标变 化规律。 一、学前准备: ○ 1复习平面直角坐标系意义及坐标表示方法 ○ 2准备直尺,三角板,铅笔等工具 ○ 3预习疑难摘要: . 1、独立思考·解决问题 问题一:在平面直角坐标系中描绘出以下各点A (2,3);B (-3,4);C (-2,-1)D (1,-3);E(3,0);F(-2,0);G(0,2);H(0,-1) 归纳:○ 1在四个象限内的点,其坐标符号特征是 第一象限:( , );第二象限:( , ); 第三象限:( , );第四象限:( , )

○2在坐标轴上的点,其坐标特征: X轴: Y轴: 跟踪练习: ○1在平面直角坐标系中若点P(a,b)在第二象限,则点Q(1-a,-b)在象限。 ○2若点M(m-3,m+1)在Y轴上,则点M的坐标为;若点M在X 轴上,则点M的坐标为。 ○3在平面直角坐标系中,点(-1,m2+1)一定在第象限。 问题二:在平面直角坐标系中描绘以下三个点的坐标位置,并回答下列问题。 A(2,4);B(-2,4);C( 2,-4) ○1A点与B点在坐标系中的位置有什么特殊之处? ○2B点与C点在坐标系中的位置有什么特殊之处? ○3A点与C点在坐标系中的位置有什么特殊之处? 归纳总结: ①A与B点关于对称,其坐标变化规律是: ②B与C点关于对称,其坐标变化规律是: ③A与C点关于对称,其坐标变化规律是: 跟踪练习: ○1点P(2,-3)关于X轴对称点的坐标为(,),关于Y轴对称点的坐标为(,),关于原点对称点的坐标为(,) ○2若点A(1-a,3b+2)与点B(-2,-3)关于Y轴对称,则a= ,b=

设计管理的基本原理与方法

第三章设计管理的基本原理与方法 设计管理是一个过程,在这个过程中,企业的各种设计活动,包括产品设计、环境设计、视觉传达设计等,被合理化和组织化。另外,设计管理还要负责处理设计与其它管理功能的关系,并负责有效地使用设计师。 在设计管理的过程中,设计管理者扮演了组织者、协作者、整合者、同中求异者、传达沟通者及媒介者等诸多角色。本章在管理学的基础上,总结归纳出设计管理的基本原理与方法。 第1节设计管理的基本原理 原理是指某种客观事物的实质及其运动的基本规律。设计管理原理是对设计管理工作的实质内容进行科学分析总结而形成的基本原理,除具有管理原理的基本特征外,还具有自己的独特特点。 一、系统原理是指将产品创新设计的整个过程视为一个开放式系统,运用系统理论和系统方法,对设计要素、设计组织、设计过程进行系统分析,旨在优化设计管理系统的最优功能,以实现企业产品的整体优化和产品创新的总体目的。 在一项产品创新设计过程中,管理工作的内部存在着错综复杂、相互制约的关系,而且还表现在这一管理工作与其他管理工作之间也存在着这种错综复杂、相互制约的关系。任何一种关系处理不好,任何一个环节出现问题,都会对设计管理系统的正常活动带来不利的影响。因此,这就要求设计管理者必须坚持系统理论和方法论,通盘考虑,全面权衡,综合处理它们之间的各种问题。 产品创新设计系统内诸要素都不是孤立地存在的,其性质必然满足系统存在的一切条件。一方面,系统的整体目标规定着要素的根本性质及其存在和发展;另一方面,要素又随着管理系统是开放而同外部环境以及其它系统发生着各种形式的“输入和输出”,表现为一种相互制约、相互促进的动态相关图景。设计管理强调运用系统理论和方法,在确定和不确定的条件下,对管理对象诸要素及其相互关系进行充分的系统管理和综合,以实现设计管理的最优化目标。 为了正确贯彻设计管理系统的原理,必须掌握它的三个主要观点: 1、目的性观点 设计管理意义上的“目的”一词,是指设计管理系统存在的依据和最终目标。没有目的的设计管理系统是毫无意义和价值的系统;目的不明确或混淆了不同的目的,都必然会造成设计管理系统的紊乱。一般讲,设计管理对象在未经管理之前呈无序状态。设计管理的任务就在于:通

平面直角坐标系找规律题型

平面直角坐标系找规律题型分类 1、如图,已知Al (1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),….则点A2015的坐标为 . 2、如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,顶点A55的坐标是 小结: 3、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示. (1)填写下列各点的坐标:A4( , ),A8( , ),A12( , ),A16( ); (2)写出点A4n 的坐标 (n 是正整数); (4)指出蚂蚁从点A2014到点A2015的移动方向 . 小结: O 1 A 1 A 2 A 3 A4 A5 A6 A7 A8 A9 A 10 A 11 A 12 x y

4、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是多少?第42、49秒所在点的坐标及方向? 小结: 5、如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为. 6、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0), (2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第88个点的坐标为. 小结:

坐标转换方法

在工作过程中许多朋友会遇到坐标转换的问题,下面笔者就经常使用的一个坐标转换软件的使用方法做一个稍微详细的说明。 1、坐标系的确定 图1 软件使用界面 图1为软件使用界面,目前我们在工作过程中碰到的XY坐标系大多为全国80(也称西安1980)坐标系,也会有少量的设计会使用北京54坐标系。 图2和图3为同一点转换成全国80和北京54后差别,从两个转换结果来看,两个坐标系相差较小,可能比系统误差还小。(坐标转换过程中会产生系统误差,在不同位置误差也会有差异,所以转换出来的坐标只能是大概位置的参考。有兴趣的可以去研究下大地坐标系和投影坐标系,研究明白了就知道了为啥会有一定程度的误差,而且偏离中心线越远,误差越大)

图2(北京54) 图3(全国80) 2、中央子午线的确定 中央子午线一般为三度带和六度带的中央子午线坐标(至于什么是三度带和六度带,有兴趣的可以自行去研究投影坐标系的由来)。三度带的中央子午线经度为3的整数倍,六度带的中央子午线经度为6的整数倍,以图3中坐标为例,经度为112°30′至115°30′以内的坐标均为以114°为中

央子午线经度的三度带分区内;经度为111°至117°以内的坐标均为以114°为中央子午线经度的六度带分区内。 无法确定所在区域的中央子午线经度,可将区域的经度转换成小数后除3或者6,四舍五入后再乘3或者6即为中央子午线经度,如图中114°30′,转换后为114.5°,除3,四舍五入后再乘3即为114°。 3、经纬度转XY坐标 图4 图4为经纬度转XY坐标方法示意,在确定区域的中央子午线经度后,在BL处填上相应的纬度和经度,点击转换即可转出所需坐标。 4、完整的XY坐标转经纬度 目前国内部分设计单位在设计时,出于某些目的,会省略XY坐标中的某些位数,因此在此处分完整的XY坐标转经纬度和不完整的XY坐标转经纬度。

直角坐标系找规律题

直角坐标系找规律题 一.选择题 1.在平面直角坐标系中,A (1,1),B (-1,1),C (-1,-2),D (1,-2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A-B-C-D-A…的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( ) A .(-1,0)B .(1,-2)C .(1,1)D .(-1,-1) 2.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是( ) A .(2,0) B .(-1,1) C .(-2,1) D .(-1,-1) 2题图 3题图 5题图 3.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2014次碰到矩形的边时,点P 的坐标为( ) A .(1,4) B .(5,0) C .(6,4) D .(8,3) 4.如图,动点P 在直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点(1,1),第二次运动到点(2,0),第三次接着运动到点(3,2),…按这样的运动规律,经过第2015次运动后,动点P 的纵坐标是( ) A .2 B .1 C .0 D .2015 5.如图,在轴的正半轴与射线上各放置着一平面镜,发光点(0,1)处沿如图所示方向发射一束光,每当碰到镜面时会反射(反射时反射角等于入射角),当光线第30次碰到镜面时的坐标为( ) A .(30,3) B .(88,3) C .(30,0) D .(88,0) 6.如图,网格中的每个小正方形的边长都是1,A1、A2、A3、…都在格点上,△A1A2A3、△A3A4A5、△A5A6A7、…都是斜边在x 轴上,且斜边长分别为2、4、6、…的等腰直角三角形.若△A1A2A3的三个顶点坐标为A1(2,0)、A2(1,-1)、A3(0,0),则依图中规律,A19的坐标为( ) A .(10,0) B .(-10,0) C .(2,8) D .(-8,0) 6题图 7题图 8题图 7.一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭 头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0),且每秒移动一个单位,那么第30秒时点所在位置的坐标是( ) A .(0,5) B .(5,5) C .(0,11) D .(11,11) 8.如图,在平面直角坐标系中,有若干个整数点(横纵坐标都为整数的点),其顺序按图中“→”方向排列,如:(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0),(4,1),…,观察规律可得,该排列中第100个点的坐标是( ) A .(10,6) B .(12,8) C .(14,6) D .(14,8) 9.已知A1(1,0),A2(1,-1),A3(-1,-1),A4(-1,1),A5(2,1),…,则点A2011的坐标是( ) A .(502,502) B .(-502,-502) C .(503,503) D .(-503,-503)

相关文档
最新文档