(精选)线性代数-考研笔记

(精选)线性代数-考研笔记
(精选)线性代数-考研笔记

第一章行列式

性质1 行列式与它的转置行列式相等。

性质2互换行列式的两行(列),行列式变号。

推论如果行列式的两行(列)完全相同,则此行列式等于零。

性质3行列式的某一行(列)中所以的元素都乘以同一个数,等于用数乘以此行列式。第行(或者列)乘以,记作(或)。

推论行列式的某一行(列)的所有元素的公因子可以提到行列式记号的外面。第行(或者列)提出公因子,记作(或)。

性质4行列式中如果两行(列)元素成比例,此行列式等于零。

性质5若行列式的某一列(行)的元素都是两数之和,例如第列的元素都是两数之和,则等于下列两个行列式之和:

=

性质 6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

定义在阶行列式,把元所在的第行和第列划去后,留下来的阶行列式叫做元的余子式,记作;记,叫做元的代数余子式。

引理一个阶行列式,如果其中第行所有元素除元外都为零,那么这行列式等于与它的代数余子式的乘积,即

定理3 (行列式按行按列展开法则) 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即

推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。

范德蒙德行列式

克拉默法则

如果线性方程组①的系数行列式不等于零,即

那么,方程组①有唯一解其中是把系数行列式矩阵中第列的元素

用方程组右端的常数项代替后所得到的阶行列式,即

定理4 如果非齐次线性方程组的系数行列式,则非齐次线性方程组一定有解,且解是唯一的。

定理如果非齐次线性方程组无解或有两个不同的解,则它的系数行列式必为零。

定理5 如果齐次线性方程组的系数行列式

定理如果,则它的系数行列式必为零

第二章矩阵级其运算

定义1 由个数排成的行列的数表,称为行列矩阵;

以数为元的矩阵可简记作或矩阵也记作。

行数和列数都等于的矩阵称为阶矩阵或阶方阵。阶矩阵也记作。

特殊定义:

两个矩阵的行数相等,列数也相等时,就称它们是同型矩阵同型矩阵和的每一个元素都相等,就称两个矩阵相等,;元素都是零的矩阵称为零矩阵,记作;注意不同型的零矩阵是不同的。

特殊矩阵

阶单位矩阵,简称单位阵。特征:主对角线上的元素为,其他元素为;

对角矩阵,特征:不在对角线上的元素都是0,记作

定义2矩阵的加法

设有两个矩阵和,那么矩阵与的和记作,规定为

注意:只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算;

矩阵加法满足运算律(设矩阵)

(i.)

(ii.)

定义3数与矩阵相乘

数乘矩阵满足下列运算规律(设矩阵,为数)

(i.);

(ii.);

(iii.)

(iv.)

定义4 矩阵与矩阵相乘

设是一个矩阵,是一个矩阵,那么规定矩阵与矩阵的乘积是一个矩阵

,其中,

并把此乘积记作

注意:只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(右矩阵)的行数时,两个矩阵才能相乘;

矩阵的乘法性质(不满足交换律)

(i.)(

(ii.)

(iii.)()A =BA+CA

(iv.)

(v.);

矩阵的转置

定义5 把矩阵的行换成同序数的列得到一个新矩阵,叫做的转置矩阵,记作。

性质:

(i.);

(ii.)

(iii.)

(iv.)

定义6 由阶方阵的元素所构成的行列式(各元素的位置不变),称方阵的行列式,记作det A;

(为阶方阵,为数)

(i.)=

(ii.)=

(iii.)=

伴随矩阵

定义:的各个元素的代数余子式

性质:

定义7 对于阶矩阵,如果有一个阶矩阵,使,则说矩阵是可逆的,并把矩阵称为的逆矩阵,简称逆阵。

定理1若矩阵可逆,则

定理2 若,则矩阵可逆,且其中为矩阵的伴随阵。

是可逆矩阵的充分必要条件是

推论若,则

方阵的逆阵满足下述运算规律:

(i.)若可逆,则亦可逆,且

(ii.)若可逆,数,则可逆,且

(iii.)若为同阶矩阵且均可逆,则亦可逆,且

分块矩阵的运算法则

(i.)分块矩阵的加法矩阵的加法

(ii.)数与分块矩阵相乘数与矩阵相乘

(iii.)分块矩阵与分块矩阵相乘矩阵与矩阵相乘

(iv.)分块矩阵的转置:设

(v.)设为阶矩阵,若的分块矩阵只有在对角线上有非零子块,其余子块都为非零矩阵,且在对角线上的子块都是方阵,即

其中都是方阵,那么称为分块对角矩阵

克拉默法则对于个变量、个方程的线性方程组

如果它的系数行列式,则它有唯一解

第三章矩阵的初等变换与线性方程组

定义1 下面三种变换称为矩阵的初等行变换:

(i.)对调两行(对调两行,记作);

(ii.)以数乘某一行中的所有元素(第行乘,记作);

(iii.)把某一行所有元素的倍加到另一行对应的元素上去(第行的倍加到第行上,记作;

把定义1中的“行”换成“列”,即得矩阵的初等列变换的定义(所用的记号是把“”换成“”)

矩阵的初等行变换与初等列变换,统称为初等变换

如果矩阵经有限次初等行变换变成矩阵,就称与行等价,记作;

如果矩阵经有限次初等列变换变成矩阵,就称与列等价,记作;

如果矩阵经有限次初等变换变成矩阵,就称与列等价,记作;

矩阵之间的等价关系具有下列性质:

(i.)反身性;

(ii.)对称性若,则;

(iii.)传递性,则;

行最简形矩阵,特点:非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0。

定理1 设为矩阵,那么:

(i.)的充分必要条件是存在阶可逆矩阵;使;

(ii.)的充分必要条件是存在阶可逆矩阵;使;

(iii.)的充分必要条件是存在阶可逆矩阵及阶可逆矩阵,使;

推论方阵可逆的充分必要条件是

行变换三个应用:

(1)

(2)

(3)

定义3 在矩阵中,任取行与列(),位于这些行列交叉处的个元素,不改变它们在中所处的位置次序而得的阶行列式,称为矩阵的阶行列式。

定义4 设在矩阵中有一个不等于的阶子式,且所有阶子式(如果存在的话)全等于,那么称为矩阵的最高阶非零子式,数称为矩阵的秩,记作;并规定零矩阵的秩序等于

定理2 若,则

推论若可逆矩阵使,则

矩阵秩的基本性质

1.

2.;

3.若,则

4.若可逆,则

5.,特别地,当为非零列向量时,有

6.

7.

8.若,则

定理3元线性方程组

(i.)无解的充分必要条件是

(ii.)有唯一解的充分必要条件是

(iii.)有无限多解的充分必要条件是

求解线性方程组的步骤

(i.)对于非齐次线性方程组,把它的增广矩阵化成行阶梯形,从的行阶梯形可同时看出和。若,则方程组无解。

(ii.)若,则进一步把化成行最简形。而对于齐次线性方程组,则把系数矩阵化成行最简形。(iii.)设,把行最简形中个非零行的非零首元所对应的未知数取作非自由未知数,其余个

未知数取作自由未知数,并令自由未知数分别等于,由的行最简形,即可写出含个参数的通解。

定理4元齐次线性方程组有非零解的充分必要条件是

定理5 线性方程组有解的充分必要条件是

定理6 矩阵方程有解的充分必要条件是

定理7 设,则

第四章向量组的线性相关性

定义1 n个有次序的数所组成的数组称为n维向量,这n个数称为该向量的n个分量,第i个

数称为第i个分量。

若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组。

定义2 给定向量组A:,对于任何一组实数,表达式

称为向量组A的一个线性组合,给定向量组A:和向量b,如果存在一组数,使得则向量b是向量组A的线性组合,这时称向量b能由向量组A线性表示

。也就是方程组有解

定理1向量b能由向量组A:线性表示的充分必要条件是矩阵A=的秩等于矩阵B=的秩。

定义 2设有两个向量组A:及B:若B组中的每个向量都能由向量A线性表示,则称向量组B能由向量组A线性表示,若向量组A与向量组B能相互线性表示,则称这两个向量组等价。

定理 2 向量组B:能由向量组A:线性表示的充分必要条件是矩阵A=的秩等于矩阵(A,B)=(,)

推论向量组A:与向量组B:等价的充分必要条件是,其中A和B是向量组A和B所构成的矩阵。

定理 3 设向量组B:能由向量组A:线性表示,则

定义 4 给定向量组A:如果存在不全为零的数,使

则称向量组A是线性相关的,否则称它线性无关。

定理4 向量组A:线性相关的充分必要条件是它所构成的矩阵A=的秩小于向量个数m;向量组线性无关的充分必要条件是。

定理5

(1)若量组A:线性无关,则向量组B:也线性相关。反言之,若向量

组B线性无关,则向量组A也线性无关。

(2)m个n维向量组成的向量组,当维数n小于向量个数m时一定线性相关。特别地,n+1个n维向量一定线性相

关。

(3)设向量组A:线性无关,而向量组B:,b线性相关,则向量b必能由向量

组A线性表示,且表示式是惟一的。

定义5 设有向量组,如果在中能选出个向量,满足

i.向量组线性无关;

ii.向量组中任意个向量(如果中有个向量的话)都线性相关

那么称向量组是向量组的一个最大线性无关组(简称最大无关组);最大无关组所含向量个数称为向量组的秩,记作。

只含零向量的向量组没有最大无关组,规定它的秩为0.

定理6矩阵的秩等于它的列向量的秩,也等于它的行向量的秩。

推论(最大无关组的等价定义)设向量组是向量组的一个部分组,且满足

向量组线性无关;

向量组的任一向量都能由向量组线性表示,

那么向量组便是向量组的一个最大无关组。

定理向量组能够由向量组线性表示的充分必要条件是

=

定理若向量组能由向量组线性表示,则

性质1 若为的解,则也是的解。

性质2若为的解,为实数,则也是的解。

齐次线性方程组的解集的最大无关组称为该齐次线性方程组的基础解系。

定理7 设矩阵的秩,则元齐次线性方程组的解集的秩

性质3 若为的解,则为对应的齐次线性方程组的解。

定义6 设为维向量的集合,如果集合非空,且集合对于向量的加法及乘数两种运算封闭,那么就称集合为向量空间。

“封闭”,是指在集合中可以进行向量的加法及乘数两种运算,具体说,就是:若,则;若,,则

一般的,由向量组所生成的向量空间为

定义7设为向量空间,如果个向量,且满足

i.线性无关;

ii.中任一向量都可由线性表示,

那么,向量组就称为向量空间的一个基,称为向量空间的维数,并称为维向量空间。

定义8 如果在向量空间中取一个基,那么中任一向量可惟一地表示为

,数组称为向量在基中的坐标。

特别地,在维向量空间中取单位坐标向量组为基,则以为分量的向量,可表示为,可见向量在基中的坐标就是该向量的分量。因此,叫做中的自然基。

第五章相似矩阵及二次型

定义1 设有维向量

令,称为与的内积,内积是两个向量之间的一种运算,其结果是一个实数,用矩阵记号表示,当与都是列向量时,有

内积具有下列性质(其中为维向量,为实数):

i.;

ii.;

iii.

iv.当时,

v.施瓦茨不等式

定义2 令,维向量的长度(或范数)。

=1时,称为单位向量。

向量的长度具有下述性质:

i.非负性当时,;当时,;

ii.齐次性;

iii.三角不等式

iv.当时,称向量与正交。

定理1 若维向量是一组两两相交的非零向量,则;

定义3设维向量是向量空间的一个基,如果两两正交,且都是单位向量,则称是的一个规范正交基。

规范正交化:

单位化

定义4如果阶矩阵满足那么称为正交矩阵,简称正交阵。

方阵为正交阵的充分必要条件是①的列向量都是单位向量,②且两两正交;

定义5若为正交矩阵,则称为正交变换

定义6 设是阶矩阵,如果和维非零列向量使关系式成立,那么,这样的数称为矩阵的特征值,非零向量称为的对应于特征值的特征向量。

特征方程为:

是矩阵的特征多项式,记作

设阶矩阵的特征值不难证明

(i.);

(ii.)

定理 2 设是方阵的个特征值,依次是与之对应的特征向量,如果各不相等,则线性无关。

定义7 设都是阶矩阵,若有可逆矩阵,使,则称的相似矩阵,或说矩阵与相似。对进行运算称为对进行相似变换。可逆矩阵称为把的相似变换矩阵。

定理3若阶矩阵与相似,则与的特征多项式相同,从而与的特征值亦相同。

推论若阶矩阵与对角阵

相似,则即是的个特征值。

定理4阶矩阵与对角阵相似(即能对角化)的充分必要条件是有个线性无关的特征向量。

推论如果阶矩阵的个特征值互不相等,则与对角阵相似。

定理5对称阵的特征值为实数。

定理6 设是对称阵的两个特征值,是对应的特征向量。若,则正交;

定理7 设为阶对称阵,则必有正交阵,使,其中是以的个特征值为对角元的对角阵。

推论设为阶对称阵,是的特征方程的重根,则矩阵的秩,从而对应特征值恰有个线性无关的特征向量。

对称阵对角化的步骤:

(i.)求出的全部互不相等的特征值,它们的重数依次为

(ii.)对每个重特征值,求方程的基础解系,得个线性无关的特征向量。再把它们正交化、单位化,得个两两正交的单位特征向量。因,故总共可得个两两正交的单位特征向量。(iii.)把这个两两正交的单位特征向量构成正交阵,便有。注意中对角元的排列次序应与中列向量的排列次序相对应。

定义8 含有个变量的二次齐次函数

称为二次型,取则,于是

这种只含平方项的二次型,称为二次型的标准型(或法式)

如果标准型的系数只在三个数中取值,则称为二次型的规范型。

定义9设是阶矩阵,若有可逆矩阵,使,则称矩阵合同。

定理8 任给二次型,总有正交变换,使化为标准型其中是的矩阵的特征值。

定理9【惯性定理】:设有二次型,它的秩,有两个可逆交换及使

则中正数的个数与中正数的个数相等。

二次型的标准型中正系数的个数称为二次型的正惯性指数,负系数的个数称为负惯性系数。

考研线性代数知识点全面总结资料

《线性代数》复习提纲 第一章、行列式 1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。 (1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法 定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; ?行列式值为0的几种情况: Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。 3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。 奇排列变为标准排列的对换次数为基数,偶排列为偶数。 n 阶行列式也可定义:n q q q n a a a ?=∑21t 2 1 1-D )(,t 为n q q q ?21的逆序数 4.行列式性质: 1、行列式与其转置行列式相等。 2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。 3、行列式某行(列)乘数k,等于k 乘此行列式。行列式某行(列)的公因子可提到外面。 4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。 5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。 6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则) 7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则: :若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解D D D D x D D n =?== n 2211x ,x ,,。

考研线性代数知识点全面汇总

考研线性代数知识点全面汇总

————————————————————————————————作者:————————————————————————————————日期: 2

《线性代数》复习提纲 第一章、行列式 1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。 (1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法 定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; ?行列式值为0的几种情况: Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。 3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。 奇排列变为标准排列的对换次数为基数,偶排列为偶数。 n 阶行列式也可定义:n q q q n a a a ?=∑21t 2 1 1-D )(,t 为n q q q ?21的逆序数 4.行列式性质: 1、行列式与其转置行列式相等。 2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。 3、行列式某行(列)乘数k,等于k 乘此行列式。行列式某行(列)的公因子可提到外面。 4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。 5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。 6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则) 7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则:

考研线性代数核心知识点和易错点总结

考研线性代数核心知识点和易错点总结

————————————————————————————————作者:————————————————————————————————日期:

2018考研线性代数核心知识点和易错 点总结 通过7-9月这三个月时间的复习,大家应该做到把所学的知识系统化综合化,尤其是考研数学中的线性代数。在考研数学中线性代数只占分值的22%,所占比例虽然不高,但是对每位考研学子来说同样重要。线性代数部分的内容相对容易,从历年真题分析可知考试的时候出题的套路也比较固定。但是线性代数的知识点比较琐碎,记忆量大而且容易混淆的地方较多;另外这门学科的知识点之间的联系性也比较强,这种联系不仅指各个章节之间的相互联系,更重要的是不同章节中的各种性质、定理、判定法则之间也有着相互推导和前后印证的关系。因此,在复习线性代数的时候,要求考生做到“融会贯通”,即不仅要找到不同知识点之间的内在联系,还要掌握不同知识点之间的顺承关系。为了使广大考生在暑期强化阶段更好地复习线性代数这门学科,下面为大家总结了本门课程的核心考点和易错考点,希望对大家的复习能有所帮助! 一、核心考点 1、行列式 本章的核心考点是行列式的计算,包括数值型行列式的计算和抽象型行列式的计算,其中数值型行列式的计算又分为低阶行列式和高阶行列式两种类型。对于低阶的数值型行列式来说,主要的处理方法是:找1,化0,展开,即首先找行列式中最简单的元素,利用行列式的性质将最简单元素所在的行或者列的其他元素均化为0,然后再利用行列式的展开定理对目标行列式进行降阶,最后利用已知公式求得目标行列式的值。对于高阶的数值型行列式来说,它的处理方法有两种:一是三角化;二是展开。所谓的三角化就是利用行列式的性质将目标行列式化成上三角行列式或者下三角行列式,三角化的主要思想就是化零,即利用行列式中各元素之间的关系通过行列式的性质化出较多的零,它是解决“爪型”行列式和“对角线型”行列式的主要方法。而所谓的展开就是利用行列式的展开定理对目标行列式进行降阶,一般解决的是递推形式的行列式,而它的关键点则是找出与的结构。对于数值型行列式来说,考试直接考查的题目相对较少,它总是伴随着线性方程组或者特征值与特征向量等的相关知识出题的。对行列式的考查多以抽象型行列式的形式出现,这一部分的考题综合性很强,与后续章节的联系比较紧密,除了要用到行列式常见的性质以外,更需要结合矩阵的运算,综合特征值特征向量等相关考点,对考生能力要求较高,需要考生有扎实的基础,对线性代数整个学科进行过细致而全面的复习。抽象行列式的计算常见的方法有三种:一是利用行列式的性质;二是使用矩阵运算;三是结合特征值与特征向量。 2、矩阵 矩阵是线性代数的核心内容,它是后续章节知识的基础,矩阵的概念、运算及其相关理论贯穿着整个线性代数这门学科。这部分的考点较多,重点是矩阵的运算,尤其是逆矩阵、矩阵的初等变换和矩阵的秩是重中之重的核心考点。考试题目中经常涉及到伴随矩阵的定义、性质、行列式、可逆阵的逆矩阵、矩阵的秩及包含伴随矩阵的矩阵方程等。另外,这几年还经常出现与初等变换与初等矩阵相关的命题。本章常见题型有:计算方阵的幂、与伴随矩阵相关的命题、与初等变换相关的命题、有关逆矩阵的计算与证明、解矩阵方程等。 3、向量 本章的核心考点是向量组的线性相关性的判断,它也是线性代数的重点,同时也是考研的重点。2014年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,在做此处题目的时候要学会与线性表出、向量组的秩及线性方程组等相关知识联

2020年考研线性代数重点内容和典型题型总结

XX年考研线性代数重点内容和典型题型总结线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学 们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题 为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必 然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算 行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进 行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数 的行列式的计算.关于每个重要题型的具体方法以及例题见《xx年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴

随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数

强化复习线性代数各章重点及题型考研

线性代数在考研数学中占有重要地位,必须予以高度重视。线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,必须注重计算能力。线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的,下面就将线代中重点内容和典型题型做了总结,希望对大家学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容, 不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、 逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等 问题中都会涉及到行列式。如果试卷中没有独立的行列式的试题,必然会在其他章、节的试 题中得以体现。行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶 法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进 行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对 角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽 象行列式的计算、含参数的行列式的计算。 矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的 始终。这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、 性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几

年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。 由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念; 了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

考研数学线性代数行列式的计算方法

考研数学线性代数行列式的计算方法考研数学线性代数行列式的计算方法 一、基本内容及历年大纲要求。 本章内容包括行列式的定义、性质及展开定理。从整体上来看,历年大纲要求了解行列式的概念,掌握行列式的性质,会应用行列 式的性质及展开定理计算行列式。不过要想达到大纲中的要求还需 要考生理解排列、逆序、余子式、代数余子式的概念,以及性质中 的相关推论是如何得到的。 二、行列式在线性代数中的地位。 行列式是线性代数中最基本的运算之一,也是考生复习考研线性 代数必须掌握的基本技能之一(另一项基本技能是求解线性方程组),另外,行列式还是解决后续章节问题的一个重要工具,不论是后续 章节中出现的重要概念还是重要定理、解题方法等都与行列式有着 密切的联系。 三、行列式的计算。 由于行列式的计算贯穿整个学科,这就导致了它不仅计算方法灵活,而且出题方式也比较多变,这也是广大考生在复习线性代数时 面临的第一道关卡。虽然行列式的计算考查形式多变,但是从本质 上来讲可以分为两类:一是数值型行列式的计算;二是抽象型行列式 的计算。 1.数值型行列式的计算 主要方法有: (1)利用行列式的定义来求,这一方法适用任何数值型行列式的 计算,但是它计算量大,而且容易出错;

(2)利用公式,主要适用二阶、三阶行列式的计算; (3)利用展开定理,主要适用出现零元较多的行列式计算; (4)利用范德蒙行列式,主要适用于与它具有类似结构或形式的行列式计算; (5)利用三角化的思想,主要适用于高阶行列式的计算,其主要思想是找1,化0,展开。 2.抽象型行列式的计算 主要计算方法有: (1)利用行列式的性质,主要适用于矩阵或者行列式是以列向量的形式给出的; (2)利用矩阵的运算,主要适用于能分解成两个矩阵相乘的'行列式的计算; (3)利用矩阵的特征值,主要适用于已知或可以间接求出矩阵特征值的行列式的计算; (4)利用相关公式,主要适用于两个矩阵相乘或者是可以转化为两个矩阵相乘的行列式计算; (5)利用单位阵进行变形,主要适用于既不能不能利用行列式的性质又不能进行合并两个矩阵加和的行列式计算。 我们究竟该做多少年的真题? 建议大家在刚开始复习的时候,不要去做真题,因为以你刚开始复习的程度还不足以支撑起真题的难度和深度。我们做真题的时间是在我们的强化阶段结束之后,也就是提高阶段和冲刺模考去做真题。 应该怎么样去做真题? 第一:练习重质不重量

考研线性代数知识点归纳

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

考研数学线性代数题型归纳.doc

三、线性方程组与向量常考的题型有:1.向量组的线性表出,2.向量组的线性相关性,3.向量组的秩与极大线性无关组,4.向量空间的基与过渡矩阵,5.线性方程组解的判定,6.齐次线性方程组的基础解系,7.线性方程组的求解,8.同解与公共解。 四、特征值与特征向量常考的题型有:1.特征值与特征向量的定义与性质,2.矩阵的相似对角化,3.实对称矩阵的相关问题,4.综合应用。 五、二次型常考的题型有:1.二次型及其矩阵,2.化二次型为标准型,3.二次型的惯性系数与合同规范型,4.正定二次型。 2019考研数学线性代数知识点总结 【行列式】 1、行列式本质——就是一个数 2、行列式概念、逆序数 考研:小题,无法联系其他知识点,当场解决。

3、二阶、三阶行列式具体性计算 考研:不会单独出题,常常结合伴随矩阵、可逆矩阵考察。 4、余子式和代数余子式 考研:代数余子式的正负是一个易错点,了解代数余子式才能学习行列式展开定理。 5、行列式展开定理 考研:核心知识点,必考! 6、行列式性质 考研:核心知识点,必考!小题为主。 7、行列式计算的几个题型 ①、划三角(正三角、倒三角) ②、各项均加到第一列(行) ③、逐项相加 ④、分块矩阵 ⑤、找公因 这样做的目的,在行/列消出一个0,方便运用行列式展开定理。 考研:经常运用在找特征值中。

⑥数学归纳法 ⑦范德蒙行列式 ⑧代数余子式求和 ⑨构造新的代数余子式 8、抽象型行列式(矩阵行列式) ①转置 ②K倍 ③可逆 ③伴随 ④题型丨A+B丨;丨A+B-1丨;丨A-1+B丨型 (这部分内容放在第二章,但属于第一章的内容) 考研:出小题概率非常大,抽象性行列式与行列式性质结合考察。 【矩阵】 1、矩阵性质 考研:与伴随矩阵、可逆矩阵、初等矩阵结合考察。 2、数字型n阶矩阵运算

2018考研数学线性代数六大考点

跨考考研线性代数在考研数学中占比22%,因此,学好线代很关键。一般,线性代数常考计算题和证明题,因此大家要把握好公式和理论重点。下面和大家分享线性代数六大考点,大家注意复习。 一、行列式部分,强化概念性质,熟练行列式的求法 在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。 二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用 通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调.此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。 三、向量部分,理解相关无关概念,灵活进行判定 向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢?首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 四、线性方程组部分,判断解的个数,明确通解的求解思路 线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。为了使考生牢固掌握线性方程组的求解问题,博研堂专家对含参数的方程通解的求解思路进行了整理,希望对考研同学有所帮助。通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理;不为零则有唯一解直接求出即可。若为非齐次方程组,则按照对增广矩阵的讨论进行求解。 五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解 矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。 六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理 二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方法、正交变换化二次型为标准形;掌握二次型正定性的判别方法等等。 2018考研交流总群337587371

考研线性代数知识点全面总结

《线性代数》复习提纲 第一章、行列式(值,不是矩阵) 1.行列式的定义:用2 n 个元素ij a 组成的记号称为n 阶行列式。 (1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法 定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; ? 行列式值为0的几种情况: Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元 素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。 3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。 奇排列变为标准排列的对换次数为基数,偶排列为偶数。 n 阶行列式也可定义:n q q q n a a a ?=∑2 1t 211-D )(,t 为n q q q ?2 1的逆序数 4.行列式性质: 1、行列式与其转置行列式相等。 2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。

3、行列式某行(列)乘数k,等于k 乘此行列式。行列式某行(列)的公因子可提到外面。 4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。 5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。 6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则) 7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则: :若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解 D D D D x D D n =?== n 2211x ,x ,,。 :若线性方程组无解或有两个不同的解,则系数行列式D=0. :若齐次线性方程组的系数行列式0D ≠,则其没有非零解。 :若齐次线性方程组有非零解,则其系数行列式D=0。 6. 1 1 2 n r r r n r r r r ==∏O , () 1 1 (1)2 2 1n r n n r r n r r r r -==-∏N ()n a b a b ad bc c d c d =-O N N O , 12322221231 1 11112 3 1111() n n i j n i j n n n n n x x x x x x x x x x x x x x ≥>≥----=-∏L L L M M M M L ,(两式要会计算) 题型:Page21(例13) 第二章、矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB =BA ,称A 、B 是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; 范德蒙德行列

2020考研 线性代数_常用公式

考研数学线性代数常用公式 数学考研考前必背常考公式集锦。希望对考生在暑期的复习中有所帮助。本文内容为线性代数的常考公式汇总。 1、行列式的展开定理 行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之 和,即 C 的 3、设A 为n 阶方阵,*A 为它的伴随矩阵则有**==AA A A A E . 设A 为n 阶方阵,那么当AB =E 或BA =E 时,有1-B =A 4、 对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种: 第一种:交换单位矩阵的第i 行和第j 行得到的初等矩阵记作ij E ,该矩阵也

可以看做交换单位矩阵的第i 列和第j 列得到的.如1,3001010100?? ?= ? ?? ?E . 第二种:将一个非零数k 乘到单位矩阵的第i 行得到的初等矩阵记作()i k E ;该矩阵也可以看做将单位矩阵第i 列乘以非零数k 得到的.如 2100(5)050001?? ?-=- ? ?? ?E . 第三种:将单位矩阵的第i 行的k 倍加到第j 行上得到的初等矩阵记作()ij k E ;该矩阵也可以看做将单位矩阵的第j 列的k 倍加到第i 列上得到的.如 3,2100(2)012001?? ?-=- ? ??? E . 注: 1)初等矩阵都只能是单位矩阵一次初等变换之后得到的. 2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵()ij k E 看做列变换是将单位矩阵第j 列的k 倍加到第i 列,这一点考生比较容易犯错. 5、矩阵A 最高阶非零子式的阶数称之为矩阵A 的秩,记为()r A . 1)()()(),0r r r k k ==≠T A A A ; 2)()1r ≠?≥A O A ; 3)()1r =?≠A A O 且A 各行元素成比例; 4)设A 为n 阶矩阵,则()0r n =?≠A A . 6、线性表出 设12,,...,m ααα是m 个n 维向量,12,,...m k k k 是m 个常数,则称1122...m m k k k ααα+++为向量组12,,...,m ααα的一个线性组合. 设12,,...,m ααα是m 个n 维向量,β是一个n 维向量,如果β为向量组

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

考研线性代数大总结

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、 A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵);

线性代数必须熟记的结论总结

【海文考研数学】:线性代数必须熟记的结论总结 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵:

考研线性代数知识点全面总结

考研线性代数知识点全面总结

《线性代数》复习提纲 第一章、行列式 1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。 (1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法 定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; ?行列式值为0的几种情况: Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。 3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。 奇排列变为标准排列的对换次数为基数,偶排列为偶数。 n 阶行列式也可定义:n q q q n a a a ?=∑21t 2 1 1-D )(,t 为n q q q ?21的逆序数 4.行列式性质: 1、行列式与其转置行列式相等。 2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。 3、行列式某行(列)乘数k,等于k 乘此行列式。行列式某行(列)的公因子可提到外面。 4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。 5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。 6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则) 7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则: :若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解D D D D x D D n =?== n 2211x ,x ,,。

考研数学《线性代数》考点知识点总结

第一章 行列式 二元线性方程组: ?? ?=+=+222211 1211b y a x a b y a x a 22211211a a a a D = ,222121 1a b a b D = ,2 211 112b a b a D = D D x 1= ,D D y 2= 排列的逆 序数: ∑== n t i t t 1 (i t 为排列n p p p 21中大于i p 且排于i p 前的元素个数) t 为奇数奇排列,t 为偶数偶排列,0=t 标准排列。 n 阶行列 式: nn n n n n ij a a a a a a a a a a D 21 22221 11211 )det(===n np p p t a a a 2121)1(∑- t 为列标排列的逆序数. 定理1: 排列中任意两个元素对换,排列改变奇偶性 推论:奇(偶)排列变为标准排列的对换次数为奇(偶)数 定理2: n 阶行列式可定义为n p p p t n a a a D 2121)1(∑-==n np p p t a a a 2121)1(∑-. 行列式的 性质: 1.D =D T ,D T 为D 转置行列式.(沿副对角线翻转,行列式同样不变) 2.互换行列式的两行(列),行列式变号. 记作:j i r r ?(j i c c ?)?D D -→. 推论:两行(列)完全相同的行列式等于零. 记作:j i r r =(j i c c =)?0=-=D D . 3.行列式乘以k 等于某行(列)所有元素都乘以k . 记作:k r kD i ?=(k c kD i ?=). 推论:某一行(列)所有元素公因子可提到行列式的外面. 记作:k r kD i ÷=(k c kD i ÷=). 4.两行(列)元素成比例的行列式为零.记作:k r r i j ?=(k c c i j ?=)?0=D . 5.?'+'+'+= nn n n ni ni n n i i i i a a a a a a a a a a a a a a a D 2121 2 222211 11211)()()(nn n n ni n n i i nn n n ni n n i i a a a a a a a a a a a a a a a a a a a a a a a a D 212 1 2 2221 1 12112121 22221 11211 '''+ = 上式为列变换,行变换同样成立. 6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变. 记作:j i i kc c c +→(j i i kr r r +→),D 不变. 注:任何n 阶行列式总能利用行运算r i +kr j 化为上(下)三角行列式. 对角行列式 n n λλλλλλ 212 1 =, n n n n λλλλλλ 212 ) 1(2 1 )1(0 --= 上D (下D T )三角形行列式 nn nn n n a a a a a a a a a D 221121 22 2111 == 若对kk k k kk k k kk k k b b b b c c c c a a a a D 111111111111= 设 nn n n ij kk k k ij b b b b b D a a a a a D 1111211111)det()det(====, 则有D =D 1D 2. 若2n 阶行列式 n n d d c c b b a a D 22= , 有D 2n =(ad-bc )n .

考研数学线性代数的知识点怎么复习

考研数学线性代数的知识点怎么复习 考生们在进行考研数学的复习时,需要把线性代数的知识点掌握好。小编为大家精心准备了考研数学复习线性代数的重点,欢迎大家前来阅读。 考研数学复习线性代数的要点 线性代数一共六章的内容。其中第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的试题中给以考查,如求特征值就是计算相应的行列式。行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。历年考题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟

练求解线性方程组。这部分内容是重点考查解答题的章节。特征值和特征向量也是考研的重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。 线性代数的知识点比较多而且比较松散,而考研数学试题的综合性非常强,所以大家在复习的时候一定要注意总结常用的结论、性质,例如伴随矩阵的秩、矩阵相乘的秩等等,抓住重点,解决难点,只要我们把握住了命题规律,就一定能取得线代的高分,并最终取得考研数学的胜利。 考研数学复习的解题思路 考研数学题海战术的正确用法 我们在数学的学习上都有自己的一套方法,那么做题多些到底是不是会有利于数学成绩的提高呢?多做题是很有好 处的,什么题型都见过了,考场上才不会慌张,正确率也会提高,数学总分为150分,在初试中的比重加大了,拉分也正在于此,一定要引起重视。但是大家在做题时一定要注意不要陷入“题海战术”中,多做题的要求有两点,一个是数量,另一

相关文档
最新文档