基因组学(复习)

基因组学(复习)
基因组学(复习)

王前飞:

(1)为什么要研究表观遗传学?

答:

表观遗传学主要通过DNA 的甲基化、组蛋白修饰、染色质重塑和非编码RNA 调控等方式控制基因表达。表观遗传学是近几年兴起的而且发展迅速的一个研究遗传的分支学科,其研究和应用不仅对基因表达、调控、遗传有重要作用,而且在肿瘤、免疫等许多疾病的发生和防治以及干细胞定向分化研究、基因芯片中亦具有十分重要的意义。表观遗传学补充了“中心法则”忽略的两个问题,即哪些因素决定了基因的正常转录和翻译以及核酸并不是存储遗传信息的唯一载体;在分子水平上,表观遗传学解释了DNA序列所不能解释的诸多奇怪的现象。如: 同一等位基因可因亲源性别不同而产生不同的基因印记疾病,疾病严重程度也可因亲源性别而异。表观遗传学信息还可直接与药物、饮食、生活习惯和环境因素等联系起来,营养状态能够通过改变表观遗传以导致癌症发生,尤其是维生素和必需氨基酸。

此外,表观遗传学信息的改变,对包括人体在内的哺乳动物基因组有广泛而重要的效应,如转录抑制、基因组印记、细胞凋亡、染色体灭活等。DNA 甲基化模式的改变,尤其是某些抑癌基因局部甲基化水平的异常增加,在肿瘤的发生和发展过程中起到了不容忽视的作用。研究发现,肿瘤细胞DNA 存在广泛的低甲基化和局部区域的高甲基化共存现象,以及总的甲基化能力增高,这3个特征各以不同的机制共同参与甲基化在肿瘤发生、发展中的作用。如胃癌、结肠癌、乳腺癌、肺癌、胰腺癌等众多恶性肿瘤都不同程度地存在一个或多个肿瘤抑制基因CpG 岛甲基化。而表观遗传学改变在本质上的可逆性,又为肿瘤的防治提供了新的策略。所以,随着表观遗传学研究的深入,肯定会对人类生长发育、肿瘤发生以及遗传病的发病机制及其防治做出新的贡献,也必将在其他领域中展示其不可估量的作用和广阔的前景。

(2)表观遗传学涉及到哪些方面?

答:

表观遗传学的研究内容主要包括:DNA甲基化、组蛋白的末端修饰和变异体、DNAaseⅠ高敏感位点、非编码RNA、转录因子及其辅助因子、顺式调控元件和基因组印记等。

(3)什么因素会影响基因表达水平?

答:

基因选择性转录表达的调控( DNA甲基化,基因印记,组蛋白共价修饰,染色质重塑) 基因转录后的调控(基因组中非编码RNA,微小RNA(miRNA),反义RNA、内含子、核糖开关等)

1.转录水平的调控:包括DNA转录成RNA时的是否转录及转录频率的调控,DNA 的序列决定了DNA的空间构型,DNA的空间构型决定了转录因子是否可以顺利的结合到DNA的调控序列上,比如结合到TATA等序列上。

2.翻译水平的调控:翻译水平的调控又可以分成翻译前的调控和翻译后的调控。

a、翻译前的调控主要是RNA编辑修饰。

b、翻译后调控主要是蛋白的修饰,蛋白修饰后可以成为有功能的蛋白或者有隐藏功能的蛋白。

在真核和原核细胞中,从基因表达到蛋白质合成,其间有许多地方受到调控,这

些调控点主要可以分成两个部分:转录调控(transcription control)和转录后调控(posttranscription control)。转录调控是指以DNA为模板合成RNA的调控,所有的细胞都具有大量序列特异的DNA结合蛋白,这些蛋白能准确地识别并结合到特异的DNA序列,在转录水平上起着开关的作用。转录后调控是指在RNA 转录后对基因表达的调控,转录后调控主要包括:

①RNA加工调控,它仅在真核细胞中发生,由它控制初级转录物如何及何时进行剪接形成可用的mRNA,例如,在不同类型的细胞中从同一基因产生的转录物可以通过选择内含子来产生不同的mRNA;

②翻译调控,通过翻译调控确立哪些mRNA翻译成蛋白质及什么时候翻译,例如通过特异的mRNA结合蛋白可以抑制翻译,或者通过位于mRNA末端的特异核苷酸序列加速核糖体的结合,从而促进翻译;

③mRNA降解调控,这可影响到某些mRNA种类的稳定性;

④蛋白质活性调控,可选择性地使某些特异的蛋白分子激活、失活、修改、或区域化,从而影响到蛋白质怎样或何时起作用,例如,某些蛋白质只在某个特殊的发育阶段的某些细胞中起作用,而这些蛋白质对其它的细胞有很大的影响,因而在这些细胞中必须将其失活或激活后立即将其定位到特殊的细胞结构中,否则就会引起不正常的发育。

(4)有哪些研究方法?它们各有什么特点?

meDNA analysis

DNase I mapping

MNase mapping

Alternative Splicing & Non-coding RNA

染色质免疫共沉淀技术(ChIP)

真核生物的基因组DNA以染色质的形式存在。因此,研究蛋白质与DNA在染色质环境下的相互作用是阐明真核生物基因表达机制的基本途径。染色质免疫沉淀技术(chromatin immunoprecipitation assay, CHIP)是目前唯一研究体内DNA与蛋白质相互作用的方法。它的基本原理是在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此

复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。CHIP不仅可以检测体内反式因子与DNA 的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。而且,CHIP与其他方法的结合,扩大了其应用范围:CHIP与基因芯片相结合建立的CHIP-on-chip方法已广泛用于特定反式因子靶基因的高通量筛选;CHIP与体内足迹法相结合,用于寻找反式因子的体内结合位点;RNA-CHIP用于研究RNA在基因表达调控中的作用。由此可见,随着CHIP的进一步完善,它必将会在基因表达调控研究中发挥越来越重要的作用

●染色体构象捕捉技术(3C),首先将标本用甲醛处理,使染色体交互的部分

紧密的连接在一起,然后用特殊的方法是交联的两段序列形成环状,最后用定量PCR或者芯片检测某两段序列发生交联的频率。

●甲基化特异性PCR(MSP)原理:MSP是一种简单、特异、敏感的检测单基因甲基

化的方式。其基本原理是用亚硫酸氢钠处理基因组DNA,未甲基化的胞嘧啶变成尿嘧啶,而甲基化的胞嘧啶不变,然后用3对特异性引物对所测基因的同一核苷酸序列进行扩增。扩增产物用DNA琼脂糖凝胶电泳,凝胶扫描观察分析结果。

●凝胶迁移或电泳迁移率实验(EMSA-electrophoretic mobility shift assay)

是一种研究DNA结合蛋白和其相关的DNA结合序列相互作用的技术,可用于定性和定量分析。这一技术最初用于研究DNA结合蛋白,目前已用于研究RNA结合蛋白和特定的RNA序列的相互作用。通常将纯化的蛋白和细胞粗提液和32P同位素标记的DNA或RNA探针一同保温,在非变性的聚丙烯凝胶电泳上,分离复合物和非结合的探针。DNA-复合物或RNA-复合物比非结合的探针移动得慢。同位素标记的探针依研究的结合蛋白的不同,可是双链或者是单链。

当检测如转录调控因子一类的DNA结合蛋白,可用纯化蛋白,部分纯化蛋白,或核细胞抽提液。在检测RNA结合蛋白时,依据目的RNA结合蛋白的位置,可用纯化或部分纯化的蛋白,也可用核或胞质细胞抽提液。竞争实验中采用含蛋白结合序列的DNA或RNA片段和寡核苷酸片段(特异),和其它非相关的片段(非特异),来确定DNA或RNA结合蛋白的特异性。在竞争的特异和非特异片段的存在下,依据复合物的特点和强度来确定特异结合。

●荧光原位杂交(FISH):,以荧光标记取代同位素标记而形成的一种新的原位

杂交方法,探针首先与某种介导分子(reporter molecule)结合,杂交后再通过免疫细胞化学过程连接上荧光染料.FISH的基本原理是将DNA(或RNA)探针用特殊的核苷酸分子标记,然后将探针直接杂交到染色体或DNA纤维切片上,再用与荧光素分子偶联的单克隆抗体与探针分子特异性结合来检测DNA序列在染色体或DNA纤维切片上的定性、定位、相对定量分析.FISH具有安全、快速、灵敏度高、探针能长期保存、能同时显示多种颜色等优点,不但能显示中期分裂相,还能显示于间期核.同时在荧光原位杂交基础上又发展了多彩色荧光原位杂交技术和染色质纤维荧光原位杂交技术.

肖景发:

简述药物基因组学的定义以及生物信息学在药物发现过程中的主要应用。

答:药物基因学(1):是研究遗传因素对药物效应的影响 ,确定药物作用的靶点 ,即从表型至基因型的药物反应的个体多样性的研究。它将基因的多态性与药物效应个体多样性紧密联系在一起。通过它的研究 ,将更科学地评价各种药物的疗效和毒性 ,同时也对不同患者根据DNA多态性的差别选择高效和低毒的药物加以治疗。

药物基因学(2):综合药理学和遗传学、研究个体基因遗传因素如何影响机体对药物反应的交叉学科。主要研究基因结构多态性与不同药物反应之间关系,解释由于个体之间差异所表现出药物的不同治疗效果,趋向于用药个性化。用药个性化将产生最大的效果和安全性。

生物信息学在药物发现过程中的主要应用:

答:主要体现在以下几个方面:

1.靶点的确定;

生物信息学可以帮助人们在药物开发过程中更早、更快地找到更佳的药物作用靶点减少研发时间和所需临床试验的数量(如抗生素类药物理想的作用靶点应具有为病原体所特有、在病原体中高度保守在人体中不存在等特点)生物信息学技术就可以通过将病原体基因或基因序列与人类基因及其基因序列进行比较分析筛选出该类药物理想的作用靶点。

2.靶点的选择;

通过生物信息学的帮助能更好地在靶点发现的早期阶段进行位点的筛选和确定。除此之外它还在以下三个方面有助于对靶点的选择:

●对靶点的定性如蛋白质家族的分类和亚类;

●对靶点的功能等特性的理解如靶点在更大的生化或细胞环境中的生物学行为;

●对靶点的利用及其对有关内容的研究(如预测针对靶点的药物在病人体内的

摄取或重复摄取解毒及其以此基因为基础的变异);

3.表达序列标签;

表达序列标签来自随机选取的克隆的末端序列,简单地说,一个EST就是对应于某一种mRNA的一个cDNA克隆的一段序列 ,一般长度大于15Ob的 EST在同源查找和基因作图中的作用较大。

4.基因组序列;

生物信息学在作图和序列数据处理方面为破译人类基因组的全部 10万个左右基因提供了主要的支持。

5.基因多态性;

作为基因组的标志之一SNPs与疾病和药效的变化有很大关系。在人类基因组中估计有300到 1000万个SNPs。对于如此巨大的数目的SNP只有将生物信息学手段和计算机自动识别方法相结合并充分利用 DNA信息数据库才能简便有效价廉地发掘出具有应用价值的SNPs。

6.基因表达;

基因表达的组织定位是靶点确立中十分重要的一个方面。基因组研究的启动提供了大量的可作为研究目标的药物潜在作用靶点,而了解基因在何时何处表达对认识基因的功能将有十分重要的意义。生物信息学对这个问题的首要贡献就是能对源于不同文库的ESTs进行计数,这有利于发现那些只限于在某些特定的组织中大量表达的基因。

综上所述, 生物信息学在基因研究和药物开发中发挥着越来越重要的作用。而生物信息学面临的挑战是建立更大规模的能够综合多来源知识和信息、包含多种不同的混杂数据库的数据库系统,以便将生物学、化学、临床等不同领域的数据资料联系在一起并建立通用的智能型工具。目前生物信息学在融合不同的数据库管理系统图表和数据模型等方面所遇到的困难也反映了药物开发本身在融合所涉及领域的各种信息和观点方面所面临的潜在的挑战。

(补充)药物基因组学在个体化给药中的应用及意义

药物基因组学从基因水平给出了遗传因素(基因变异)与药物效应之间的关系,基因的变异与药物效应的差异具有相关性。患者对某些药物的反应率与其基因亚型之间关系现已揭示,虽然药物基因组学并不能改善药物的效应,但这种关系能辅助临床人员在预测某一特定药物时,患者属何种反应人群,使医生为患者选择疗效最佳的药物和确定最佳剂量成为可能。通过对病人的基因检测,再开出“基因合适”的药方即“基因处方”。这种最恰当的药方,可使病人得到最佳的治疗效果,从而达到真正“用药个体化”的目的。目前,已有将药物基因组学知识应用于高血压、哮喘、高血脂、内分泌、肿瘤等药物治疗中的成功病例。药物基因组学应用到临床合理用药中,弥补了只根据血药浓度进行个体化给药的不足,为以前无法解释的药效学现象找到了答案,为临床个体化给药开辟了一个新的途径。

方向东:

什么是表观遗传学?它的研究内容和技术主要哪些?

1.表观遗传学的概念

表观遗传学是研究在没有DNA 序列变化的情况下,可以经过有丝分裂和减数分裂等遗传方式在细胞和个体世代间传递,从而引起基因表达或表型的改变的生命信息,它是不符合传统孟德尔遗传规律的核内遗传。

2.表观遗传学的研究内容

表观遗传学的研究内容主要包括:DNA甲基化、组蛋白的末端修饰和变异体、DNAaseⅠ高敏感位点、非编码RNA、转录因子及其辅助因子、顺式调控元件和基因组印记等。

3.表观遗传学的技术

表观遗传学的技术主要包括:DNA甲基化位点的检测、DNase I 作图、MNase 作图、电泳迁移率变动分析(EMSA)和染色质免疫沉淀(ChIP)、3C to Hi-C、Alternative Splicing & Non-coding RNA等。

吴佳妍:

简述动态规划算法及应用

答:动态规划是一种算法设计方法,它通过组合子问题的解而解决整个问题,但它避免了相同问题的重复计算,动态规划通常应用于最优化问题,能用动态规划算法求解的问题通常有两个很鲜明的特征:最优子结构和子问题重叠;所谓的最优子结构问题是指原问题的最优解包含了其子问题的最优解。问题的最优子结构性质提供了该问题可用动态规划算法求解的重要线索。运用动态规划算法的最大难点在于子问题的分解,也即是递推式的获得,一旦得到了该问题的递推式,问

题就相当于已经解决了,因为根据递推式来写程序实现是一件很容易的事情。

动态规划算法的设计通常分为如下步骤:

1. 将问题分解成一些规模更小的子问题,根据子问题与原问题的关系描述最优解的结构

2. 根据该关系递归定义最优解的值,并运用反证法证明该方案的正确性。

3. 按自底向上的方式计算最优解的值,在计算过程中,保存已解决的子问题的答案。每个子问题只计算一次,而在后面需要的时候只要简单查一下,从而避免大量的重复计算,最终得到多项式时间的算法

4. 由计算出的结果构造一个最优解

典型应用:

a.序列比对,包括DNA和蛋白质序列的比对,全局优化比对算法Needleman-Wunsch算法和局部比对算法Smith-Waterman算法等均是基于此方法。b. RNA二级结构的预测,此算法的依据是使一段RNA序列形成的A-U,G-C配对数最大。

c.最长公共子序列。

米双利

microRNA的基因组学研究技术与应用

microRNA(miRNA)是一类广泛存在于生物体中的非编码、小分子、单链RNA,大约含有18-25nt,能够结合在靶基因3’UTR区,通过降解mRNA、影响mRNA的稳定性或抑制蛋白合成,在转录后水平上调控靶基因的表达.

miRNA的作用机制

1. miRNA 翻译起始抑制机制

目前主要有3 种观点:

miRNA 可能通过抑制全能性核糖体的组装而阻断翻译起始。

miRNA 抑制要求靶mRNA m7G 帽子的存在,认为miRISC 可能抑制翻译起始复合物的形成

miRNA 还可能通过阻止polyA 结合蛋白poly Abinding protein (PABP), 与mRNA 结合影响翻译起始.

2. miRNA 翻译起始后抑制

? miRNA可能引起新生多肽链的翻译同步降解。

? 在翻译延伸过程中, miRNA 引发大量的核糖体脱落及高频次的翻译提前终止。

3. miRNA 介导mRNA降解

– Ago蛋白定位于细胞中降解mRNA的RNA颗粒(RNA granules), 如P 小体(processing bodies)中, 这些RNA颗粒中包含常规的mRNA 降解酶,如脱腺嘌呤酶、脱帽酶、核酸外切酶等, 提示这些mRNA 降解酶可能参与miRNA 介导的mRNA 的降解.

4. RNA 颗粒扣押、降解或储存靶mRNA?

? 胞浆的RNA 颗粒, 如P 小体和SG(StressGranules)颗粒, 在转录后水平的基因表达调控中具有重要的作用, 它们是细胞储存处于翻译抑制状态mRNA的场所。

5. miRNA 正调控和去抑制

? 在静态细胞中(G0 期), miRNA活化翻译和上调基因表达, 而在其他细胞循环/增殖期则继续发挥抑制作用。

? 在一些条件下,miR-10a 也正调控基因表达。

–结合在5’UTR。

? miRNA的抑制作用是可逆的。

? mRNA逃避抑制。

–3’UTR保守性缩短

MiRNA在肿瘤治疗中的作用

–miRNA 相关的肿瘤发生通常是由于某些特定的miRNA 低表达或者不表达,或者某些特定的miRNA 高表达。

? MiRNA在抗病毒治疗中的应用潜力

– miRNA 与靶mRNA 序列不完全互补时也可通过抑制蛋白翻译起到基因沉默的作用,所以当病毒出现变异时也可以干扰病毒的复制。

MiRNA在抗病毒治疗中的应用潜力

– miRNA 与靶mRNA 序列不完全互补时也可通过抑制蛋白翻译起到基因沉默的作用,所以当病毒出现变异时也可以干扰病毒的复制。

现代分子生物学重点

现代分子生物学 第一章 DNA的发现: 1928年,英国Griffith的体内转化实验 1944年,Avery的体外转化实验 1952年,Hershey和Chase的噬菌体转导实验 分子生物学主要研究内容(p11) DNA的重组技术 基因表达调控研究 生物大分子的结构功能研究——结构分子生物学 基因组,功能基因组与生物信息学研究 第二章 DNA RNA组成 脱氧核糖核酸 A T G C 核糖核酸 A U G C 原核生物DNA的主要特征 ①一般只有一条染色体且带有单拷贝基因; ②整个染色体DNA几乎全部由功能基因与调控序列组成; ③几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。 染色体作为遗传物质的特点: (1)分子结构相对稳定(贮存遗传信息) (2)通过自我复制使前后代保持连续性(传递遗传信息) (3)通过指导蛋白质合成控制生物状态(表达遗传信息) (4)引起生物遗传的变异(改变遗传信息) C值以及C值反常 C值单倍体基因组DNA的总量 C值反常C值往往与种系进化的复杂程度不一致,某些低等生物却有较大的C值。如果这些DNA 都是编码蛋白质的功能基因,那么,很难想象在两个相近的物种中,他们的基因数目会 相差100倍,由此推断,许多DNA序列可能不编码蛋白质,是没有生理功能的。 DNA的中度重复序列,高度重复序列 中度各种rRNA,tRNA以及某些结构基因如组蛋白基因都属于这一类 高度卫星DNA 核小体 是由H2A H2B H3 H4 各2分子生成的八聚体和约200bp的DNA构成的,H1在核小体外面。 真核生物基因组的结构特点 ①基因组庞大; ②大量重复序列; ③大部分为非编码序列,90%以上; ④转录产物为单顺反子; ⑤断裂基因; ⑥大量的顺式作用元件; ⑦DNA多态性:SNP和串联重复序列多态性; ⑧端粒(telomere)结构。

基因组学复习题

基因组学复习题 Prepared on 22 November 2020

第1章 1)什么是C-值悖理什么是N-值悖理 C-值悖理:生物基因组的大小同生物进化所处地位的高低无关的现象。 N-值悖理:基因数目与进化程度或生物复杂性的不对应性,称之为N值悖理 2)什么是序列复杂性 基因组中不同序列的DNA总长,用bp 表示。 3)RNA分子有哪些种类 mRNA tRNA rRNA scRNA snRNA snoRNA 小分子干扰RNA 4)不编码蛋白质的RNA包括哪些类型 tRNA rRNA scRNA snRNA snoRNA 小分子干扰RNA 5)什么是假基因假基因是如何形成的 来源于功能基因但已失去活性的DNA序列,有沉默的假基因,也有可转录的假基因。 产生假基因的原因有很多,如编码序列出现终止密码子突变,或者插入和缺失某些核苷酸使mRNA移码,造成翻译中途停止或者异常延伸,合成无活性的蛋白质。 6)假基因能否表达为什么 能,假基因相对于原来的基因已经失去功能但是可能产生新的功能。 最初人们认为, 假基因是不能转录的基因, 随着基因组数据的积累, 现在已知有不少假基因仍然保持转录的活性, 特别是起源于重复基因的假基因和获得启动子加工的假基因,但假基因的转录产物已失去原有的功能, 如产生残缺蛋白质。 7)如何划分基因家族什么是超基因家族 基因家族:将来自共同的祖先,因基因加倍或变异产生了许多在DNA序列组成上基本一致而略有不同的成员划分为一个基因家族。 超基因家族:起源于共同祖先,由相似DNA序列组成的许多基因亚家族或相似的基因成员构成的群体,它们具有相似的功能。 8)低等生物与高等生物基因组组成有何差别为什么会产生这些差别 低等生物:1)结构紧凑,一般不存在内含子(古细菌除外); 2)大小在5 Mb以下; 3)缺少重复序列; 4)很少非编码序列。

基因组学重点整理

生物五界:动物、植物、真菌、原生生物和原核生物;生物三界:真细菌、古细菌、真核生物 具有催化活性的RNA分子称为核酶(ribozyme)核酶催化的生化反应有:自我剪接、催化切断其它RNA、合成多肽键、催化核苷酸的合成 新基因的产生:基因与基因组加倍1)整个基因组加倍;2)单条或部分染色体加倍;3)单个或成群基因加倍。DNA水平转移:原核生物中的DNA水平转移可通过接合转移,噬菌体转染,外源DNA的摄取等不同途径发生,水平转移的基因大多为非必须基因。动物中由于种间隔离不易进行种间杂交,但其主要来源于真核细胞与原核细胞的内共生。动物种间基因转移主要集中在逆转录病毒及其转座成分。 外显子洗牌与蛋白质创新:产生全新功能蛋白质的方式有二种:功能域加倍,功能域或外显子洗牌 基因冗余:一条染色体上出现一个基因的很多复份(复本)当人们分离到某一新基因时,为了鉴定其生物学功能,常常使其失活,然后观察它们对表型的影响。许多场合,由于第二个重复的功能基因可取代失活的基因而使突变型表型保持正常。这意味着,基因组中有冗余基因存在。看家基因很少重复,它们之间必需保持剂量平衡,因此重复的拷贝很快被淘汰。与个体发育调控相关的基因表达为转录因子,具有多功能域的结构。这类基因重复拷贝变异可使其获得不同的表达控制模式,促使细胞的分化与多样性的产生,并导致复杂形态的建成,具有许多冗余基因。 非编码序列扩张方式:滑序复制、转座因子 模式生物海胆、果蝇、斑马鱼、线虫、蟾蜍、小鼠、酵母、水稻、拟南芥等。模式生物基因组中G+C%含量高, 同时CpG 岛的比例也高。进化程度越高, G+C 含量和CpG 岛的比例就比较低 如果基因之间不存在重叠顺序,也无基因内基因(gene-within-gene),那么ORF阅读出现差错的可能只会发生在非编码区。细菌基因组中缺少内含子,非编码序列仅占11%, 对阅读框的排查干扰较少。细菌基因组的ORF阅读相对比较简单,错误的机率较少。高等真核生物DNA的ORF阅读比较复杂:基因间存在大量非编码序列(人类占70%);绝大多数基因内含有非编码的内含子。高等真核生物多数外显子的长度少于100个密码子 内含子和外显子序列上的差异:内含子的碱基代换很少受自然选择的压力,保留了较多突变。由于碱基突变趋势大多为C-T,故A/T的含量内含子高于外显子。由于终止密码子为TAA\TAG\TGA,如果以内含子作为编码序列,3种读码框有很高比例的终止密码子。 基因注释程序编写的依据:1)信号指令,包括起始密码子,终止密码子,终止信号,剪接受体位和供体位,多聚嘧啶序列,分支点保守序列2)内容指令,密码子偏好,内含子和外显子长短 基因功能的检测:基因失活、基因过表达、RNAi干涉 双链DNA的测序可从一端开始,亦可从两端进行,前者称单向测序,后者称双向测序。 要获得大于50 kb的DNA限制性片段必需采用稀有切点限制酶。 酵母人工染色体(YAC)1)着丝粒在细胞分裂时负责染色体均等分配。2)端粒位于染色体端部的特异DNA序列,保持人工染色体的稳定性3)自主复制起始点(ARS)在细胞中启动染色体的复制 合格的STS要满足2个条件:它应是一段序列已知的片段,可据此设计PCR反应来检测不同的DNA片段中是否存在这一顺序;STS必需在染色体上有独一无二的位置。如果某一STS在基因组中多个位点出现,那么由此得出的作图数据将是含混不清的。 遗传图绘制主要依据由孟德尔描述的遗传学原理,第一条定律为等位基因随机分离,第二条定律为非等位基因自由组合,显隐性规律/不完全显性、共显性、连锁 衡量遗传图谱的水平覆盖程度饱和程度 基因类型:transcribed, translatable gene (蛋白基因) ;transcribed but non-translatable gene ( RNA基因)Non- transcribed, non-translatablegene ( promoter, operator ) rRNA基因,tRNA基因, scRNA基因, snRNA基因, snoRNA基因, microRNA基因 基因组(genome):生物所具有的携带遗传信息的遗传物质总和。 基因组学(genomic):用于概括涉及基因作图、测序和整个基因功能分析的遗传学分支。 染色体组(chromosome set):不同真核生物核基因组均由一定数目的染色体组成,单倍体细胞所含有的全套染色体。 比较基因组学(comparative genomics):比较基因组学是基因组学与生物信息学的一个重要分支。通过模式生物基因组与人类基因组之间的比较与鉴别,为分离重要的候选基因,预测新的基因功能,研究生物进化提供依据。(目标)

全基因组关联分析的原理和方法

全基因组关联分析(Genome-wide association study;GWAS)是应用基因组中 数以百万计的单核苷酸多态性(single nucleotide ploymorphism ,SNP)为分子 遗传标记,进行全基因组水平上的对照分析或相关性分析,通过比较发现影响复杂性状的基因变异的一种新策略。 随着基因组学研究以及基因芯片技术的发展,人们已通过GWAS方法发现并鉴定了大量与复杂性状相关联的遗传变异。近年来,这种方法在农业动物重要经济性状主效基因的筛查和鉴定中得到了应用。 全基因组关联方法首先在人类医学领域的研究中得到了极大的重视和应用,尤其是其在复杂疾病研究领域中的应用,使许多重要的复杂疾病的研究取得了突破性进展,因而,全基因组关联分析研究方法的设计原理得到重视。 人类的疾病分为单基因疾病和复杂性疾病。单基因疾病是指由于单个基因的突变导致的疾病,通过家系连锁分析的定位克隆方法,人们已发现了囊性纤维化、亨廷顿病等大量单基因疾病的致病基因,这些单基因的突变改变了相应的编码蛋白氨基酸序列或者产量,从而产生了符合孟德尔遗传方式的疾病表型。复杂性疾病是指由于遗传和环境因素的共同作用引起的疾病。目前已经鉴定出的与人类复杂性疾病相关联的SNP位点有439 个。全基因组关联分析技术的重大革新及其应用,极大地推动了基因组医学的发展。(2005年, Science 杂志首次报道了年龄相关性视网膜黄斑变性GWAS结果,在医学界和遗传学界引起了极大的轰动, 此后一系列GWAS陆续展开。2006 年, 波士顿大学医学院联合哈佛大学等多个研究机构报道了基于佛明翰心脏研究样本关于肥胖的GWAS结果(Herbert 等. 2006);2007 年, Saxena 等多个研究组联合报道了与2 型糖尿病( T2D ) 关联的多个位点, Samani 等则发表了冠心病GWAS结果( Samani 等. 2007); 2008 年, Barrett 等通过GWAS发现了30 个与克罗恩病( Crohns ' disrease) 相关的易感位点; 2009 年, W e is s 等通过GWAS发现了与具有高度遗传性的神经发育疾病——自闭症关联的染色体区域。我国学者则通过对12 000 多名汉族系统性红斑狼疮患者以及健康对照者的GWAS发现了5 个红斑狼疮易感基因, 并确定了4 个新的易感位点( Han 等. 2009) 。截至2009 年10 月, 已经陆续报道了关于人类身高、体重、 血压等主要性状, 以及视网膜黄斑、乳腺癌、前列腺癌、白血病、冠心病、肥胖症、糖尿病、精神分 裂症、风湿性关节炎等几十种威胁人类健康的常见疾病的GWAS结果, 累计发表了近万篇 论文, 确定了一系列疾病发病的致病基因、相关基因、易感区域和SNP变异。) 标记基因的选择: 1)Hap Map是展示人类常见遗传变异的一个图谱, 第1 阶段完成后提供了 4 个人类种族[ Yoruban ,Northern and Western European , and Asian ( Chinese and Japanese) ] 共269 个个体基因组, 超过100 万个SNP( 约1

分子生物学考试重点

基因文库:包括基因组文库和部分基因文库。将含有某种生物不同基因的许多 DNA片段,(导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库。) 蛋白激酶:是指能够将磷酸集团从磷酸供体分子转移到底物蛋白的氨基酸受体上的一大类酶。 蛋白磷酸酶:是具有催化已经磷酸化的蛋白质分子发生去磷酸化反应的一类酶分 子,与蛋白激酶相对应存在,共同构成了磷酸化和去磷酸化这一重要的蛋白质活性的开关系统。 受体:是细胞膜上或细胞内能识别外源化学信号并与之结合的蛋白分子。是信息分子的接收分子,它们的化学本质是存在于细胞表面或细胞内的蛋白分子。mRNA剪接:去除初级转录物上的内含子,把外显子连接成为成熟RNA的过程前导链:在复制过程中,连续复制的链的前进方向始终与复制叉前进方向一致称为前导链 校对:DNApolI的3’到5’外切酶活性将错配的A水解下来,同时利用5’到3’聚合 酶活性补回正确配对的C,复制可以继续下去,这种功能称为校对 核小体:真核生物染色质由DNA与蛋白质构成,其基本单位是核小体。各两分子的H2A、H2B、H3、H4构成八聚体的核心组蛋白,双链DNA缠绕在这一核心上形成核小体的核心颗粒。颗粒之间再由DNA和组蛋白H1构成的链接区相连形成串珠样结构。 解链温度/融解温度(Tm):在解链过程中,紫外吸光度的变化ΔA260达到最大变化值的一半时所对应的温度定义为DNA的解链温度或融解温度。Tm值:DNA在加热变性过程中,紫外吸收值达到最大值的50%时的温度 增色效应:在DNA解链过程中,由于有更多的共轭双键得以暴露,含有DNA的溶液在260nm 处的吸光度随之增加,这种现象称为DNA的增色效应 DNA复性:当变性条件缓慢除去后,使原来两条彼此分离的DNA链重新缔合,形成双螺旋结构,这个过程称为DNA的复性。 退火:热变性的DNA经缓慢冷却后可以复性,这一过程称为退火。 DNA变性:某些理化因素(温度,pH,离子强度)导致DNA双链互补碱基对之间的氢键发生断裂,使DNA双链解离为单链的现象 DNA复制:以亲代DNA分子为模板按照碱基配对原则合成子代DNA分子的过程。广义也指DNA或RNA基因组的扩增过程,其化学本质是酶促脱氧核苷酸聚合反应 不对称转录:在DNA分子双链上,按碱基互补配对规律能指导转录生成RNA的一股链作为模板指导转录,另一股链则不转录,这种模板选择性称为不对称转录 转录:以DNA为模板合成RNA的过程称为转录。 逆转录:是以RNA为模板合成DNA的过程,即RNA指导下的DNA合成。此过程中,核酸合成与转录(DNA到RNA)过程与遗传信息的流动方向(RNA到DNA)相反称为逆转录 颠换:嘌呤被嘧啶取代或反之。 转换:DNA链中一种嘌呤被另一种嘌呤取代,或嘧啶被另一种嘧啶所取代。

进化基因组学研究进展

研究进化基因组学进展 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 正文 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。 一、目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学、基因注释的等方面;在新基因方面

基因组学复习资料整理

基因组学 1. 简述基因组的概念和其对生命科学的影响。 基因组:指一个物种的全套染色体和基因。广义的基因组:核基因组,线粒体基因组,叶绿体基因组等。 基因组计划对生命科学的影响: ①研究策略的高通量,彻底认识生命规律:基因组研究高通量,研究手段和 研究策略的更新,加强了生命科学研究的分工与协作,从不同层次深入研究生命现象。 ②促进了相关学科的发展:分子生物学遗传学生物信息学生物化学细胞生 物学生理学表观遗传学等 ③物种的起源与进化: Ⅰ.重要基因的发掘、分离和利用:遗传疾病相关基因,控制衰老的基因,工业价值的细菌基因,重要农艺性状基因等。 Ⅱ.充分认识生命现象:基因的表达、调控,基因间的相互作用,不同物种基因组的比较研究,揭示基因组序列的共性,探讨物种的起源和进化。 ④伦理学法律问题:伦理问题,知识产权问题,法律问题,社会保险问题。 2. Ac/Ds转座因子 Ac因子有4563bp,它的大部分序列编码了一个由5个外显子组成的转座酶基因,成熟的mRNA有3500bp。该因子本身的两边为11bp的反向重复末端(IR),发生错位酶切的靶序列长度8bp。Ds因子较Ac因子短,它是由Ac因子转座酶基因发生缺失而形成的。不同的Ds因子的长度差异由Ac因子发生不同缺失所致。 Ac/Ds因子转座引起的插入突变方式:玉米Bz基因是使糊粉层表现古铜色的基因,当Ac/Ds转座插入到Bz基因座后,糊粉层无色。当Ac/Ds因子在籽粒发育过程,部分细胞发生转座,使Bz靶基因发生回复突变,从而形成斑点。 Ac/Ds两因子系统遗传特点: 1)Ac具有活化周期效应,有活性的Ac+因子被甲基化修饰后会形成无活性的ac-因子,反之无活性的ac-因子去甲基化成有活性的Ac+因子。 2)Ac与Ds因子有时表现连锁遗传但更多表现独立遗传。 3)Ac对Ds的控制具有负剂量效应。 4)Ac/Ds可引发靶基因表现为插入钝化、活性改变、表达水平改变和缺失突变等。 5)Ds的结构不同,插入同一靶基因的位点可能不同,形成的易变基因的表型也不同。(分子生物学79-81) 3. 正向遗传与反向遗传 正向遗传学研究指从突变体开始的遗传学研究,关心的问题是突变体表型的变化是由哪一个基因功能丧失后引起。 反向遗传学研究指从基因序列开始的遗传学研究,关心的问题是基因功能丧失后会使植物的表型产生什么样的变化。

基因组学(复习)

王前飞: (1)为什么要研究表观遗传学? 答: 表观遗传学主要通过DNA 的甲基化、组蛋白修饰、染色质重塑和非编码RNA 调控等方式控制基因表达。表观遗传学是近几年兴起的而且发展迅速的一个研究遗传的分支学科,其研究和应用不仅对基因表达、调控、遗传有重要作用,而且在肿瘤、免疫等许多疾病的发生和防治以及干细胞定向分化研究、基因芯片中亦具有十分重要的意义。表观遗传学补充了“中心法则”忽略的两个问题,即哪些因素决定了基因的正常转录和翻译以及核酸并不是存储遗传信息的唯一载体;在分子水平上,表观遗传学解释了DNA序列所不能解释的诸多奇怪的现象。如: 同一等位基因可因亲源性别不同而产生不同的基因印记疾病,疾病严重程度也可因亲源性别而异。表观遗传学信息还可直接与药物、饮食、生活习惯和环境因素等联系起来,营养状态能够通过改变表观遗传以导致癌症发生,尤其是维生素和必需氨基酸。 此外,表观遗传学信息的改变,对包括人体在内的哺乳动物基因组有广泛而重要的效应,如转录抑制、基因组印记、细胞凋亡、染色体灭活等。DNA 甲基化模式的改变,尤其是某些抑癌基因局部甲基化水平的异常增加,在肿瘤的发生和发展过程中起到了不容忽视的作用。研究发现,肿瘤细胞DNA 存在广泛的低甲基化和局部区域的高甲基化共存现象,以及总的甲基化能力增高,这3个特征各以不同的机制共同参与甲基化在肿瘤发生、发展中的作用。如胃癌、结肠癌、乳腺癌、肺癌、胰腺癌等众多恶性肿瘤都不同程度地存在一个或多个肿瘤抑制基因CpG 岛甲基化。而表观遗传学改变在本质上的可逆性,又为肿瘤的防治提供了新的策略。所以,随着表观遗传学研究的深入,肯定会对人类生长发育、肿瘤发生以及遗传病的发病机制及其防治做出新的贡献,也必将在其他领域中展示其不可估量的作用和广阔的前景。 (2)表观遗传学涉及到哪些方面? 答: 表观遗传学的研究内容主要包括:DNA甲基化、组蛋白的末端修饰和变异体、DNAaseⅠ高敏感位点、非编码RNA、转录因子及其辅助因子、顺式调控元件和基因组印记等。 (3)什么因素会影响基因表达水平? 答: 基因选择性转录表达的调控( DNA甲基化,基因印记,组蛋白共价修饰,染色质重塑) 基因转录后的调控(基因组中非编码RNA,微小RNA(miRNA),反义RNA、内含子、核糖开关等) 1.转录水平的调控:包括DNA转录成RNA时的是否转录及转录频率的调控,DNA 的序列决定了DNA的空间构型,DNA的空间构型决定了转录因子是否可以顺利的结合到DNA的调控序列上,比如结合到TATA等序列上。 2.翻译水平的调控:翻译水平的调控又可以分成翻译前的调控和翻译后的调控。 a、翻译前的调控主要是RNA编辑修饰。 b、翻译后调控主要是蛋白的修饰,蛋白修饰后可以成为有功能的蛋白或者有隐藏功能的蛋白。 在真核和原核细胞中,从基因表达到蛋白质合成,其间有许多地方受到调控,这

系统生物学综述doc

系统生物学:整合各种组学的信息和方法 姓名:王玉锋 学号:061023050 20世纪生物学经历了由宏观到微观的发展过程,由形态、表型的描述逐步分解、细化到生物体的各种分子及其功能的研究。70年代出现的基因工程技术极大地加速和扩展了分子生物学的发展;90年代启动的人类基因组计划是生命科学史上第一个大科学工程,开始了对生物全面、系统研究的探索;2003年已完成了人和各种模式生物体基因组的测序,第一次揭示了人类的生命密码。人类基因组计划和随后发展的各种组学技术把生物学带入了系统科学的时代。 系统生物学是在细胞、组织、器官和生物体整体水平研究结构和功能各异的各种分子及其相互作用,并通过计算生物学来定量描述和预测生物功能、表型和行为。也就是说,系统生物学是以整体性研究为特征的一种大科学。系统生物学将在基因组序列的基础上完成由生命密码到生命过程的研究,这是一个逐步整合的过程,由生物体内各种分子的鉴别及其相互作用的研究到途径、网络、模块,最终完成整个生命活动的路线图。 借助于基因组和转录组的序列、功能基因组和蛋白质组的方法,可以绘制特定有机体的转录组图、蛋白质组图、相互作用图谱、表型组图及所有转录物和蛋白的定位图。这种整合的组学信息可以帮助我们消除单种组学研究方法中带来的假阳性和假阴性,给出基因产物及其相互作用和关系的更好的功能性注释,有利于相关的生物性假设的生成。基于这些整合数据的计算学的方法可以模拟生物过程的进程。系统生物学可以被看作是个种组学方法的整合、数据的整合、生物的系统化和模型化。 系统生物学的特点: 和以往系统科学研究复杂系统相比,系统生物学的研究将更为复杂和困难。非生物的复杂系统一般由相对简单的元件组合产生复杂的功能和行为,而生物体是由大量结构和功能不同的元件组成的复杂系统,并由这些元件选择性和非线性的相互作用产生复杂的功能和行为。因此,我们要建立多层次的组学技术平台,研究和鉴别生物体内所有分子,研究其功能和相互作用,在各种技术平台产生的大量数据的基础上,通过计算生物学用数学语言定量描述和预测生物学功能和生物体表型和行为。 系统生物学也将使生物学研究发生结构性的变化。长期以来,生物学研究是在规模较小的实验室进行的,系统生物学研究将由各种组学组成的大科学工程和小型生物学实验室有机结合实施的。系统生物学研究也将在更大范围和更高层次进行学科交叉和国际合作,如人类基因组计划、人类单体型图谱计划、人类表观基因组学计划等。 系统生物学的技术平台: 系统生物学的主要技术平台为基因组学、转录组学、蛋白质组学、代谢组学、相互作用组学和表型组学等。基因组学、转录组学、蛋白质组学、代谢组学分别在DNA、mRNA、蛋白质和代谢产物水平检测和鉴别各种分子并研究其功能。相互作用组学系统研究各种分子间的相互作用,发现和鉴别分子机器、途径和网络,构建类似集成电路的生物学模块,并在研究模块的相互作用基础上绘制生物体的相互作用图谱。表型组学是生物体基因型和表型的桥梁,目前还仅在细胞水平开展表型组学研究。 计算生物学可分为知识发现和模拟分析两部分。知识发现也称为数据开采,是从系统生物学各个组学实验平台产生的大量数据和信息中发现隐含在里面的规律并形成假设。模拟分析是用计算机验证所形成的假设,并对体内、外的生物学实验进行预测,最终形成可用于各种生物学研究和预测的虚拟系统。 系统生物学的工作流程: 系统生物学的基本工作流程有这样四个阶段。首先是对选定的某一生物系统的所有组分进行了解和确定,描绘出该系统的结构,包括基因相互作用网络和代谢途径,以及细胞内和细胞间的作用机理,以此构造出一个初步的系统模型。第二步是系统地改变被研究对象的内部组成成分(如基因突变)或外部生长条件,然后观测在这些情况下系统组分或结构

基因组学的研究内容

基因组学的研究内容 结构基因组学: 基因定位;基因组作图;测定核苷酸序列 功能基因组学:又称后基因组学(postgenomics基因的识别、鉴定、克隆;基因结构、功能及其相互关系;基因表达调控的研究 蛋白质组学: 鉴定蛋白质的产生过程、结构、功能和相互作用方式 遗传图谱 (genetic map)采用遗传分析的方法将基因或其它dNA序列标定在染色体上构建连锁图。 遗传标记: 有可以识别的标记,才能确定目标的方位及彼此之间的相对位置。 构建遗传图谱 就是寻找基因组不同位置上的特征标记。包括: 形态标记; 细胞学标记; 生化标记;DNA 分子标记 所有的标记都必须具有多态性!所有多态性都是基因突变的结果! 形态标记: 形态性状:株高、颜色、白化症等,又称表型标记。 数量少,很多突变是致死的,受环境、生育期等因素的影响 控制性状的其实是基因,所以形态标记实质上就是基因标记。

细胞学标记 明确显示遗传多态性的染色体结构特征和数量特征 :染色体的核型、染色体的带型、染色 体的结构变异、染色体的数目变异。优点:不受环境影响。缺点:数量少、费力、费时、对生物体的生长发育不利 生化标记 又称蛋白质标记 就是利用蛋白质的多态性作为遗传标记。 如:同工酶、贮藏蛋白 优点: 数量较多,受环境影响小 ?

缺点: 受发育时间的影响、有组织特异性、只反映基因编码区的信息 DNA 分子标记: 简称分子标记以 DNA 序列的多态性作为遗传标记 优点: ? 不受时间和环境的限制 ? 遍布整个基因组,数量无限 ?

不影响性状表达 ? 自然存在的变异丰富,多态性好 ? 共显性,能鉴别纯合体和杂合体 限制性片段长度多态性(restriction fragment length polymorphism , RFLP ) DNA 序列能或不能被某一酶酶切,

分子生物学知识点归纳

分子生物学 1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。 2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。 3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。 4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。真核生物中的DNA甲基化则在基因表达调控中有重要作用。真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’. 5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。6.DNA双螺旋结构模型要点: (1)DNA是反向平行的互补双链结构。 (2)DNA双链是右手螺旋结构。螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA双链说形成的螺旋直径为2 nm。每个碱基旋转角度为36度。DNA双螺旋分子表面存在一个大沟和一个小沟,目前 认为这些沟状结构与蛋白质和DNA间的识别有关。 (3)疏水力和氢键维系DNA双螺旋结构的稳定。DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。 7.核小体的组成: 染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。 核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。 8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。 9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。从一条mRNA只能翻译出一条多肽链。 10.多顺反子(polycistron): 原核生物具有操纵子结构,几个结构基因转录在一条mRNA链上,因而转录物为多顺反子。每个顺反子分别翻译出各自的蛋白质。 11.原核生物mRNA结构的特点: (1) 原核生物mRNA往往是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息。 (2)mRNA 5‘端无帽子结构,3‘端无多聚A尾。 (3)mRNA一般没有修饰碱基。 12.真核生物mRNA结构的特点: (1)5‘端有帽子结构。即7-甲基鸟嘌呤-三磷酸鸟苷m7GpppN。 (2)3‘端大多数带有多聚腺苷酸尾巴。 (3)分子中可能有修饰碱基,主要有甲基化。 (4)分子中有编码区和非编码区。 14.tRNA的结构特点 (1)tRNA是单链小分子。 (2)tRNA含有很多稀有碱基。 (3)tRNA的5‘端总是磷酸化,5’末端核苷酸往往是pG. (4)tRNA的3‘端是CCA-OH序列。是氨基酸的结合部位。 (5)tRNA的二级结构形状类似于三叶草,含二氢尿嘧啶环(D环)、T环和反密码子环。 (6)tRNA的三级结构是倒L型。D环和T环在L的拐角上。 15.rRNA (1)rRNA是细胞内含量最丰富的RNA,它们与核糖体蛋白共同构成核糖体,后者是蛋白质合成的场所。 (2)核糖体和rRNA一般都用沉降系数S表示大小。原核生物核糖体的沉降系数为70S,由50S和30S 两个大小亚基组成,30S小亚基含有16SrRNA和21种蛋白质。50S大亚基含有23S和5SrRNA以及 34种蛋白质。真核生物沉降系数为80S,由大小亚基组成。40S小亚基含有18SrRNA和30多种蛋 白质。60SrRNA含有5S、5.8S和28SrRNA 以及大约45种蛋白质。 16.核酶(ribozyme):某些RNA分子能催化自身或其他RNA分子进行化学反应,即具有酶样的催化活性,这类具有催化活力的RNA称为核酶。核酶分为3类:(1) 异体催化的剪切型。(2)自体催化的剪切型(3)内含子的自我剪切型。 17.核内不均一RNA(hnRNA):真核生物转录生成的mRNA前体即为hnRNA。这类mRNA前体必须经过一系列的加工处理才能变成成熟的mRNA。加工过程的主要环节包括:(1)5‘端加帽(2)3’端加尾(3)内含子的切除和外显子的连接(4)分子内部的甲基化修饰(5)核苷酸序列的编辑作用。 18.miRNA:是一种单链小分子RNA,广泛存在于真核生物中,是一组不编码蛋白质的短序列RNA,其特点就是高度的保守性、时序性和组织特异性。研究表明miRNA可能决定组织和细胞的功能特异性,也可能参与了复杂的基因调控,对组织的发育起重要作用。 19.siRNA:小干扰RNA。是人工合成的短的双链RNA,它可抑制细胞内特定基因的表达,导致转录后基因失

基因组学(结构基因组学和功能基因组学).

问:基因组学、转录组学、蛋白质组学、结构基因组学、功能基因组学、比较基因组学研究有哪些特点? 答:人类基因组计划完成后生物科学进入了人类后基因组时代,即大规模开展基因组生物学功能研究和应用研究的时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。以功能基因组学为代表的后基因组时代主要为利用基因组学提供的信息。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(struc tural genomics和以基因功能鉴定为目标的功能基因组学(functional genomics。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。 功能基因组学(functional genomics又往往被称为后基因组学(postgenomics,它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。 基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。 功能基因组学

基因组学复习题

第1章 1)什么是C-值悖理?什么是N-值悖理? C-值悖理:生物基因组的大小同生物进化所处地位的高低无关的现象。 N-值悖理:基因数目与进化程度或生物复杂性的不对应性,称之为N值悖理 2)什么是序列复杂性? 基因组中不同序列的DNA总长,用bp 表示。 3)RNA分子有哪些种类? mRNA tRNA rRNA scRNA snRNA snoRNA 小分子干扰RNA 4)不编码蛋白质的RNA包括哪些类型? tRNA rRNA scRNA snRNA snoRNA 小分子干扰RNA 5)什么是假基因?假基因是如何形成的? 来源于功能基因但已失去活性的DNA序列,有沉默的假基因,也有可转录的假基因。 产生假基因的原因有很多,如编码序列出现终止密码子突变,或者插入和缺失某些核苷酸使mRNA移码,造成翻译中途停止或者异常延伸,合成无活性的蛋白质。 6)假基因能否表达? 为什么? 能,假基因相对于原来的基因已经失去功能但是可能产生新的功能。 最初人们认为, 假基因是不能转录的基因, 随着基因组数据的积累, 现在已知有不少假基因仍然保持转录的活性, 特别是起源于重复基因的假基因和获得启动子加工的假基因,但假基因的转录产物已失去原有的功能, 如产生残缺蛋白质。 7)如何划分基因家族? 什么是超基因家族? 基因家族:将来自共同的祖先,因基因加倍或变异产生了许多在DNA序列组成上基本一致而略有不同的成员划分为一个基因家族。 超基因家族:起源于共同祖先,由相似DNA序列组成的许多基因亚家族或相似的基因成员构成的群体,它们具有相似的功能。 8)低等生物与高等生物基因组组成有何差别?为什么会产生这些差别? 低等生物:1)结构紧凑,一般不存在内含子(古细菌除外); 2)大小在5 Mb以下; 3)缺少重复序列; 4)很少非编码序列。

麻省理工大学课件:系统微生物学11-基因组学I(笔记)

20.106J – Systems Microbiology Lecture 11 Prof. DeLong ?Chapter 15 – Brock Genomics o DNA sequencing technology – things have really changed. There’s a real race going on for who can develop the best technology Human genome project: only around 30,000 genes in the human code. The day is not at all far off when doctors will read people’s genomes to discover what their inherent risks are. The human genome project involved two main groups – one more commercially based (J. Craig Venter – Celera), and one more public, open source, with funding from NIH (Francis Collins – NHGRI). Also the Sanger Centre, Whitehead Institute… The human genome project drove innovation in biotechnology. Two major technological benefits: o Stimulated development of high throughput methods – the assembly line. It’s not just the individual with a pipette any more – it’s more like a factory approach (which matters for the social aspect of how science works). However, this might work back in the other direction as efficient machines develop… o Reliance on computational tools for data mining and visualization of biological information Biology is rapidly becoming informational science – bioinformatics and computational biology. DNA sequencing o Sanger’s technique Uses primer extension and DNA polymerase Dideoxynucleotides halt the replication at particular base pairs. Then you run for length on a slab gel, and you can tell which base pairs are at which locations, reading off the sequence and recording them manually. o Later people realized that you can use fluorescent labels instead of radiolabels. This meant that you didn’t have to deal with radioactivity It also meant that you could run them all in one lane. Instead of a slab gel, people use a thin tube, with a fluorescence detector automatically reading the wavelengths as they come out the other end. This method is fast and accurate

遗传学重点名词解释

Chapter 1 性状(character): 生物体所表现的明显的能够遗传的特征。 单位性状(unit character):一个基因或一组基因所决定的一个性状,作为一个遗传单位进行传导。 相对性状(contrasting character):遗传学中同一单位性状的相对差异。 真实遗传(true-breeding)自带性状永远与亲代性状相同的遗传方式。 纯系(pure line):能够进行真是遗传的品种。 三个假说:(1)遗传因子成对存在(颗粒遗传因子) (2)显隐性(3)分离 表型(phenotype):个体形状的外在表现。 基因型(genotype):决定个体表型的基因形式。 等位基因(allele):一个基因的不同形式,是由突变形成的。 纯合体(homozygote):基因座上有两个相同的等位基因,就这个基因座而言,这种个体或细胞成为纯合体。 杂合体(heterozygote):基因座上有两个不同的等位基因。 侧交:杂交产生的后代与隐性纯合亲本交配以检测自带个体基因型。 自由组合定律:配子形成后,同一基因的等位基因分离,非等位基因自由组合。 染色体(chromosome)常由脱氧核糖核酸、蛋白质和少量核糖核酸组成的线状或棒状物,是生物主要遗传物质的载体。 染色质(euchromatin):用碱性染料染色时着色浅的部位,是构成染色体DNA 的主体,在间期呈高度分散状态。 异染色质(heterochromatin):用碱性染色质染色时着色深的部位,又分为组成型染色质. 组成型染色质(constitutive heterochromatin): 在染色体上的大小和位置恒定,在间期时,仍保持螺旋化。如着丝粒。 兼性异染色体(facultative heterochromatin.): 起源于常染色质,在个体发育的特定阶段可转变成异染色质。如x染色体失活。 着丝粒(centromeres):每个染色体上都有一个高度浓缩的区域。 核型分析(karyotype):是指某一物种染色体的组成,通常用中期染色体的照片,铵长臂的大小或总的长度排列,用来表明物种的特点以及和亲缘种之间的进化关系。 带型(banding patterns):用特定的染料对染色体染色后,会出现深浅不一的条带,条带的位置和大小既有高度的染色体的专一性。 端粒(tele mere): 真核生物染色体的末端,有许多成串短的序列组成。 端粒的功能:稳定染色体末端结构,防止染色体间末端连接,并可补偿前导链和后滞链5’末端在消除RNA 引物后造成的空缺。 细胞周期(cell cycle):一次分裂的开始到下一次分裂的开始的这段时间。 姐妹染色单体(sister chromosome):染色体复制,着丝粒的DNA也复制,尽管仅能看到一个着丝粒。复制了的染色体是两个完全一样的拷贝。 G1 S关卡:检测细胞大小和DNA是否受损伤。 G2 M关卡:细胞进入有丝分裂之前检测细胞的生理状态。(如果DNA复制

相关文档
最新文档