低压配电网三级漏电保护系统(精)

低压配电网三级漏电保护系统(精)
低压配电网三级漏电保护系统(精)

低压配电网三级漏电保护系统

华北电管局(100761)童建华

天津市电子器材厂(300350)张国喜

(-)目前低压电网已应用三级漏电保护电器的产品分类

1.漏电保护器(又称触电保安器、漏电开关):它是一种具有漏电电流动作保护或还具有过电压、过电流保护的电器。它没有短路保护功能,因此在使用中要考虑与短路保护电器相配合。

2.漏电断路器:它是一种具有漏电电流动作,过电流和短路保护等功能的电器。有的还具有过电压、断相和反相保护等功能。

3.漏电保护插座:出现触电或漏电故障时,能自行断开插座的电路以实现漏电保护。

4.组合式漏电保护电器:由漏电断路器、漏电保护器或漏电继电器与其它开关电器组合而成的漏电保护电器。

5.漏电继电器:它只能测量漏电故障,并发出信号,而不能直接断开主电路。

上述产品,天津市电子器材厂研制生产的有:JLB一10、DZ16、DZ18、DZ15L、DZL25 、JD1等系列。

(二)分级用电保护方式及额定漏电动作电流(以下简称I△n)值选取

如图所示,为三级漏电保护接线方式。

1.一级保护(配变总漏电保护)

漏电保护器也装于配电变压器低压出线侧,或A11A l2A13;。装于各支线首端。根据对天津市、河北省玉田县、内蒙古呼和浩特市、黑龙江省、广东省等100个低压电网三相不平衡漏电电流的测试结果表明,要使总漏电保护部投运率达80%,北方I△n平均选为100mA,南方I△n平均选为180mA;若保护总漏电保护器投运率达95%,则北方I△n平均选为200mA、南方I△n平均选为300mA。故配变总保护I△n选为100mA、200mA、500mA动作时间小于0.l~

0.1s。A0的保护值可选500mA~10A,动作时间选为小于0.1~Is。

2.二级保护(分支线路保护)

由A2或A21、A22构成的二级保护,在人身触及分支线路、设备时,漏电保护器立即动作。据对天津、河北省等地触电死亡事故分析表明,有近一半的事故是在低压电网已经发生了用电设备外壳带电,导线落地、拉线带电等单相接他故障后,再发生触电死亡事故的,故二级保护若控制在I△n小于200mA则近一半的触电事故就避免了。通常二级保护I△n 选为500mA、100mA、200mA,动作时间小于0.1~0 .4S。

3.三级保护(终端分户保护)

A m A n装于二级保护支线的末端,即装于分户电度表下或单台电气设备的电路中,一般三级漏电保护I△n选为6mA~100mA,动作时间小于0.1S。三级保护方式是一种比较安全可靠、实切可行的低压配变系统的漏电保护方式。

漏电保护器安全使用问答(六)*

17.采用分级保护时,如何选择漏电保护器?

①二级保护

按二级保护时,可将电网的干线与分支线路作为第一级,线路末端作为第二级。

第一级漏电保护:该级漏电保护范围大,停电后影响面也大,所以漏电保护器灵敏

度不要太高,漏电动作时间和漏电动作电流应该选择大于后面的第二级保护器。这

一级漏电保护主要用以

消除事故隐患为目的的间接接触防护和防止漏电引起的火灾为主。一般可选动作电

流200~300mA,动作时间可选大于0.1s的延时型漏电保护器,其动作特性参数控制

在30mA·s以内。

当现场用电量较小时,可将第一级保护器安装在总配电箱;当用电量较大时可安装

在分配电箱(防止因总配电箱中的漏电保护器参数过小而产生误动作),或改用三

级保护。

第二级(末级)漏电保护:这一级保护器设置在开关箱内,保护区域小,主要提供

间接接触和直接接触保护,以防止有致命危险的人身触电事故。要求设置高灵敏

度、快速型的漏电保护器。按照作业条件,一般可选30 mA×0.1s的保护器;当作业

条件比较潮湿(如蛙夯机、磨石机等),应选15mA·0.1s的保护器;当用电设备负

荷较大时(如钢筋对焊机、中型塔机、混凝土泵车等),为避免保护器误动作,可

选50~75mA×0.1s的漏电保护器。

②三级保护当电网容量大,供电的区域广,二级保护不能适应分级保护要求时,可

在二级保护的基础上再增加一级漏电保护。

第一级漏电保护:设置在总配电箱。考虑这一级停电后造成的影响大,并应大于施

工现场正常的最大泄漏电流值,漏电保护器应选中灵敏度(300~50mA),动作时间选>0.2s的延时型保护器。

第二级漏电保护:设置在分配电箱。这一级主要提供间接接触防护,同时作为线路

末端漏电保护器的补充防护。第二级保护器的动作参数选在第一级与第三级之间,

且不应大于30mA·s限值,可选动作电流为中灵敏度100~200mA,动作时间0.ls的漏电保护器。

第三级漏电保护:设置在开关箱中,选择高灵敏度、快速型漏电保护器。

以上各级漏电保护器的参数选择,应满足分级保护时,各级之间的漏电保护进行协

调配合,各级漏电保护器不会发生上下级之间同时动作或越级动作,从而保证整个

系统工作的稳定和协调性。

18.三级保护中各级漏电保护器的动作特性参数是如何具体考虑和选择的?

答:在实行分级保护时,为使各级漏电保护器的漏电动作特性之间能协调配合,一

般可按以下参数设置:

级别漏电动作电流动作时间

第一级300~500mA0.2~0.5s

第二级100~200 mA0.1s

第三级15~30 mA0.1s

①第一级是设在电网进线端漏电保护的监测,停电后影响范围大。考虑干线触电机

率小,应配置较大容量中灵敏度、延时型漏电保护器;动作参数不能小于正常的最

大泄漏电流值。

一般来说,线路有电,就存在泄漏电流,只是随漏电回路阻抗而定,电网的漏电值

与线路的绝缘质量有关。根据规定,低压电网绝缘导线的对地绝缘电阻值,必须保

证在使用电压下的泄漏电流不超过最大供电电流的1/1000~1/3000。计算漏电保护

器的动作电流整定值时,可按1/2000考虑,并以此作为漏电保护器的不动作电流值。

例如:施工现场单台变压器容量为400KV A

则变压器的额定电流I1= 每项允许最大泄漏电流因此,漏电保护器的不动电

流≥300mA

可选择这一级漏电保护器动作电流为500mA现场供电回路电流越大,供电线路会越

长,分支路也多,因而泄漏电流就大;如用电量小,则泄漏电流相对也少。例如当

变压器较小容量为200KV A时,计算每相允许最大泄漏电流为150mA,此时设置漏电

动作电流在300mA以下的漏电保护器即可(此时也可实行二级保护)。

②第二级是设在分支线路上的漏电保护器,这一级保护器的参数应大于第三级,主

要提供间接接触防护。例如:分配电箱控制一搅拌机棚,棚内设置有三台搅拌机,

每台搅拌机漏电保护器动作参数为30Ma×0.1s。按要求,动作电流为30mA的保护

器,其不动作电流为15mA,则三台保护器不动作电流为3×15=45mA。如果分配电箱

中保护器的动作电流为75mA,则45mA大于75mA的二分之一,就会发生越级动作,即第三级保护器不动作,第二级保护器发生的跳闸现象,所以这一级漏电保护器的动

作电流可选择100~200mA。第二级保护器的动作电流不能太小,应大于正常泄漏电

流值的两倍以上,否则会产生误动作,但不得超过30mA·s。

③第三级是设在线路末端的漏电保护器,再下面就是用电设备。开关箱内电器操作

使用频繁、危险性大,所以要求提供间接接触和直接接触防护,要设置高灵敏度、

快速型的漏电保护器。

一般情况下的直接接触防护应该是靠电气的绝缘等措施来解决,当这些措施失去防

护时,漏电保护器起补充防护作用,但不能作为唯一的防护措施。

所谓直接接触,即人体与电源或相线等带电体的直接接触。此时在漏电保护器动作

切断电源之前,通过人体的触电电流取决于人体的接触电压和触电时的人体电阻,

并不取决于保护器的漏电动作电流。

所谓接触电压,就是当人体两个部位同时接触不同电位时,在人体内就会有电流流

过,加在人体两部位的电位差即接触电压。预防人体触电措施,除考虑触电电流

外,也要考虑触电电压。此电压值越大,触电的危险也越大,因为接触电压越高,

人体的阻抗越低。

实际上,在触电过程屯人体电阻在触电电压的作用下是变化的,因而影响通过人体

的触电电流也随之发生变化。如果把这一过程放大,开始时,皮肤在干燥无汗条件

下,人体电阻最高。随触电时间增加,皮肤温度升高、出汗潮湿、电阻下降。由于

触电电压影响人体阻抗发生变化,触电电流也随之加大,会将皮肤灼伤,使人体阻

抗大大降低(完全失去表皮阻抗只剩内阻抗)。因此,直接接触时对人体造成的危

险是更严重的。

例如:一般干燥条件下,取人体阻抗为1000Ω,当电流限制在50mA时(不会引起心

室颤动),此时人体承受的安全电压为0.05×1000=50V,比较安全。若在潮湿条件

下,人体阻抗降为500Ω,此时人体承受安全电压为0.05×500=25V,就是说,同样是

50mA的电流,由于人体电阻的变化,所能承受的安全电压也必须由50V降为25V才安全,否则必须将电流限制在25mA以下方可不会引起心室颤动。因为漏电保护器的保

护范围与触电时人体电阻的情况有直接关系,从以上举例可以看出,由于人体阻抗

的变化,引起了保护范围发生了变化。所以,尽管安装了50mA动作电流的保护器,

直接触电时还有可能会遇到50mA以上的电流。因此,预防直接触电时应采用高灵敏

的漏电保护器。

同样,漏电动作时间对于防触电的作用也是非常重要的,如果触电持续时间超过一

个心

脏博动周期,就容易引发心室颤动而带来危险,因此,必须采用漏电动作时间小于

0.1s的漏电保护器。由于直接触电时,通过人体的触电电流可达数百毫安,因此要

求漏电保护器应该有最小的动作时间,国家标准(GB6829)要求,在250mA电流通

过漏电保护器时,其分断时间必须小于0.04s。也即预防直接触电时,应采用快速

型的漏电保护器。

④当单台用电设备容量较大时可采用单独回路配电。

当施工现场有较大容量的用电设备(如塔吊、对焊机等)时,应单独敷设分支线路

相设置专用分配电箱,其电箱中的漏电保护器一般选择漏电动作电流大于30mA,避

免因计算负荷大、泄漏电流大造成的保护器误动作。

例如某高层建筑工地采用了自升式意大利塔吊E6026、(120kw)和钢筋对焊机UN-

75型(75KV A),分别选择漏电保护器。

一、塔吊

已知条件:塔吊容量P1=120kw暂载率Jc=15%功率因数C0Sj=0.7需要系数K=0.6计算

负荷P=K·2P1·=0.6×2×120×=56kw计算电流I= = =120A漏电保护器不动作电流为120×=60mA可选用:100Ma×0.1s漏电保护器

二、对焊机

已知条件:对焊机容量S1=75KV A暂载率Jc=0.65功率因数C0Sj=0.5需要系数K=0.5计

算负荷P1=K·S1··C0Sj=0.5×75××0.5=15kw不对称负荷换算P= ·P1= ×15=26 kw 计算电流I= =79A选用:漏电保护器50~75mA×0.1s

一般电焊机开始使用接通空载以及焊接工作时,会流过很大的冲击断续电流,其值

往往达额定电流7倍以上,如果焊机容量大、焊机一次线路过长,会容易造成保护

器的误动作。

“计算负荷”。计算负荷是作为选择导线截面、配电装置和电器的主要依据。在计

算用电设备的电流时,应该使用计算负荷,不能一律使用设备铭牌上的额定容量。

额定容量是设备的最大输出功率,计算负荷是一定时间内用电设备的实际最大负

荷,计算负荷要依据现场实际负荷曲线来确定。

“暂载率”。是指在规定的时间内与通电工作时间之比。暂载率=×100%。例如弧焊

机暂载率JC=65%,即相当于规定时间周期为5min,通电工作时间为3min。“需要系数”。施工现场很多用电设备并不是都同时运行,运行时也不会都是满负荷,所以

计算时要乘以系数进行折减。

“功率因数”。电功率分为视在功率、有功功率和无功功率,功率因数是有功功率

与视在功率之比。功率因数越低,无功电能消耗越大。

"塔吊容量"。塔吊容量指塔吊总功率;塔吊工作机构有行走、变幅、回转、起

升;各机构都设置电动机驱动,但工作时各机构并非同时连续进行。总功率是指备

电动机功率的总和。

"不对称负荷换算"。施工现场用电设备有三相设备、单相设备(和二相设备),应

尽量减少三相负载不平衡将单相设备均匀分散接到三相上;当单相设备总容量达到

三相设备总容量的15%时;应对单相设备负荷进行换算(按三倍最大相负荷换算成

三相等效对称负荷)。

1防人身电击只需装用动作电流为30mA的rcd

国际电工委员会标准IEC4.79(电流通过人体的效应)确定,通过人体的交流50Hz电流不超过30mA时,人体不会因发生心室纤维性颤动而死亡,它与人体潮湿程度、接触电压高低无直接关系。因此,国际电工标准在所有防人身电击的条文中,都规定采用动作电流不大于30mA的rcd。据此在医院手术室、浴室等电击危险大的场所都可装用动作电流为30mA 的rcd来防人身电击。

农村用电不必装用灵敏度更高的rcd,例如10mA的rcd。因为10mA的rcd和30mA的rcd在防人身电击的效果上是相同的,都可以使人免于发生心室纤颤而死亡。10mArcd的价格很贵,不适于广泛采用,而其额定不动作电流仅5mA,农村低压电网设备因常处于户外和潮湿场所,正常泄漏电流较大,容易引起误动作。频繁的误动作停电的后果往往是将rcd短接或拆除,使线路失去接地故障保护,导致危险的后果。

2只有手握式和移动式电气设备才需装用30mA高灵敏度的rcd

手握式和移动式电气设备的电击危险大。这是因为这些设备使用中经常挪动,绝缘容易破损而发生碰外壳接地故障,握持设备的手掌肌肉通电收缩使人无法甩脱外壳带电的设备,人体通电时间稍长即易发生心室纤颤致死。固定安装的设备较少发生碰外壳接地故障,人的手掌抓握不住设备外壳,在遭电击时可立即甩脱,与带电设备外壳脱离接触。不论有无装用30mArcd,固定式设备发生电击事故时都可使人站立不稳摔倒,但不会因发生心室纤颤而电击致死。因此对手握式和移动式设备必须装用30mA瞬动rcd,而对固定式设备如吊灯、固定安装的户内水泵则无此要求。国际电工标准对两者加以区分是避免滥装30mA瞬动rcd,以节省不必要的投资和减少因装用不当而招致rcd的误动停电。

3常用的两级漏电保护

在线路短路中大部分是接地故障,即相线与大地、电气设备外壳、金属结构管道之间的短路。接地故障既能引起人身电击事故,也比相间短路、单相短路容易引起电气火灾。我国《低压配电设计规范》(GB50054-95)规定,配电线路都应有接地故障保护,而rcd是最有效的接地故障保护电器。当发生电弧性接地故障起火时,因电弧电流小,断路器、熔断器往往不能在火灾发生前切断电源,而rcd则能立即动作切断电源。因此,除在手握式、移动式设备终端线路上安装30mA瞬动rcd外,还应在电源总干线上安装带少许延时的漏电保护功能的断路器,如图1所示。它主要用于防接地故障引起的电气火灾和线路对地电位升高事故,保护范围无死区。

图1两级漏电保护示意图

图中rcd1和rcd2的动作应有选择性,以避免越级跳闸扩大停电面。选择性不能靠rcd 动作电流的大小来提供。如果rcd1和rcd2的动作电流差2~3倍,但如果都是瞬时动作,当线路末端发生故障电流为几十安的接地故障时,故障电流都超过动作电流的百倍以上,两级rcd都瞬时动作,无法保证选择性。因此各个级次rcd间的动作选择性只能靠动作时间的长短不同来保证,即图1中的rcd2的动作应带有适当的延时,例如图中所示rcd1的动作时间t1≤0.04s,rcd2的动作时间t2=0.3s。

4带延时漏电保护的断路器的技术要求

装设在电源干线上带延时漏电保护的断路器其接线如图2所示。由图可知,这种断路器只是在原用作短路保护和过载保护的断路器的下端,增装一变比为1∶1的零序电流互感器和脱扣器。当被保护回路内发生接地故障时,互感器检测出剩余电流(俗称漏电电流),由脱扣器使断路器跳闸。

图2带延时漏电保护功能的断路器接线示意图

我国《低压配电设计规范》规定,此级rcd的动作电流不大于500mA最为安全,因500mA 以下电弧的能量不足以引燃起火。但当线路正常泄漏电流大时也可取为大于500mA,以免发生不必要的跳闸停电。此断路器漏电动作延时一般取为0.3s左右。因从发生接地电弧到引燃近旁可燃物质起火有一较长时间过程,这一0.3s左右的延时,既能有效防止起火,又不扩大停电面,也不致引起所保护线路的过热烧损。

这一级保护不能采用一般的漏电保护器,也不能采用漏电继电器与接触器组合的漏电保护,因为电源干线上金属性接地故障电流可能以千安计,接触器和断流能力为300A的一般rcd是难以切断如此大的电流的。

我国不少厂家生产这种带延时漏电保护功能的塑壳式断路器,其额定电流为100~400A,漏电保护动作电流为30mA~2A,延时动作时间0.2~0.8s,短路电流开断能力为3~6.5kA,可以满足前述的一般要求。

5三级漏电保护的应用

当供电范围和电源干线电流较大时,有时需装用三级漏电保护,即在图2中的rcd2前再加一级rcd3如图3所示。它由分离的零序电流互感器、漏电继电器和断路器(或信号器)组成。互感器的变比也为1∶1。它通过的回路电流受回路4根导线通过的互感器贯穿孔直径的限制。漏电继电器检测的电流即一次侧的剩余电流,其动作电流和延时均可调整。

图3三级漏电保护示意图

我国现时已生产附装漏电继电器的漏电保护零序电流互感器,其贯穿孔直径为25~100mm,相应回路电流为100~800A,所带漏电继电器的动作电流为50mA~3A,延时为0.2~2s。这种互感器也适宜于在现有线路上补加漏电保护。

对供电范围大的电源干线上的漏电保护往往不希望所保护范围内发生电弧性接地故障时立即跳闸,以避免大面积的停电。这时可将漏电继电器作用于信号,以便找出故障回路,局部切断电源。回路内如出现金属性短路的大短路电流,则由断路器内的电磁脱扣器动作来切断电源,以保护线路。

6漏电保护的检验

现时施工验收时常用揿按rcd试验按钮或模拟接地故障的办法来检验rcd是否能动作,这两种方法不十分可靠。因前者只能说明rcd本身能动作,不能说明安装是否正确,保证发生接地故障时也肯定能动作;而后者只是定性检测而非定量检测。随着我国电气技术的发展,我国已生产出能测定rcd的动作电流、动作时间以及线路和设备正常泄漏电流的仪表,使用这种仪表检测得出的结果将更为可靠和准确。

漏电保护器俗称漏电开关,是用于在电路或电器绝缘受损发生对地短路时防人身触电和电气火灾的保护电器,一般安装于每户配电箱的插座回路上和全楼总配电箱的电源进线上,后者专用于防电气火灾。

其适用范围是交流50HZ额定电压380伏,额定电流至250安。

低压配电系统中设漏电保护器是防止人身触电事故的有效措施之一,也是防止因漏电引起电气火灾和电气设备损坏事故的技术措施。但安装漏电保护器后并不等于绝对安全,运行中仍应以预防为主,并应同时采取其他防止触电和电气设备损坏事故的技术措施。

漏电保护器的结构

漏电保护器主要由三部分组成:检测元件、中间放大环节、操作执行机构。

①检测元件。由零序互感器组成,检测漏电电流,并发出信号。

②放大环节。将微弱的漏电信号放大,按装置不同(放大部件可采用机械装置或电子装置),构成电磁式保护器相电子式保护器。

③执行机构。收到信号后,主开关由闭合位置转换到断开位置,从而切断电源,是被保护电路脱离电网的跳闸部件。

漏电保护器的工作原理

漏电保护器主要包括检测元件(零序电流互感器)、中间环节(包括放大器、比较器、脱扣器等)、执行元件(主开关)以及试验元件等几个部分。

三相四线制供电系统的漏电保护器工作原理示意图。TA 为零序电流互感器,GF 为主开关,TL 为主开关的分励脱扣器线圈。

在被保护电路工作正常,没有发生漏电或触电的情况下,由克希荷夫定律可知,通过TA 一次侧的电流相量和等于零,即:这样TA 的二次侧不产生感应电动势,漏电保护器不动作,系统保持正常供电。

当被保护电路发生漏电或有人触电时,由于漏电电流的存在,通过TA 一次侧各相电流的相量和不再等于零,产生了漏电电流Ik。

在铁心中出现了交变磁通。在交变磁通作用下, TL二次侧线圈就有感应电动势产生, 此漏电信号经中间环节进行处理和比较,当达到预定值时,使主开关分励脱扣器线圈TL 通电,驱动主开关GF 自动跳闸,切断故障电路,从而实现保护。

用于单相回路及三相三线制的漏电保护器的工作原理与此相同。

装设漏电保护器的范围

1992 年国家技术监督局发布的国标GB13955-1992《漏电保护器安装和运行》, 对全国城乡装设漏电保护器做出统一规定。

2.1 必须装漏电保护器(漏电开关)的设备和场所

(1) 属于I类的移动式电气设备及手持式电动工具(I类电气产品,即产品的防电击保护不仅依靠设备的基本绝缘,而且还包含一个附加的安全预防措施, 如产品外壳接地) ;

(2) 安装在潮湿、强腐蚀性等恶劣场所的电气设备;

(3) 建筑施工工地的电气施工机械设备;

(4) 暂设临时用电的电器设备;

(5) 宾馆、饭店及招待所的客房内插座回路;

(6) 机关、学校、企业、住宅等建筑物内的插座回路;

(7) 游泳池、喷水池、浴池的水中照明设备;

(8) 安装在水中的供电线路和设备;

(9) 医院中直接接触人体的电气医用设备;

(10) 其它需要安装漏电保护器的场所。

2.2 报警式漏电保护器的应用

对一旦发生漏电切断电源时,会造成事故或重大经济损失的电气装置或场所,应安装报警式漏电保护器,如:

(1) 公共场所的通道照明、应急照明;

(2) 消防用电梯及确保公共场所安全的设备;

(3) 用于消防设备的电源, 如火灾报警装置、消防水泵、消防通道照明等;

(4) 用于防盗报警的电源;

(5) 其它不允许停电的特殊设备和场所。

漏电保护器额定漏电动作电流的选择

正确合理地选择漏电保护器的额定漏电动作电流非常重要:一方面在发生触电或泄漏电流超过允许值时, 漏电保护器可有选择地动作;另一方面,漏电保护器在正常泄漏电流作用下不应动作,防止供电中断而造成不必要的经济损失。

漏电保护器的额定漏电动作电流应满足以下三个条件:

(1) 为了保证人身安全,额定漏电动作电流应不大于人体安全电流值,国际上公认不高于30 mA 为人体安全电流值;

(2) 为了保证电网可靠运行,额定漏电动作电流应躲过低电压电网正常漏电电流;

(3) 为了保证多级保护的选择性,下一级额定漏电动作电流应小于上一级额定漏电动作电流,各级额定漏电动作电流应有级差112~215 倍。

第一级漏电保护器安装在配电变压器低压侧出口处。

该级保护的线路长,漏电电流较大,其额定漏电动作电流在无完善的多级保护时,最大不得超过100mA;具有完善多级保护时,漏电电流较小的电网,非阴雨季节为75mA,阴雨季节为200mA,漏电电流较大的电网,非阴雨季节为100 mA,阴雨季节为300mA。

第二级漏电保护器安装于分支线路出口处,被保护线路较短,用电量不大,漏电电流较小。漏电保护器的额定漏电动作电流应介于上、下级保护器额定漏电动作电流之间, 一般取30~75 mA。

第三级漏电保护器用于保护单个或多个用电设备,是直接防止人身触电的保护设备。被保护线路和设备的用电量小,漏电电流小,一般不超过10mA,宜选用额定动作电流为30 mA,动作时间小于0.1 s 的漏电保护器。

漏电保护器的正确接线方式

TN 系统是指配电网的低压中性点直接接地, 电气设备的外露可导电部分通过保护线与该接地点相接。

TN 系统可分为:

TN 2S 系统整个系统的中性线与保护线是分开的。

TN 2C 系统整个系统的中性线与保护线是合一的。

TN 2C2S 系统系统干线部分的前一部分保护线与中性线是共用的, 后一部分是分开的。

火线(英文LIVE)L 一般为红色或黄色或绿色

零线(英文NEUTRAL)N(中性线)一般为蓝色

地线(英文EARTH)E 一般为黄绿色或黑色

漏电保护器的主要技术参数

主要动作性能参数有:额定漏电动作电流、额定漏电动作时间、额定漏电不动作电流。其他参数还有:电源频率、额定电压、额定电流等。

①额定漏电动作电流

在规定的条件下,使漏电保护器动作的电流值。例如30mA的保护器,当通入电流值达到30mA 时,保护器即动作断开电源。

②额定漏电动作时间

是指从突然施加额定漏电动作电流起,到保护电路被切断为止的时间。例如30mA×0.1s 的保护器,从电流值达到30mA起,到主触头分离止的时间不超过0.1s。

③额定漏电不动作电流

在规定的条件下,漏电保护器不动作的电流值,一般应选漏电动作电流值的二分之一。例如漏电动作电流30mA的漏电保护器,在电流值达到15mA以下时,保护器不应动作,否则因灵敏度太高容易误动作,影响用电设备的正常运行。

④其他参数如:电源频率、额定电压、额定电流等,在选用漏电保护器时,应与所使用的线路和用电设备相适应。漏电保护器的工作电压要适应电网正常波动范围额定电压,若波动太大,会影响保护器正常工作,尤其是电子产品,电源电压低于保护器额定工作电压时会拒动作。漏电保护器的额定工作电流,也要和回路中的实际电流一致,若实际工作电流大于保护器的额定电流时,造成过载和使保护器误动作。

漏电保护器

△剩余电流动作保护器的分类、性能参数及发展趋势

△浅析家用漏电保护器的作用

△漏电保护器的管理

△国家电力公司部门文件

△安装漏电保护器后在认识上的误区

△对剩余电流动作保护器生产、安装、运行等有关规程、规定标准的探讨

△剩余电流动作保护器(漏电保护器)研讨会

△浅谈临时用电

△浅析缓变与突变漏电分开鉴别的漏电继电器电路的特点

△对漏电保护开关现行标准的思考

△剩余电流保护器的电磁兼容性初探

△我国农村剩余电流动作保护器发展的回顾与展望

△我县漏电保护器的安装与运行管理

△认真选择保护方式发挥漏电保护作用

△一起漏电保护器故障现象的原因分析

△单片微处理器在漏电保护开关中的应用

△漏电开关保护方式的探讨

△漏电保护开关安装运行管理技术要点

△漏电保护开关保护方式和发展方向的探讨

△城乡低压电网漏电保护器使用情况分析

△加强产品质量管理确保漏电保护器的耐用性

△浅谈漏电保护开关在我局低压配电网络中的应用

△漏电保护器原理及动作后的故障查找步骤

△全国漏电保护技术研讨会会议纪要

△浅谈对漏电保护器的质量监管

△我镇漏电保护开关的安装及运行管理的调查报告

△改造后低压电网漏电保护方式的探讨

△ JD6型漏电保护器简介

△农村低压电网漏电保护器的合理配置

△农网改造应切实注意漏电保护器的使用

△安全用电的可靠保证

△漏电保护器的保护方式的探讨

△剩余电流动作保护器在农村低压电网中的作用

漏电保护器使用时应注意事项

(1) 漏电保护器适用于电源中性点直接接地或经过电阻、电抗接地的低压配电系统。对于电源中性点不接地的系统,则不宜采用漏电保护器。因为后者不能构成泄漏电气回路,即使发生了接地故障,产生了大于或等于漏电保护器的额定动作电流,该保护器也不能及时动作切断电源回路;或者依靠人体接能故障点去构成泄漏电气回路,促使漏电保护器动作,切断电源回路。但是,这对人体仍不安全。显而易见,必须具备接地装置的条件,电气设备发生漏电时,且漏电电流达到动作电流时,就能在0.1 秒内立即跳闸,切断了电源主回路。

(2) 漏电保护器保护线路的工作中性线N 要通过零序电流互感器。否则,在接通后,就会有一个不平衡电流使漏电保护器产生误动作。

(3) 接零保护线(PE) 不准通过零序电流互感器。因为保护线路(PE) 通过零序电流互感器时,漏电电流经PE 保护线又回穿过零序电流互感器,导致电流抵消,而互感器上检测不出漏电电流值。在出现故障时,造成漏电保护器不动作,起不到保护作用。

(4) 控制回路的工作中性线不能进行重复接地。一方面,重复接地时,在正常工作情况下,工作电流的一部分经由重复接地回到电源中性点,在电流互感器中会出现不平衡电流。当不平衡电流达到一定值时,漏电保护器便产生误动作;另一方面,因故障漏电时,保护线上的漏电电流也可能穿过电流互感器的个性线回到电源中性点,抵消了互感器的漏电电流,而使保护器拒绝动作。

(5) 漏电保护器后面的工作中性线N 与保护线(PE) 不能合并为一体。如果二者合并为一体时,当出现漏电故障或人体触电时,漏电电流经由电流互感器回流,结果又雷同于情况

(3) ,造成漏电保护器拒绝动作。

(6) 被保护的用电设备与漏电保护器之间的各线互相不能碰接。如果出现线间相碰或零线间相交接,会立刻破坏了零序平衡电流值,而引起漏电保护器误动作;另外,被保护的用电设备只能并联安装在漏电保护器之后,接线保证正确,也不许将用电设备接在实验按钮的接线处。

漏电保护装置是用来防止人身触电和漏电引起事故的一种接地保护装置,当电路或用电设备漏电电流大于装置的整定值,或人、动物发生触电危险时,它能迅速动作,切断事故电源,避免事故的扩大,保障了人身、设备的安全。因此,漏电保护开关的正确选用和维护管理工作是搞好农村安全用电的主要技术、管理措施。

一、漏电保护装置的正确选用

漏电保护装置的选用,应根据系统的保护方式、使用目的、安装场所、电压等级、被控制回路的漏电电流以及用电设备的接地电阻数值等因数来确定。

1、根据使用目的来选择

用于防止人身触电事故的漏电保护装置,一般根据直接接触保护和间接接触保护两种不同的要求选用,在选择动作特性时也应有所区别。

(1)、直接接触保护是防止人体直接触及电气设备的带电导体而造成的触电伤亡事故,当人体和带电导体直接接触时,在漏电保护装置动作切断电源之前,通过人体的触电电流和漏电保护装置的动作电流选择无关,它完全由人体触电的电压和人体电阻所决定,漏电保护装置不能限制通过人体的触电电流,所以用于直接接触保护的漏电保护装置,必须具有小于0.1S 的快速动作性能,或具有IEC漏电保护装置标准规定的反时限特性。

(2)、间接接触保护是为了防止用电设备在发生绝缘损坏时,在金属外壳等外露金属部件上呈现危险的接触电压。漏电保护开关的动作电流I△n的选择应和用电设备的接地电阻R和允许的接触电压U联系考虑,用电设备上的接触电压U要小于规定值。漏电保护器的动作电流I△n的选择:I△n≤U/R其中:U——允许接触电压R——设备的接触电阻一般对于额定电压为220V或380V

的固定式电气设备,如水泵、磨粉机等其他容易与人体接触的电气设备,当用电设备金属外壳的接地电阻在500Ω以下时,可选用30~50mA,0.1s以内动作的漏电保护装置;当用电设备金属外壳的接地电阻在100Ω以下时,可选用200~500mA 的漏电保护装置;对于较重要的用电设备,为了减少瞬间的停电事故,也可选用动作电流为0.2s的延时型保护装置。家庭使用的用电设备由于经常带有频繁插进拨出的插头,同时,部分居民住宅没有考虑接地保护设施。当用电设备发生漏电碰壳等绝缘故障时,设备外壳可能呈现和工作电压相同的危险电压,极易发生触电伤亡事故,因此,电气设备安装规程中规定,必须在家庭进户线的电能表后面,安装动作电流为30mA和0.1S以内动作的高灵敏型漏电保护开关。

2、根据使用场所来选择一般在380/220V的低压线路中,如果用电设备的金属外壳等金属部件容易被人触及时,同时这些用电设备又不能按照我国用电规程要求使其接地电阻小于4Ω或10Ω时,则宜按照间接接触保护要求,在用电

设备的供电回路中安装漏电保护装置,同时还应根据不同的使用场所,合理地选取不同动作电流的漏电开关。例如:在潮湿的工作场所,由于人体比较容易出汗或沾湿,使皮肤的绝缘性能降低,人体电阻明显下降,当发生触电事故时,通过人体的电流必然会比干燥的场所大,危险性高,因此,适宜安装15~30mA,并能在0.1S 内动作的漏电保护装置。

3、根据电路和用电设备的正常泄漏电流来选择

(1) 漏电保护装置的动作电流选择得越低,当然可以提高开关的灵敏度。然而,任何供电回路和用电设备,绝缘电阻不可能无穷大,总会有一定的泄漏电流存在。所以从保证电路的稳定运行和提供不间断的供电来讲,漏电保护装置的动作电流选择要受到电路正常泄漏电流的制约。

(2) 由于测定电流的泄漏电流,必须有较复杂的测试方法或使用专用测试设备进行测量,为选用方便,可参照下列经验公式:对于照明电路和居民生活用电的单相电路:I△n≥IH/2000对于三相三线制或三相四线制的动力线路及动力和照明混合线路:I△n≥IH/1000其中:I△n——漏电保护开关装置动作电流IH——电路的实际最大供电电流一般家庭供电电路,如果使用3A电能表的用户,正常情况下每户泄漏电流约在1mA左右,原则上,在家庭单相电路中的泄漏电流超过电路最大供电电流的1/3000时,应对电路进行检修。

(3) 我国农村低压电网的绝缘水平较低,泄漏电流较大。根据实测结果表明,泄漏电流的数值和配电变压器容量的大小关系不显著,但和低压电网中生活用电的居民户数有明显的关系,也就是不管变压器容量是多少,其中供给生活用电的户数越多,泄漏电流就越大。因此,农村电网中装置漏电开关时,应考虑到这点。一般而言,为了保护电网可靠运行,保证多级保护的选择性,下一级漏电保护动作电流应小于上一级漏电保护动作电流,各级漏电动作电流应有1.2~2.5倍的级差。第一级漏电保护装置应安装在配电变压器低压侧主干线出线端,该级保护的线路较长,叠加的泄漏电流较大。其漏电动作电流在未完善多级保护时,最大不得超过100mA,在完善多级保护时,其漏电动作电流最大不得超过300mA。第二级漏电保护装置应安装在各分支线的出线端,由于被保护线路较短,泄漏电流相对较小,其漏电动作电流应介于上、下级保护的漏电动作电流之间,一般取30~75mA。第三级漏电保护装置(又称末级保护)用于保护用电设备及人身安全,被保护线路短,泄漏电流小,一般不超过10mA,漏电动作电流应按人体触电摆脱电流值(10~20mA)选择,不应大于 30mA,一般取15~

30mA。

二、漏电保护开关投入运行后的管理

漏电保护开关投入运行后,必须进行有效的管理,确保漏电保护保持良好的运行状态,真正起到保护的作用。管理工作主要有以下几个方面:

1、漏电保护开关在投入运行后,应自觉建立运行记录并健全相应的管理制度;

2、漏电保护开关投入运行后,在通电状态下,每月须按动试验按钮一至二次,检查漏电保护开关动作是否正常、可靠,尤其在雷雨季节应增加试验次数;

3、定期分析漏电保护开关的运行情况,及时更换有故障的漏电保护开关;

4、漏电保护开关的维修应由专业人员进行,运行中遇有异常现象应找电工处理,以免扩大事故范围;

5、雷雨或其他不明原因使漏电保护开关动作后,应作检查分析;

6、漏电保护开关动作后,经检查未发现事故原因时,允许试合闸一次,如果再次动作,应查明原因,找出故障,必要时对其进行动作特性试验,不得连续强行送电,除经检查确认为漏电保护开关本身发生故障外,严禁私自撤除漏电保护开关强行送电;

7、退出运行的漏电保护开关再次使用前,应按有关部门规定的项目进行动作特性试验;

8、漏电保护开关的动作特性由制造厂整定,按产品说明书使用,使用中不得随意改动;

9、在漏电保护开关的保护范围内发生意外电击伤亡事故后,应检查漏电保护开关的动作情况,分析未能起到保护作用的原因,在未调查前应保护好现场,不得拆动漏电保护开关;

10、为检查漏电保护开关在运行中的动作特性及其变化,应定期进行动作特性试验。特性试验项目包括:测试漏电动作电流值、测试漏电不动作电流值、测试分断时间;

11、漏电保护开关进行动作特性试验时,应使用经国家有关部门检测合格的专用测试仪器,严禁利用相线直接触碰接地装置的试验办法;

12、使用的漏电保护开关除按漏电保护特性进行定期试验外,对断路器部分应按低压电器有关要求定期检查维护。

一、“两极漏电三级保护”之概念来源于《施工现场临时用电安全技术规范JGJ46-2005》,该规定属于强制性规定!

1.0.3建筑施工现场临时用电工程专用的电源中性点直接接地的220/380V三相四线制低压电力系统,必须符合下列规定:

1 采用三级配电系统;

2 采用TN-S接零保护系统;

3 采用二级漏电保护系统。

二、“三级保护”即“三级配电”详见以下规定:

8.1.1配电系统应设置配电柜或总配电箱、分配电箱、开关箱、实行三级配电。

三、“两极漏电”即“两极漏电保护”详见以下规定(总配电箱和开关箱必须设置!):

8.2.2总配电箱的电器应具备电源隔离,正常接通与分断电路,以及短路、过载、漏电保护功能。电器设置应符合下列原则:

1 当总路设置总漏电保护器时,还应装设总隔离开关、分路隔离开关以及总断路器、分路断路器或总熔断器、分路熔断器。当所设总漏电保护器是同时具备短路、过载、漏电保护功能的漏电断路器时,可不设总断路器或总熔断器。

2 当各分路设置分路漏电保护器时,还应装设总隔离开关、分路隔离开关以及总断路器、分路断路器或总熔断器、分路熔断器。当分路所设漏电保护器是同时具备短路、过载、漏电保护功能的漏电断路器时,可不设分路断路器或分路熔断器。

3 隔离开关应设置于电源进线端,应采用分断时具有可见分断点,并能同时

断开电源所有极的隔离电器。如采用分断时具有可见分断点的断路器,可不另设隔离开关。

4 熔断器应选用具有可靠灭弧分断功能的产品。

5 总开关电器的额定值、动作整定值应与分路开关电器的额定值、动作整定值相适应。

8.2.4分配电箱应装设总隔离开关、分路隔离开关以及总断路器、分路断路器或总熔断器、分路熔断器。其设置和选择应符合本规范第8.2.2条要求。

8.2.5开关箱必须装设隔离开关、断路器或熔断器,以及漏电保护器。当漏电保护器是同时具有短路、过载、漏电保护功能的漏电断路器时,可不装设断路器或熔断器。隔离开关应采用分断时具有可见分断点,能同时断开电源所有极的隔离电器,并应设置于电源进线端。当断路器是具有可见分断点时,可不另设隔离开关。

1防人身电击只需装用动作电流为30mA的rcd

国际电工委员会标准IEC4.79(电流通过人体的效应)确定,通过人体的交流50Hz电流不超过30mA时,人体不会因发生心室纤维性颤动而死亡,它与人体潮湿程度、接触电压高低无直接关系。因此,国际电工标准在所有防人身电击的条文中,都规定采用动作电流不大于30mA的rcd。据此在医院手术室、浴室等电击危险大的场所都可装用动作电流为30mA的rcd来防人身电击。
农村用电不必装用灵敏度更高的rcd,例如10mA的rcd。因为10mA的rcd和30mA的rcd在防人身电击的效果上是相同的,都可以使人免于发生心室纤颤而死亡。10mArcd的价格很贵,不适于广泛采用,而其额定不动作电流仅5mA,农村低压电网设备因常处于户外和潮湿场所,正常泄漏电流较大,容易引起误动作。频繁的误动作停电的后果往往是将rcd短接或拆除,使线路失去接地故障保护,导致危险的后果。

2只有手握式和移动式电气设备才需装用30mA高灵敏度的rcd

手握式和移动式电气设备的电击危险大。这是因为这些设备使用中经常挪动,绝缘容易破损而发生碰外壳接地故障,握持设备的手掌肌肉通电收缩使人无法甩脱外壳带电的设备,人体通电时间稍长即易发生心室纤颤致死。固定安装的设备较少发生碰外壳接地故障,人的手掌抓握不住设备外壳,在遭电击时可立即甩脱,与带电设备外壳脱离接触。不论有无装用30mArcd,固定式设备发生电击事故时都可使人站立不稳摔倒,但不会因发生心室纤颤而电击致死。因此对手握式和移动式设备必须装用30mA瞬动rcd,而对固定式设备如吊灯、固定安装的户内水泵则无此要求。国际电工标准对两者加以区分是避免滥装30mA瞬动rcd,以节省不必要的投资和减少因装用不当而招致rcd的误动停电。

3常用的两级漏电保护

在线路短路中大部分是接地故障,即相线与大地、电气设备外壳、金属结构管道之间的短路。接地故障既能引起人身电击事故,也比相间短路、单相短路容易引起电气火灾。我国《低压配电设计规范》(GB50054-95)规定,配电线路都应有接地故障保护,而rcd是最有效的接地故障保护电器。当发生电弧性接地故障起火时,因电弧电流小,断路器、熔断器往往不能在火灾发生前切断电源,而rcd则能立即动作切断电源。因此,除在手握式、移动式设备终端线路上安装30mA瞬动rcd外,还应在电源总干线上安装带少许延时的漏电保护功能的断路器,如图1所示。它主要用于防接地故障引起的电气火灾和线路对地电位升高事故,保护范围无死区。



图中rcd1和rcd2的动作应有选择性,以避免越级跳闸扩大停电面。选择性不能靠rcd动作电流的大小来提供。如果rcd1和rcd2的动作电流差2~3倍,但如果都是瞬时动作,当线路末端发生故障电流为几十安的接地故障时,故障电流都超过动作电流的百倍以上,

两级rcd都瞬时动作,无法保证选择性。因此各个级次rcd间的动作选择性只能靠动作时间的长短不同来保证,即图1中的rcd2的动作应带有适当的延时,例如图中所示rcd1的动作时间t1≤0.04s,rcd2的动作时间t2=0.3s。

4带延时漏电保护的断路器的技术要求

装设在电源干线上带延时漏电保护的断路器其接线如图2所示。由图可知,这种断路器只是在原用作短路保护和过载保护的断路器的下端,增装一变比为1∶1的零序电流互感器和脱扣器。当被保护回路内发生接地故障时,互感器检测出剩余电流(俗称漏电电流),由脱扣器使断路器跳闸。

我国《低压配电设计规范》规定,此级rcd的动作电流不大于500mA最为安全,因500mA以下电弧的能量不足以引燃起火。但当线路正常泄漏电流大时也可取为大于500mA,以免发生不必要的跳闸停电。此断路器漏电动作延时一般取为0.3s左右。因从发生接地电弧到引燃近旁可燃物质起火有一较长时间过程,这一0.3s左右的延时,既能有效防止起火,又不扩大停电面,也不致引起所保护线路的过热烧损。
这一级保护不能采用一般的漏电保护器,也不能采用漏电继电器与接触器组合的漏电保护,因为电源干线上金属性接地故障电流可能以千安计,接触器和断流能力为300A的一般rcd是难以切断如此大的电流的。
我国不少厂家生产这种带延时漏电保护功能的塑壳式断路器,其额定电流为100~400A,漏电保护动作电流为30mA~2A,延时动作时间0.2~0.8s,短路电流开断能力为3~6.5kA,可以满足前述的一般要求。

5三级漏电保护的应用

当供电范围和电源干线电流较大时,有时需装用三级漏电保护,即在图2中的rcd2前再加一级rcd3如图3所示。它由分离的零序电流互感器、漏电继电器和断路器(或信号器)组成。互感器的变比也为1∶1。它通过的回路电流受回路4根导线通过的互感器贯穿孔直径的限制。漏电继电器检测的电流即一次侧的剩余电流,其动作电流和延时均可调整。

我国现时已生产附装漏电继电器的漏电保护零序电流互感器,其贯穿孔直径为25~100mm,相应回路电流为100~800A,所带漏电继电器的动作电流为50mA~3A,延时为0.2~2s。这种互感器也适宜于在现有线路上补加漏电保护。
对供电范围大的电源干线上的漏电保护往往不希望所保护范围内发生电弧性接地故障时立即跳闸,以避免大面积的停电。这时可将漏电继电器作用于信号,以便找出故障回路,局部切断电源。回路内如出现金属性短路的大短路电流,则由断路器内的电磁脱扣器动作来切断电源,以保护线路。

6漏电保护的检验

现时施工验收时常用揿按rcd试验按钮或模拟接地故障的办法来检验rcd是否能动作,这两种方法不十分可靠。因前者只能说明rcd本身能动作,不能说明安装是否正确,保证发生接地故障时也肯定能动作;而后者只是定性检测而非定量检测。随着我国电气技术的发展,我国已生产出能测定rcd的动作电流、动作时间以及线路和设备正常泄漏电流的仪表,使用这种仪表检测得出的结果将更为可靠和准确。

农村低压配电网线损管理探讨

农村低压配电网线损管理探讨 众所周知,伴随着社会经济的飞速发展和人民生活水平的不断提高,在当今社会中,用电需求和用电范围都呈现出极速上升和拓展的状态。对于供电企业而言,在其经营管理工作当中必须要高度重视起一个至关重要的问题,那就是线损的管理,特别是农村地区。农村地区因为规划等因素的影响,其供电实际面积非常之广,而且供电点也是非常分散的,所以在是实际使用过程中,很容易出现用电负荷量不均衡的问题或者状况,供电迂回问题也是非常突出。诸如此类因素都会严重影响着农村低压配电网线损管理工作的质量,只有彻底解决好这些问题,找到最切实可行的应对措施,才能够从真正意义上改变我国农村当前用电管理工作的现状。据此,就农村低压配电网线损管理进行深入的分析与探究。 标签:农村;低压配电网;线损管理 0 引言 目前,在我国农村低压配电网线损管理工作当中,其工作内容主要集中体现在两个方面,分别是线损技术和线损管理。无论是哪一项内容,其都是拥有着很大的工作量,而且也都会涉及到非常多方面的因素。总而言之,无论是线损技术还是线损管理,都应该属于综合性质的工作。根据笔者多年的相关工作经验与实践调查工作,发现我国现阶段农村低压配电网工作中还存在着非常多的问题和弊端,亟待得到有效的解决。相关企业要想实现长远发展,就必须要将农村低压配电网线损管理工作放在至关重要的位置,一定要结合实际情况和需求变化,将线损管理工作真正做到位。以下是笔者就此议题提出的几点看法和建议。 1 关于线损的实际含义分析 何为线损,从理论层面进行解释,其主要指的是在电能产生之后,其必然会需要经过一定线路传输到用户所需要的固定位置,那么在传输的过程当中,很有可能会出现各种问题,诸如有功电能、无功电能或者电压损失等等,这些情况都属于线损的范畴。目前,我国将线损共分成了两种类型,一种是技术型线损,还有一种是管理线损。这两种线损类型,虽然都有着各自不同的产生线损的原因,在技术途径上面也是不尽相同的,但是,这两种线损所产生的结果确实相同的,其都会在不同程度上产生线损危害。 2 影响农村低压配电网线路损耗的具体原因分析 2.1 供电线损的计算分析 在农村低压配电网系统当中,都会有专门的区域性数据库来负责具体的管理工作,其中,计算和分析线损是供电线损全部数据当中最主要的两块内容。除此之外,其管理工作还包括相关资料和数据的调取,借助模拟、分析或者比较的方式来对线损值进行计算,找到其中出现的问题,并且寻找到最合适的解决方案。

电气系统调试方案

第一章工程概况 1.1工程主要概况 工程名称: 建设单位:。 总承包单位。 设计单位: 监理单位: 项目地址: 地下室建筑面积:9460m2 本工程接地型式采用TN-S 系统,设置专用接地线(即PE线)。 1.2本工程调试内容 本工程主要对动力配电系统,照明系统、防雷接地系统等电气系统进行调试。(高低压变配电系统及发电机系统)由专业班组进行调试。包括配电箱、控制箱、配电干线及设备单体的调试。 1.2调试说明 1.2.1 本调试方案根据本项目的施工进度和现场条件,并以配合其他专业为目的而制定; 1.2.2 本调试方案根据现场情况会有所修正; 1.2.3 调试中,要求所有操作工人为持证电工,并按规程进行所有操作。 1.2.4电气系统调试流程,如下图

第二章电气调试 调试必须执行现行国家、省、市规范规定等。本方案所述内容及施工工艺如与施工图纸有矛盾,则应以图纸要求为准。 调试时根据各专业的要求,按《广东省建筑安装工程施工质量技术资料统一用表》要求,填写好相应的调试、检测记录、表格,并各有关人员签名,作为调试结果,留作交工验收、存档之用。 2.1送电前的准备工作和环境条件 为了确保调试质量,稳、准、可靠、安全、一次性送电调试、试运行的成功,要求项目技术负责、各电气专业技术人员、施工队参与,根据图纸设计要求和有关操作规范,验收规范,要亲自检查落实,整改好才能保证送电试测一次成功。 低压配电室的土建施工工作必须全部完成,门窗全部安装好,能上锁、防鼠、防虫,进户套管全部封填好,室内干净,干燥。 各电器的主要元件经有关部门检测合格。 检查接地、接零是否完整、可靠,是否有漏接。 检查所有开关、插座面板是否安装完成,无遗漏。 检查所有开关箱安装是否正确,压接紧固。 所有线路用绝缘表摇测相对地、零对地电阻值符合规范要求。 检查电源是否已进配电箱。 2.2主要调试项目及方法 2.2.1调试的主要项目 1、电缆的测试 2、母线槽的检查、测试 3、低压送电屏至各楼配电箱的送电 4 、照明、插座回路的测试 5 、配电屏至设备配电箱线路和配电箱的检查 6、设备的调试 7、照明系统的受电 8、水泵的调试、通风设备的调试 2.2.2电缆的测试及回路受电 1)记录表格(电缆电线绝缘电阻检查记录) 2)电缆线路送电前的测试 (1)绝缘电阻的测试 解开电缆首端和终端的电缆头线耳之螺栓,单独测量电缆之绝缘电阻;测试绝缘电阻使用500V摇表,确保电缆绝缘电阻不小于1兆欧(国家规范为0.5兆欧,1兆欧为我方要求,以下同)。 (2)直流耐压试验及泄漏电流测试 使用2.4KV直流耐压试验器(或2500V摇表)对电缆进行持续15分钟的耐压试验;采用直流微安表测量泄漏电流;

低压配电系统中常用的型式有:IT系统、TT系统、TN系统,下面我们做分别介绍。

低压配电系统中常用的型式有:IT系统、TT 系统、TN系统,下面我们做分别介绍。 一、IT型 必须说明:(略) 二、TT型

必须说明: 《农村低压电力技术规程》DL/T499-2001中规范: 3.4.5 采用TT系统时应满足的要求: 1、采用TT系统,除变压器低压侧中性点直接接地外,中性线不得再行接地,且应保持与相线(火线)同等的绝缘水平。 2、为了防止中性线的机械断线,其截面积应满足以下要求: 相线的截面积S:S≤16平方毫米中性线截面积S0:S0=S(与相线一样) 相线的截面积S:16<S≤35平方毫米中性线截面积S0:S0=16 相线的截面积S:S>35平方毫米中性线截面积S0:S0=S/2(相线的一半) 3、电源进线开关应隔离(能断开)中性线,漏电保护器必须隔离(能断开)中性线。 4、必须实施剩余电流保护(即必须安装漏电保护开关),包括: (1)剩余电流总保护、剩余电流中级保护(必要时),其动作电流应满足: 剩余电流总保护和是及时切除低压电网主干线和分支线路上断线接地等产生较大剩余电流的故障。 剩余电流总保护器的动作电流整定: 总保护整定 剩余电流较小的电网非阴雨季节为50mA 阴雨季节为200mA 剩余电流较大的电网非阴雨季节为100mA 阴雨季节为300mA (2)剩余电流末级保护 剩余电流中末级保护装于用户受电端(即终端用户,例如家庭用电,或某台用电设备),其保护范围是防止用户内部绝缘破坏,发生人身间接接触触电等而产生的剩余电流所造成的事

故。对直接接触触电,仅作为基本保护措施的附加保护。 剩余电流中末级保护应满足以下条件: Re×Iop≤Ulim 式中: Re—受电设备外露可导电部分的接地电阻(Ω) Ulim—安全电压极限(正常情况下可按50V交流有效值考虑) Iop—剩余电流保护器的动作电流(A) Iop整定值:≤30mA 5、配电变压器低压侧及出线回路,均应装设过电流保护,包括:短路保护和过负荷保护。 6、PEE线的作用:当设备发生漏电时,漏电电流可以通过大地回流到变压器的中性点,可以降低带点的设备外壳电压,降低人触及设备外壳被电击的危险程度。 7、当发生单相接地故障时,接地电流通过大地流回变压器中性点,使得接地电流很大,促使线路保护器可靠动作(特别是整定值符合规范的漏电保护器)可靠动作,切断电源。 三、TN型 TN系统:包括TN—C、TN—C—S、TN—S三种系统 1、TN—C系统 必须说明: 《供配电系统设计规范》GB50052-2009对低压配电系的统规范:为了保护民用建筑的用电

中低压配电网规划设计

中低压配电网规划设计 摘要:随着市场经济的发展,城市配电网络也在不断发展。本文主要针对于中低压配电网,对其规划的现状以及规划设计的工作内容与主要步骤进行简单研究,希望对日后中低压配电网规划设计有一定帮助。 关键词:配电网;中低压;规划;设计 引言 随着人们的生活水平提升,日常生活中对于电力资源需求量也逐渐增多,随之中低压配电线路规划与设计重要性也越来越受到关注。目前我国的中低压配电网在规划设计上仍然有着一定缺陷,面对于越来越大的供电要求,已经显得较为吃力。所以对于中低压配电网规划设计的研究,对于我国中低压配电线路有着重要指导意义。 1、国内中低压配电网建设现状及面临问题 目前,国内90%左右的地级以上供电企业已经开始配电系统自动化,有的省份还设计了自己的技术原则。在社会上,已经有多家科研机构致力于配电系统的研究。一系列的努力都为我国的供电方面的问题提供了基础,包括供电的可靠率问题、设备的安全性问题、供电的质量问题等等,并且还对于劳动效率和现代化管理等方面都提供了保障。这一系列的设施技术也是我国的中低压配电网的建设现状现状。总结来看,我国的配电系统也有自己的不足,我国的配电系统发展时间较短,对于基础方面的配备也不够完善齐全,一些试点刚刚开始试验,对于中低压配电网的建设尚没有普及,并且理论研究不足。一般情况下,对于中低压配电网建设,常见的问题有如下几个方面。 首先是110kV变电站的分布点不平衡,使得10kV中压线路在使用时依然是单辐射线路,这样就使得供电的半径较长,环网率不够高,线路严重过载,致使转供电能力较差,网架结构复杂。而对于0.4kV低压供电系统,农村偏远地区的配变台区供电半径大,电压较低。城市的发展步骤和配电网的发展不协调。 2、中低压配电网规划设计的工作内容与主要步骤 2.1、对于规划的年份与范围进行确定。这点一般是由供电企业来提出具体要求,而规划者可以与自身具体情况相结合,来将自己的建议提出来。 2.2、对于规划数据收集的工作。对于规划数据收据的工作是配电网络规划设计的一个主要步骤,是开展负荷预测以及中低压配电网络现状分析的重要内容。 2.3、对已存在中低压配电网进行分析。这个工作的主要内容是通过对于现有中低压配电网网架的结构等一系列情况来进行分析,将配电网中存在的一些问

低压配电系统的供电方式

低压配电系统的供电方式 低压配电系统按保护接地的形式不同可分为:IT系统、T T系统和TN系统。其中I系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可 导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。国际电工委员会(I E C)对系统接地的文字符号的意义规定如下:第一个字母表示电力系统的对地关系: T--一点直接接地; I--所有带电部分与地绝缘,或一点经阻抗接地。 第二个字母表示装置的外露可导电部分的对地关系: T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关; N--外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。后面还有字母时,这些字母表示中性线与保护线的组合: S--中性线和保护线是分开的; O--中性线和保护线是合一的。 (1)IT系统: I T系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。即:过去称三相三线制供电系统的保护接地。其工作原理是:若设备外壳没有接地,在发生单相碰壳故障时,设备外壳带上了相电压,若此时人触摸外壳,就会有相当危险的电流流经人身与电网和大地之间的分布电容所构成的回路。而设备的金属外壳有了保护接地后,由于

人体电阻远比接地装置的接地电阻大,在发生单相碰壳时,大部分的接地电流被接地装置分流,流经人体的电流很小,从而对人身安全起了保护作用。 IT系统适用于环境条件不良,易发生单相接地故障的场所,以及易燃、易爆的场所。 (2)TT系统: TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。即:过去称三相四线制供电系统中的保护接地。其工作原理是:当发生单相碰壳故障时,接地电流经保护接地装置和电源的工作接地装置所构成的回路流过。此时如有人触带电的外壳,则由于保护接地装置的电阻小于人体的电阻,大部分的接地电流被接地装置分流,从而对人身起保护作用。T T系统在确保安全用电方面还存在有不足之处,主要表现在: ①当设备发生单相碰壳故障时,接地电流并不很大,往往不能使保护装置动作,这将导致线路长期带故障运行。 ②当TT系统中的用电设备只是由于绝缘不良引起漏电时,因漏电电流往往不大(仅为毫安级),不可能使线路的保护装置动作,这也导致漏电设备的外壳长期带电,增加了人身触电的危险。因此,TT系统必须加装剩余电流动作保护器,方能成为较完善的保护系统。目前,TT系统广泛应用于城镇、农村居民区、工业企业和由公用变压器供电的民用建筑中。

农村电工低压配电网操作技能及笔试考核(标准版)

( 安全试题 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 农村电工低压配电网操作技能及笔试考核(标准版) Regular examinations and questions are an important means to supplement and consolidate the knowledge of personnel in the company’s security positions

农村电工低压配电网操作技能及笔试考核 (标准版) 序号 项目 分数 实际得分 1 线路是否整齐,美观,线束排列打不到横平竖直 5 2 线束不得用钳子弯 5 3

接线正确,合上刀开关2K,按下启动按扭SB2(绿色),接触器SM,SMY,ST吸合,灯L1亮,经8秒延时后SMY放开,吸合,ST放开,灯L1灭,L2亮 15 4 元件固定牢固 5 5 接线不得松动 5 6 线头不得有煨眼 5 合计得分 40 八、无功补偿(笔试):每题10分

一)并联电容器的接线一般采用什么接线方式,为什么? 答:并联电容器的接线一般采用三角形接线方式。 因为单台电容器的电容量阻抗为XC接成星形时补偿容量: QY =3×(U/√3)2 /XC =U2 /XC 而单台电容器的电容量阻抗为XC接成三角形时补偿容量: Q△=3×U2 /XC =3×U2 /XC 三角形接线时补偿容量为接成星形接线时补偿容量的3倍,所以并联电容器的接线一般采用三角形接线方式。 二)某用户最大负荷月的有功功率为200KW,功率因数cosφ1

中低压配电网规划研究

中低压配电网规划研究 发表时间:2017-07-04T16:06:25.367Z 来源:《电力设备》2017年第7期作者:赵娟娟[导读] 按照南方电网发展“转型”的要求,规划设计建设一个满足陆良地方经济社会的可持续发展,覆盖城乡智能、高效、可靠、绿色的配电网意义重大。 (云南能源职业技术学院 655001) 摘要:为适应经济社会发展需求,建设一个城乡统筹、安全可靠、经济高效、技术先进、环境友好的配电网一举多得,既能够保障民生、拉动投资,又能够带动制造业水平提升,为适应能源互联、推动“互联网+”发展提供有力支撑,对于稳增长、促改革、调结构、惠民生具有重要意义。按照南方电网发展“转型”的要求,规划设计建设一个满足陆良地方经济社会的可持续发展,覆盖城乡智能、高效、可靠、绿色的配电网意义重大。 关键词:现代配电网;智能电网;负荷预测;规划研究 配电网在电力网中起重要分配电能作用的网络,是保障电力“落得下、用得上”的关键环节,是国民经济和社会发展的重要公共基础设施。由于长期“重发轻供不管用”,配电网建设滞后,问题日积月累,如配电网结构薄弱,供电能力不强,可靠性不高,一些地区“低电压”、“卡脖子”问题突出等。随着我国新型城镇化建设的加快,分布式电源、微电网、智能用电、电动汽车等产业快速发展,配电网负荷也快速增长,其功能和形态发生显著变化。这不仅对供电安全性、可靠性、适应性的要求越来越高,也对配电网的规划设计、接入管理、运行检修、安全协调控制等也提出了更高要求,加快配电网升级改造日益紧迫。 配电网规划是供电企业规划活动中的基本环节,配电网的规划质量直接影响到配网的网络水平及投资效益,其对于降低网损、提高可靠性和保障电能质量的影响不亚于配电网的运行管理,因此说,配电网规划技术的发展对整个电力的发展至关重要。对此,要用新的观念和超前意识制定的电网规划来改变配电网的现状,用规划来指导配网建设,同时规划要体现以安全为基础,以效益为中心的建网指导思想,不断采用新科技;规划应坚持与经济、社会、环境协调发展,注重适度超前和可持续发展的原则,应根据城市的定位、经济发展水平、负荷性质和负荷密度等条件划分供电区,不同级别的县(区)和不同类别的供电区应采用不同的建设标准。 国家电网公司将于2015年在重点城市核心区域率先建成现代配电网,重要城市主要城区基本建成现代配电网,全面解决无电地区用电问题,基本解决县域电网与主网联系薄弱问题,以及农网“低电压”问题,适应分布式电源8%渗透率接入;2020年全面建成世界一流的现代配电网,满足经济社会快速发展和城镇化发展的用电需要。国家电网公司制定了相关规划,将坚持统一规划、统一标准,统筹城乡配电网协调发展、配电网与上一级电网协调发展,满足城镇化快速发展、客户多元化的用电需求。根据《南方电网发展规划(2013-2020年)》,南方电网公司将加强城乡配电网建设,推广建设智能电网,到2020年城市配电网自动化覆盖率将达到80%。各地电网企业将推行配网建设“三通一标”(通用设计、通用设备、通用造价、标准工艺),确保规划设计、建设改造、运维检修、物资采购等环节技术标准一致。 我国香港、经济较发达国家和地区的配电网负荷已进入平稳发展期,法国、日本的配电自动化覆盖率分别达到90%和100%。香港拥有强大的输配电网络,中华电力有限公司已建成梅花形多环网络,实现两供一备、一供一备,配网与主网一样选用带操作机构的断路器。同时,电缆环网网络全部配置光纤纵差保护,可以实现零秒切除故障,5分钟内完成转电。中华电力有限公司贯彻“第一时间恢复供电”的服务理念,针对低压线路的停电,购置了多台流动发电车,采用先恢复用户供电后抢修的方式,减少对用户停电时间。同时,为满足用户快速复电需求,公司设置了不同容量(100kVA、400kVA、500kVA、1MVA、3MVA)的流动发电机,全面实现配电网自动化,供电可靠程度高达99.99%。在2003~2005年间,一般客户每年平均意外停电时间只有5.37分钟。 我国现在的户年平均停电时间高于9h,只有北京、上海的中心城区才达到2h以内。停电9h的电网是不可能比停电1h的电网更坚强可靠的。为了达到输电网安全、配电网可靠的坚强智能电网建设目标,如果不从电网规划技术上进行变革性的考虑,仅靠一些电网自动化、智能化技术的发展是很难超越发达国家的电网可靠性水平的。因此,我国配电网规划有必要采用基于可靠性的规划思路与方法,应该从电力设备寿命长的特点出发,对未来增长趋势进行预测,进行近、中、远期规划,以满足电网损耗越来越低、可靠性越来越高的要求。这些理念与我国可持续发展、节能减排的目标是一致的。 其中的电力需求预测和电源规划发面的有负荷预测方法:负荷预测以乡镇配电网负荷、电量的历史数据为基础,结合乡镇国民经济和社会发展的历史和发展趋势进行综合分析而得出。 采用预测方法如下:1、总量负荷预测 1)大用户加自然增长法:将全网的总负荷分为一般自然增长负荷和大负荷两类,分别进行电量预测和最大负荷预测;对一般负荷采用自然增长法进行电量预测。大负荷根据现有及规划大负荷的生产能力、市场因素等进行预测。 2)回归模型预测法——根据负荷过去的历史资料,建立可以进行数学分析的数学模型,对未来的负荷进行预测。从数学上看,就是用数理统计中的回归分析方法,即通过对变量的观测数据进行统计分析,确定变量之间的相互关系,从而实现预测的目的。 2、分区负荷预测:分区可按照土地用途功能、负荷性质、行政区划、地理自然条件(如:山、河流等)或变电站的供电范围划分等原则进行。为便于历史负荷的收集,本次规划按乡镇分区进行预测。根据产业区、开发区和新城的发展规划,采用合理的预测方法对“十三五”期间新开发的区域进行负荷预测。 中低压配电网电源规划包括以下几方面:1、电压等级:中压配电网:10千伏;低压配电网:380/220伏。2、配电网供电安全水平; 3、供电可靠率控制目标; 4、线损率控制目标; 5、中性点接地; 6、短路电流控制水平; 7、线路及通道; 8、技术装备; 9、无功补偿; 10、电压偏差;11、防灾减灾 电网规划应坚持与经济、社会、环境协调发展,注重适度超前和可持续发展的原则,因此应根据城市的定位、经济发展水平、负荷性质和负荷密度等条件划分供电区。不同级别的县(区)和不同类别的供电区应采用不同的建设标准。 参考文献 [1]刘海波,胡滨,王旭阳.关于"十三五"配电网发展的思考[J].中国电力,2015,48(1):21-22. [2]朱发国,武苗.对我国配电网建设及其关键技术的思考[J].南方电网技术,2013,7(3):58-59. [3]国家电网公司,Q/GDW738-2012,2012.配电网规划设计技术导则[S].

10kV及以下农村配电网设计指南(2013年版)

10kV及以下农村配电网设计指南 (2013年版) 前言 南网标设V1.0版已经发布并应用,为了更好地应用好新版南网标设,修订了《10kV及以下农村配电网设计指南》。为了加快电网建设,适应当前项目建设管理,在修订本指南时,尽量减少设备、材料的品种,进一步明确和细化南网标设的应用,在“快”和“准”上把握好大的原则和方向。本设计指南适用于柳州网区乡镇(不包括县城)配电网的建设。 一、10kV网架结构 1、10kV配电网 10kV配电网应实行分区分片供电。乡镇所在地采用环网型供电,农村地区采用辐射型供电方式,村屯台区可采用树干型供电方式。 2、低压配电网 低压配电线路实行分区供电,要明确供电范围,避免配变之间交叉供电。低压配电系统采用TN—C系统接线方式,中性线应与相线等截面,并按设计规范要求进行多点重复接地。 低压主干线:一般采用以配电变压器为中心向两侧以树干式放射供电方式。城区负荷密度大的供电半径控制在200—250m以内,其它负荷密度较小的供电区域可适当增加供电 - 2 -

半径。低压主干线尽可能与10kV线路共杆架设,低压配电线路主干线一次建成。 对接户线、进户线的线径选择要有一定的裕度,便于今后的发展。 二、台区改造原则 1、配电变压器应按“小容量、多布点”的原则进行配置。农村住户分散地区,无动力用户时宜采用单相变压器。 2、台区改造,首先考虑分割台区(供电半径过大、台区过大、台区自然分片、变压器台无法进入负荷中心等情况应分割台区)、减少供电半径,无法分割台区时再考虑更换变压器。 3、乡镇所在地和农村的公用配电变压器单台选用50kVA 、100 kVA、200 kVA、315kVA、500kVA。单相变压器单台选用10kVA、20 kVA、30 kVA。 4、低压导线截面选择:100kVA及以下主干线选120mm2,200kVA及以上主干线240mm2,主干线架设范围约为整个供电半径的一半,3户以下16mm2,4~5户35mm2。 5、墙边线采用紧贴墙壁安装方式。 三、10kV台架变 1、台架变采用三杆高低压分离式台架,单相变采用单柱式台架。 2、三相变,高压侧配置10kV跌落式熔断器、10kV避雷器,低压侧配置400V避雷器、低压熔断刀闸、低压无功补偿及配变监测计量装置(户外补偿箱,100kVA以下不配无功 - 3 -

低压配电系统调试

第四章低压配电系统 4.1需调试项目 a、绝缘电阻测试 b、插座回路极性,连续性及接地回路阻抗测试 c、插座回路漏电保护开关漏电动作电流及动作时间测试 d、照度测试 e、防雷接地系统连续性及接地电阻测试 f、航空障碍灯功能测试 g、配电箱功能测试 h、非消防用电强切功能测试 i、照明系统BMS控制功能测试 j、低压配电柜功能测试 k、自动切换开关功能测试 l、备用发电机虚负载测试 m、备用发电机带大厦负载测试 4.2 调试程序 4.2.01 绝缘电阻测试 a、所有供电回路在送电前必需进行绝缘测试,以确保无短路/漏电情况,安全送电。 b、测试时,所有开关及断路器应处于闭合状态,所有回路之极性正确,电气连续性完好无 缺。所有灯贝泡应除去,所有用电器具应断离,所有控制灯具或其它用电器具之就地开 关应闭合,如无法除去灯泡或用电器具,则应将有关控制开关断开,所有电子器件亦应 适当隔离,以避免因高电压测试而损坏。 c、以1000V绝缘电阻测试仪进行测试,测试应包括相线对相线,相线对中性线,相线对接 地线及中性线对接地线各项,阻值应为无限大,并应做详细记录。 4.2.02 插座回路极性,连续性及接地回路阻抗测试 以接地电阻测试仪测试所有插座回路之接线极性是否正确,连续性是否正常及接地回路阻抗是否符合规范要求,作详细记录。 4.2.03 插座回路漏电保护开关漏电动作电流及动作时间测试 a、测试插座回路漏电保护开关漏电动作电流及动作时间,以保证漏电保护开关能在规范要 求之电流及时间内动作,提供安全保护功能。 b、将漏电电流测试仪之插头插入每一组插座回路之最后一个插座,按下测试仪上之测试按 钮,漏电保护开关应马上跳闸,详细记录各跳闸时间及动作电流,跳闸时间应不大于0.04 秒(40ms),动作电流应不大于30毫安(30mA)。 4.2.04 照度测试 a、测量各区域/房间之照度是否符合合约要求。 b、以照度仪置于工作面高度(约750mm),测量各区域/房间内不同位置之照度,测试位置/ 测试点应最少包括以下各项:

浅谈低压配电网中的功率因数

浅谈低压配电网中的功率因数 【摘要】本文集中探讨了功率因数对广大供电企业的影响以及提高功率因数所带来的经济效益和社会效益,介绍了影响功率因数的主要因素和提高功率因数的一般方法,讨论了如何确定无功功率的补偿容量和应用人工补偿无功功率的两种具体方式。? 【关键词】功率因数;补偿;消耗? 在电力系统中,我们将各种设备所消耗的能量分为有功消耗和无功消耗。有功消耗是指电流通过电阻性负载所消耗的电能,它是一种能量转变中做功消耗的电能;无功消耗是指电流通过感性或容性负载时产生了磁场、电场,这些磁场、电场只在电源和负载之间往返转换,在交换中不能转变成其它形式的能量。视在功率是指有功损耗和无功损耗的平方和的平方根值。功率因数是指电力网中线路的视在功率供给有功功率的消耗所占百分数。? 在电力网的运行中,我们所希望的是功率因数越大越好,否则将产生以下我们所不期望的不良影响:功率因数的降低导致电流增大,则发电机和变压能输出的有功功率下降,设备容量不能充分利用;使电能损耗和导线截面增加,电网的初期投资和运行费用相应增高;使发电机、变压器和电力网中的电压损失增大,电动机的端电压下降,则感应电动机的起动传矩和过负荷能力下降。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显着的影响。适当提高用户的功率因数,不但可以充分的发挥发、供电设备的生产能力、减少线路损失、改善电压质量,而且可以提高用户用电设备的工作效率和为用户本身节约电能。因此,对于广大供电企业、特别是对现阶段全国性的一些改造后的农村电网来说,若能有效的搞好低压补偿,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显着的。? 一、影响功率因数的主要因素? 首先我们来了解功率因数产生的主要原因。功率因数的产生主要是因为交流用电设

低压配电系统施工方案

东湖国家自主创新示范区有轨电车 T1试验线工程 低压配电施工方案 编制: 审核: 批准: 武汉有轨电车T1T2试验线流芳车辆基地项目部 二O一六年八月

目录 二、施工组织 (1) 三、施工流程图 (1) 四、施工方法和技术措施 (1) 1.电缆桥架安装 (1) 2.电缆导管、电线导管安装 (3) 3.配电箱安装 (3) 4.电缆、电线敷设 (3) 5.灯具、插座、开关安装 (6) 五、施工重点、难点及解决方案 (8) 六、安全教育培训 (9) 一、工程概况 T1线起点光谷创业街站~终点光谷芯中心站,全长约15.824km,其中单环线长度约为2.414km,双线段长度为13.410km。另与T2线条形成三通支线。共设车站23座,其中地面站20座,高架站3座。在光谷一路-高新六路处设流芳车辆段一座,车辆段占地面积约15公顷。本方案主要为了规范低压配电的施工安装、检验和试验方法,做到经济合理、施工方便、确保工程质量制定本方案。 二、施工组织 工程开工前,组织本专业项目主管工程师、施工员、各施工队队长、施工队技术员及相关专业的项目主管、施工员对施工现场进行详细的调查,并由项目部总工程师主持,由项目主管工程师、专职施工员、施工队长等人员组成的施工图会审,对会审结果进行技术交底,细化材料和设备购置、进场计划,组织施工人员、机具进场,完善施工用水、用电布置。对本系统全体人员我们将组织熟悉施工现场并进行集中施工技术规范的交底和安全文明交底。 总体施工顺序主要考虑装修工程隔墙砌筑,先进行设备房施工,后进行非设备房施工。 工程开工,首先进行动力、照明及其它设备控制柜就位及桥架与控制箱的联络导管,同时进行配电设备的安装。然后,根据各用电设备的位置定位,即可确定电缆长度并进行电线、电缆的敷设。最后根据装修进度进行灯具等的安装接线、检查、调试及各设备的穿线、接线和调试工作及配电孔洞的防火封堵和工程的验交开通。 三、施工流程图 1 栓。其工艺流程及安装方法如下:

低压配电系统精彩试题(理论部分)解析汇报

低压配电系统试题 (一填空题: 1.操作电器用于接通或断开回路,常用电器是、组合电器或自动空气断路器。 答案:交流接触器 2.电气设备一般采 用、、过电流继电器等作为短路保护措施。 答案:熔断器;自动空气断路器3.断路器既能切断负载电流,又可切断。 答案:短路电流 4.对于供电需求较大,且受高压供电线路容量或市电变电站容量的限制的通信局(站,如具有两路高压市电,一般采用的运行方式。 答案:分段供电 5.对于双向闸刀开关,其倒换前先负荷电流,才能进行倒换,因为闸刀开关通常不具有功能。 答案:切断;灭弧 6.隔离开关无特殊的装置,因此它的接通或切断不允许在有的情况下进行。 答案:灭弧、负荷电流 7.根据低压电器的组合原则,在供电回路中,应装有 和,对于装有交流接触器的回路还应有操作电器。 答案:隔离电器;保护电器

8.功率因数的定义为与的比值。答案:有功功率;视在功率 9.交流接触器的常闭触点是指。答案:不加电时触点闭合 10.熔断器的核心部分 是,它既是敏感元件又是元件。 答案:熔体、执行 11.熔断器是用来保护和的。答案:过载、短路 12.熔断器中的熔体是核心部 分,使用时把它在被保护 电路中,在发生过载或短路时, 电流过大,熔体受过热而熔化将 电路切断。 答案:串接 13.三相交流电A、B、C相分别 用、、 3 种颜色表示相序,中性线一般用 黑色做标记。答案:黄、绿、红 14.交流配电系统熔断器的温升 应低于。答案:80℃ 15.低压开关柜又叫低压配电

屏,是按一定的线路方案将有关低压设备组装在一起的成套配电装置,其结构形式主要 有、两大类。 答案:固定式、抽屉式 16.低压熔断器种类很多,按结构形式分有:系列封闭插 入式;系列有填料封闭螺 旋式;系列有填料管式。 答案:RC、RL、RT、 17.《全国供用电规则》规定: 无功电力应就地平衡,用户应在提高用电自然功率因数的基础上,设计和装置,并做到 随其负荷和电压变动时及时投入或切除。供电部门还要求通信企业的功率因数要达到 以上。答案:无功补偿设备;0.9 18.为了保证供配电系统一次设

低压配电系统供电方式

配电系统 传统上将电力系统划分为发电、输电和配电三大组成系统。 发电系统发出的电能经由输电系统的输送,最后由配电系统分配给各个用户。 一般地,将电力系统中从降压配电变电站(高压配电变电站)出口到用户端的这一段系统称为配电系统。 配电系统是由多种配电设备(或元件)和配电设施所组成的变换电压和直接向终端用户分配电能的一个电力网络系统。[编辑本段] 配电系统的组成 在我国,配电系统可划分为高压配电系统、中压配电系统和低压配电系统三部分。 由于配电系统作为电力系统的最后一个环节直接面向终端 用户,它的完善与否直接关系着广大用户的用电可靠性和用电质量, 因而在电力系统中具有重要的地位。 我国配电系统的电压等级,根据《城市电网规划设计导则》的规定,220kV及其以上电压为输变电系统,35、63、110kV为高压配电系统,10、6kV为中压配电系统,380、220V为低压配电系统。

[编辑本段] 低压配电系统的基本方式 根据 IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即 TT 、 TN 和 IT 系统,分述如下。 1、 TT 方式供电系统 TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称 TT 系统。第一个符号 T 表示电力系统中性点直接接地;第二个符号 T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在 TT 系统中负载的所有接地均称为保护接地,如图 1-1 所示。这种供电系统的特点如下。 (1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 (2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此 TT 系统难以推广。 (3)TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的建筑单位是采用 TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。

谈如何解决农村配电网低电压问题

谈如何解决农村配电网低电压问题 发表时间:2018-10-18T10:20:49.173Z 来源:《电力设备》2018年第19期作者:钟媚 [导读] 摘要:文章先对农村配电网低电压的原因进行了分析,继而对其危害进行了说明,之后则对解决此类问题的措施进行了研究,主要包括合理进行农村电力分配,减少电力浪费,确保配电网电压稳定性以及对农村配电网进行改造三点。 (梅州蕉岭供电局广东省梅州市 514145) 摘要:文章先对农村配电网低电压的原因进行了分析,继而对其危害进行了说明,之后则对解决此类问题的措施进行了研究,主要包括合理进行农村电力分配,减少电力浪费,确保配电网电压稳定性以及对农村配电网进行改造三点。 关键词:农村;配电网;低电压 当今社会,无论是城市还是乡村,电力已经越来越成为人们生活当中不可或缺的一部分,而在农村地区,当其配电网出现了低电压的问题,那么将会对其生产生活造成十分严重的影响,下文则对其原因进行了分析,并且提出了一定的措施来解决这一问题。 1.农村配电网低电压的原因 有关于农村配电网电压较低的原因,主要可以从三个方面分析,第一个方面就是其电力分配不合理。所谓的电力分配不合理的主要包含了两个部分,第一个部分就是其对于时间段的电力分配不合理,一天中的24小时并非是每时每刻的用电量都是等同的,相反的,在部分时间用电量很高,而部分时间对于电力的需求则较低,但是,相关机构在进行供电时却没有按照时间进行调配,使得对于电力需求较高的时间段所拥有的供电量几乎与需求较小时没有差别,或者是差别很小。这种情况下所能导致的就是在白天的时候,或者说是在对于电力需求较少的时刻,电压尚且能够保持正常,而一旦到用电高峰期的时刻,当地村民对于电力的需求就很有可能引起其配电网的电压问题。第二个部分则是区域方面的分配问题,在部分农村地区是建有许多工厂的,而工厂的用电量同日常居民生活的用电量肯定是有所不同的。但是在进行电力运输时同样没有考虑这方面问题,而对此现象的忽略就十分有可能引起配电网的故障。另外,造成配电网低电压的原因,第二个方面就是由于电压不稳所造成的。部分地区存在着这样一种现象,那就是电力传输线路过长,过长的线路就为电压的稳定造成了一定的困难。在部分地区更是存在着线路过细,甚至是粗细不一的状况,而这种状况再加上其过长的传输线路就会对电压的稳定造成威胁。另外,配电变压器的配置问题也会影响到电压的稳定性,有些地区为了节省成本或是其他方面的因素而没有采取高配置的配电器,其供电能力受到限制,就很有可能会引起低电压的问题。最后一个方面,造成配电网低电压的原因则是由于管理问题所导致的,这里的管理问题指的主要是对于设备缺乏维修,并且缺乏对于电力的监管。虽然近些年来农村地区较之以往在许多方面,尤其是在经济方面已经取得了巨大的进步,但是其总体发展水平依然不是很高,许多地区的供电设备都存在着年久失修的状况,内部一些零件已经出现了损坏,一些铜丝等细微的位置更是出现了断裂,而一旦其出现了问题,那么就无可避免的会对配电网造成影响。 2.农村配电网低电压的危害 当农村配电网出现低电压现象的时候,那么不单单会对当地的居民生活造成十分大的不便,更会有可能影响到当地部分村内企业的正常运行,造成经济方面的影响。首先,在对当地村民生活的影响方面,这一点不必多说,当配电网出现问题,不但电压较低,甚至更有可能出现停电的现象,而一旦停电,对于日常生活的影响是十分严重的,比如说对一些诸如手机等充电设备的影响以及一些像电饭锅等电器的使用,而这些现象的出现都会对当地村民的生活造成很大的不便。其次则是对于一些村内企业的影响。大家有可能存在的一种误区,那就是大型的企业往往存在于繁华的城市,但是实际出于环境因素以及对于居民生活影响的考虑,一些大型的工业企业往往都存在于郊区以及农村,除了这些大型的工厂之外,还有一些村内是存在着许多小型农场或者是私人的小型工厂的,而在这些工厂当中,其大部分的电力来源都是来源于统一的配电网,除了一些发展较好,具有先见之明的企业会在其建设范围内存储储备电源之外。许多企业都是没有这个意识的,而这种情况下,一旦电压较低,电力供应出现问题,那么轻则会影响到其日常生产,重则有可能造成严重的故障。所以,这一方面的危害是不能忽视的。 3.解决农村配电网低电压问题的措施 3.1合理进行农村电力分配,减少电力浪费 要对配电网低电压的问题进行解决,那么首先要做的就是合理进行农村电力分配,减少电力浪费。所谓的合理进行农村电力分配,减少电力浪费,实际上的做法也就要从时间和空间两方面来分别进行电力的调配,使电力真正的按需供求,以达到合理的分配,尽可能的减少其浪费的情况。首先,在时间方面,相关的单位需要掌握农村地区的用电高峰期,由于生活习惯的不同,事实上,农村对于电力需求的时间段与城市当中是存在的区别的,但是部分供电单位却忽略了这一区别,而按照城市标准来进行分配。这样一来,同样会造成电力的浪费,也会对配电网造成影响,所以要做到这一点,就必须要进行统计,了解其真正的需求时期,并且对其需求时期加强供电。可以说在时间方面进行分配的重点就是要掌握其在不同时间段内对于电力的需求状况,并且依据具体的需求来对部分方面进行调整以相互配合,真正的做到减少电力的浪费。其次,在空间方面,相关单位需要对一些在农村内部或者是农村边缘建设的工厂与当地村民之间进行区分。前文已经说过这一方面的问题,这两者对于电力的需求绝对是有所不同的,那么在进行电力的供给之时就需要依据这种不同来分别进行调整。当然也并非要对所有的工厂都进行特殊的电力调控,某些企业的规模较小,对于电力的需求也不高,那么针对这些企业就可以将其划分到村民供电的行列。总而言之,相关的单位要对于电力的流向有所掌控,并且依据不同区域内对于电力的需求来进行调配,也只有做到这一点,才能够真正的达到合理的电力分配。 3.2确保配电网电压稳定性 电压的不稳同样是引起配电网低电压的原因之一。而要对这一问题进行解决,就必须要保证其稳定性,而要保证其稳定性,一方面则可以借助于某些设备来进行调整。比如说借助于自动调压器这一设备,通过这一设备的应用来对其压力进行调整,当其压力过大时,自动减小,当压力变小时适量加大,如此便能够将其的波动保持在一个较稳定的范围之内。另一方面,除了借助于这种类似的设备之外,还可以从电路传输之上入手,可以对部分线路进行一定程度的缩短,并且保证其传输线路的质量,防止粗细不一,或者是过细的情况出现,一旦发现这种情况,则及时进行调整,更换线路,增加线路的宽度,以这种方式来保证电压的稳定。也只有电压稳定才能够真正的对配电网问题有所缓解,这也是最直接的方式。 3.3对农村配电网进行改造 对农村配电网进行改造是解决其电压问题必不可少的措施之一。而这一点,具体来说也就是要加强管理以及进行设备的维护,要对一

低压配电施工方案.doc

佳木斯站综合改造工程和平街下穿工程 施工方案 (低压配电工程) 批准 审核 编写 哈尔滨铁路工程建设有限公司 年月日

低压配电施工方案 一、工程概况 本项目为佳木斯站综合改造工程和平街下穿工程,打通佳木斯站南北通道,道路北起和平街与顺德路交叉口,设计桩号K0+000,终点位于和平街与先锋路交叉口,设计桩号K1+049.455。低压配电工程,为通道工程通风、照明、监控配电设施,配电室分别位于北地下停车场变电所和附属用房变电所。 三、施工组织 低压配电工程根据工程量及工期要求,停车场拟安排一个专业电力施工队上场施工,完成本工程全部电力工程施工。 上场后合理编制施工进度计划,精心施工,确保按总工期完成本工程。低压配电系统安装工程与土建工程紧密配合,按工程内容和投入的资源,整个工程施工过程可划分为前期施工阶段、全面施工阶段和调试验收阶段。 1、前期施工阶段 部分预留、预埋完全服从下穿通道专业进度安排,与下穿通道专业配合紧密,并相互穿插。主要包括电气工程线管预埋、接地施工。同时,该阶段还要做好工、料、机准备和技术准备,为进入全面施工做好准备。该段的后期下穿通道专业能提供部分工作面,能进行局部施工。线管等部分进入安装阶段。 2、全面施工阶段 本专业工作面能陆续交出,主要设备均已进场,进入全面安装阶段。电柜、电缆等均要安装完成后验收交出,管、线等要全部完成后验收交出。 3、调试验收阶段 本专业系统基本安装完毕,具备送电试运行条件,本系统先进行单机试运转,然后配合其它系统进行联合试运转和各系统的联合调试,最后进行本系统的验收和整体竣工验收。 每个阶段的重点和安排根据实际情况进行调整,资源的投入遵守材料、设备进场计划、机具进场计划。

低压配电系统中配电级数的选择

【摘要】配电系统是否安全可靠、经济实用并便于管理,其配电级数的设计是至关重要的。相关规范规定,在低压配电设计中,从变压器低压侧用电设备的配电级数一般不超过三级,对于重要的负荷,上下级保护电器的动作应具有选择性。在实际工程的设计中,由于对配电级数的理解不到位,导致了配电系统经济技术上部合理的情况时有发生。本文首先区分了配电级数和保护级数的不同概念,对保护级之间选择性的问题做了理解,最后重点探讨了低压系统中各级配电保护的选择性配合。 【关键词】低压配电系统;配电级数;保护级数;断路器;故障线路 一、对配电级数和保护级数的理解 配电级数是一个供电回路经配电装置分配成几个供电回路过程的次数,通过几次分配就称作几级配电。对于一个配电装置而言,总进线开关与分支配出开关合起来算做一级配电,这与其总进线开关是否具有保护功能无关。 保护级数则是按保护开关的上下级个数来确定的,它既与配电级数有联系又不同于配电级数。同一电压等级的配电级数,高压不宜多于两级,低压不宜多于三级;而保护级数则可能达到四级甚至五级,一般情况下各级保护之间需要进行保护配合,即动作应具有选择性。 二、保护级之间选择性的问题 保护的选择性是指协调具有保护功能的电源,当系统任意点故障后可以被位于仅靠故障点的上一级保护电源消除,而且只能由其单独类消除,从而保证其他回路的工作连续性。选择性保护对于所有故障电源(即无论是过负荷、接地故障还是短路等任何一种故障)都能实现选择性保护时未完全选择性。当仅在一定故障电流范围内实现选择性保护时为部分选择性。对于重要负荷,其供电线路上、下级保护电气的选择性,可保证故障时不致越级切断线路而引起非故障线路的设备终端供电,这对设备的供电可靠性是很重要的。 如果当过载或短路故障发生时,d1和d2断路器均跳闸,那么此保护就无选择性,如图1所示。 对保护分级有充分的理解,有助于合理设置上下级保护电气的选择性。规范只规定了对于重要负荷需要有选择性,但对重要负荷没有说明和列举,对于是完全选择还是部分选择也无具体要求。根据笔者对相关规范的理解,重要负荷为一级负荷、二级负荷及消防负荷;对于一级负荷及消防负荷,须做到完全选择,对于二级负荷,部分选择即可。 三、低压系统中各级配电保护的选择性配合 低压配电系统一般分二到三级,不宜超过三级。第一级为变电所低压柜,第二级为中间(楼层)配电箱,第三级为终端配电箱。应尽量减少配电级数,级数少有利于保护的选择性配合。对于各级配电保护的选择性配合探讨如下: (一)变电所低压柜 1、断路器的形式 一般总开关及联络开关采用框架断路器,出线开关采用塑壳断路器。 2、总开关与联络开关的选择方法 总开关与联络开关应有选择性,方法一是按选择性表格选型,框架电流一般相差二级时可以保证选择性要求;方法二是联络开关取消瞬时保护,总开关于分开关的长延时保护整定值的比值不小于1:6,方法三是联络开关改为框架式负荷开关。 3、总开关与分开关的选择方法 总开关与分开关应有选择性,以施耐德mt型框架开关与nsx型塑壳开关为例,经查表比对,基本上实现了全系列的全选择性保护。《工业于民用配电设计手册》建议为保证选择性低压总开关取消瞬时保护,仅设短延时保护,这是没有必要的。变压器低压出线总开关不宜取消瞬时保护,一方面难以复核系统设备及排线的动热稳定性,大短路电流时应该采用能量保

相关文档
最新文档