自动控制系统分析

自动控制系统分析
自动控制系统分析

龙源期刊网 https://www.360docs.net/doc/2a14833695.html,

自动控制系统分析

作者:张超

来源:《现代商贸工业》2011年第15期

摘要:随着社会的进步,科学技术的发展,自动控制系统越来越多的应用到工业生产

中,自动控制的研究有利于将人类从复杂、危险、繁琐的劳动环境中解放出来并大大提高控制效率。

关键词:自动控制;DCS;PLC

中图分类号:F49

文献标识码:A

文章编号:1672-3198(2011)15-0234-01

1 常见控制系统

1.1 DCS

1.1.1 DCS简介

DCS在国内自控行业称之为集散控制系统。它是一个由过程控制级和过程监控级组成的

以通信网络为纽带的多级计算机系统,综合了计算机、通讯、显示和控制等4C技术,其基本思想是分散控制、集中操作、分级管理、配置灵活、组态方便。

1.1.2 DCS的结构

从结构上划分,DCS包括过程级、操作级和管理级。过程级主要由过程控制站、I/O单元和现场仪表组成,是系统控制功能的主要实施部分。操作级包括:操作员站和工程师站,完成系统的操作和组态。

(1)DCS的控制程序:DCS的控制决策是由过程控制站完成的,所以控制程序是由过程控制站执行的。

(2)过程控制站的组成:DCS的过程控制站是一个完整的计算机系统,主要由电源、CPU(中央处理器)、网络接口和I/O组成。

自动化工程案例分析

《自动化工程案例分析》课程总结报告 时光如白驹过隙,转眼间,大学已经步入了第四年的光景。短暂的回眸,激荡起那一片片的涟漪,却才开始发现,案例分析,在我心中挥之不去,留下了难以磨灭的记忆。四位老师的倾情传授,为我们的大学生涯留下的不止是斑驳的光影,还有那一缕盘旋不去的温情。 四位老师给我们深入浅出地讲解了很多详细的实例,这些例子和我们所学的知识相互印证,加深了我们对专业知识的了解。也让我们对毕业后的工作方向有了一个更直观的认识,让我们更加有勇气,更加自信的面对即将到来的工作或者是研究生的学习生涯。 叶老师给我们演示的是“中石化某油库计量系统”。首先叶老师讲了背景:中国石化担负着保障国家能源安全的重要责任,一年的原油加工量约为亿吨,其中原油依赖进口,因此,如何降低原油的采购运输成本成为了影响企业生产经营效益的重要问题。原油运输大型化或者原油运输管道化已成为中国石化降低原油输送成本的主要手段。国外的油库管理中已经引入了先进的工业控制技术、网络技术、数据库技术等,对油库日常的收发油品作业、储油管理、油库监控系统等进行全方位的综合管理。而我国的油库自动化技术与国际先进水平相比还是有一定的差距。各种计量仪表的精度较低,稳定性较差,控制系统的控制精度比较低,信息化管理水平不够健全。我国的油库自动化控制和管理系统曾经历了一个较长的发展时期,各种系统操作方式各异,水平也参差不齐,其中还存在着许多人工开票、开阀、手动控泵的原始发油手段。这些系统一方面是可靠性不高,影响油库的经济效益另一方

面没有运用现代化信息技术使有关人员能够方便及时的了解现场的实时运行情况以及历史生产信息,不能为生产调度决策提供可靠的数据依据,同时也不利于提高整个企业的科学化管理水平。 自动化项目浏览: 油库监控自动化系统 原油调合自动化系统 选矿自动化系统 嵌入式项目浏览: 智能防溜系统 海关油气液体化工品物流监控系统 综合项目要求,从整个系统分析,我们需要: 自动化/嵌入式项目浏览 投标与方案 监控系统设计 监控系统调试 监控系统验收 项目管理 油库是储存和供应石油产品的专业性仓库,是协调原油生产和加工、成品油运输及供应的纽带。长期以来,我国油库数据采集工作中的许多操作都是采用人工作业的方式。一方面,不仅工作效率低,而且容易出现人为因素造成的失误另一方面,也不便于有关人员及时了解现场的实时运行情况,不利于提高企业的规范化管理水平。随着自动化

自动控制系统课设

唐山学院 自动控制系统课程设计 题目基于MATLAB的按转子磁链定向的异步电动机仿真系 (部) 智能与信息工程学院 班级 12电本1班 姓名董智博 学号 4120208102 指导教师吕宏丽吴铮 2016 年 1 月 18 日至 1 月 22 日共 1 周 2016年 1 月 22 日

《自动控制系统》课程设计任务书

目录 1引言 (1) 2异步电动机的三相数学模型 (2) 2.1异步电动机动态数学模型的性质 (2) 2.2异步电机三相数学模型的建立过程 (2) 2.2.1磁链方程 (3) 2.2.2电压方程 (5) 2.2.3转矩方程 (6) 2.2.4运动方程 (7) 3坐标变换和状态方程 (9) 3.1坐标变换的基本思路 (9) 3.2三相--两相变换(3/2变换和2/3变换) (10) 3.3静止两相坐标系状态方程的建立 (11) 4系统模型生成及仿真................................................................. 错误!未定义书签。 4.1各模型实现 (14) 4.1.1 3/2变换模型 (14) 4.1.2异步电动机模型 (15) 4.2整体模型 (16) 4.3仿真参数设置 (17) 4.4仿真结果 (17) 5总结 (20) 参考文献 (21)

1引言 异步电动机具有非线性、强耦合性、多变量的性质,要获得高动态调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。矢量控制系统和直接转矩控制系统是已经获得成熟应用的两种基于动态模型的高性能交流电动机调速系统,矢量控制系统通过矢量变换和按转子磁链定向,得到等效直流电机模型,然后模仿直流电机控制策略设计控制系统;直接转矩控制系统利用转矩偏差和定子磁链幅值偏差的正、负符号,根据当前定子磁链矢量所在位置,直接选取合适的定子电压矢量,实施电磁转矩和定子磁链的控制。两种交流电动机调速系统都能实现优良的静、动态性能,各有所长,也各有不足。但是无论是哪种控制方法都必须经过仿真设计后才可以进一步搭建电路实现异步电动机的调速。 本设计是基于MATLAB的按定子磁链定向的异步电动机控制仿真,通过模型的搭建,使得异步电动机能够以图形数据的方式经行仿真,模拟将要实施的转子磁链设计,查看设计后的转矩、磁链、电流、电压波形,对比观察空载起动和加载过程的转速仿真波形,观察异步电动机稳态电流波形,观察转子磁链波形。

自动控制系统课程设计报告说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:自动控制理论课程设计 设计题目:直线一级倒立摆控制器设计 院系:电气学院电气工程系 班级: 设计者: 学号: 指导教师: 设计时间:2016.6.6-2016.6.19 手机: 工业大学教务处

*注:此任务书由课程设计指导教师填写。

直线一级倒立摆控制器设计 摘要:采用牛顿—欧拉方法建立了直线一级倒立摆系统的数学模型。采用MATLAB 分析了系统开环时倒立摆的不稳定性,运用根轨迹法设计了控制器,增加了系统的零极点以保证系统稳定。采用固高科技所提供的控制器程序在MATLAB中进行仿真分析,将电脑与倒立摆连接进行实时控制。在MATLAB中分析了系统的动态响应与稳态指标,检验了自动控制理论的正确性和实用性。 0.引言 摆是进行控制理论研究的典型实验平台,可以分为倒立摆和顺摆。许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等,都可以通过倒立摆系统实验直观的表现出来,通过倒立摆系统实验来验证我们所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。 本次课程设计中以一阶倒立摆为被控对象,了解了用古典控制理论设计控制器(如PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,掌握MATLAB仿真软件的使用方法及控制系统的调试方法。 1.系统建模 一级倒立摆系统结构示意图和系统框图如下。其基本的工作过程是光电码盘1采集伺服小车的速度、位移信号并反馈给伺服和运动控制卡,光电码盘2采集摆杆的角度、角速度信号并反馈给运动控制卡,计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,通过皮带带动小车运动从而保持摆杆平衡。 图1 一级倒立摆结构示意图

2018年自动控制原理期末考试题[附答案解析]

. 2017 年自动控制原理期末考试卷与答案 一、填空题(每空1分,共20分) 1、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。 2、控制系统的输出拉氏变换与输入拉氏变换在零初始条件下的比值称为传递函数。 3、在经典控制理论中,可采用劳斯判据(或:时域分析法)、根轨迹法或奈奎斯特判据( 或:频域分析法 ) 等方法判断线性控制系统稳定性。 4、控制系统的数学模型,取决于系统结构和参数 , 与外作用及初始条件无关。 5、线性系统的对数幅频特性,纵坐标取值为20lg A( ) ( 或: L( ) ) ,横坐标为 lg 。 6、奈奎斯特稳定判据中, Z = P - R,其中 P 是指开环传函中具有正实部的极点的个数,Z是指闭环传函中具有正实部的极点的个数, R 指奈氏曲线逆时针方向包围 (-1, j0 )整圈数。 7、在二阶系统的单位阶跃响应图中,t s定义为调整时间。%是超调量。 A()K K22 8、设系统的开环传递函数为,则其开环幅频特性为(T1 )1(T2 )1,相 s(T1s 1)(T2 s 1) 频特性为()900tg 1(T1 ) tg 1(T2 ) 。 9、反馈控制又称偏差控制,其控制作用是通过给定值与反馈量的差值进行的。 10、若某系统的单位脉冲响应为g (t) 10e 0.2 t5e 0.5t,则该系统的传递函数G(s) 为105。 s0.2 s s 0.5s 11、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称 为开环控制系统;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为闭环控制系统;含有测速发电机的电动机速度控制系统,属于闭环控制系统。 12、根轨迹起始于开环极点,终止于开环零点。 13、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统稳定。判断

自动控制原理概述及开闭环实例分析

自动控制原理概述及开闭环实例分析 摘要 本文简单介绍了自动控制的基本原理和发展概况,并从开环控制和闭环控制两方面对自动控制原理进行了详细介绍。列举了开环控制和闭环控制的几个实例,结合实例分析了开环控制和闭环的优缺点,并对两种控制方式进行了对比。 关键词:自动控制、基本原理、开环、闭环 1自动控制基本原理及发展概述 所谓的自动控制,就是指在没有人直接参与的情况下,利用外加的设备(称为控制器)操作被控对象(如机器、设备或生产过程)的某个状态或参数(称为被控量),使其按预先设定的规律自动运行。 一般情况下自动控制理论的发展过程可以分为以下三个阶段: 1.1经典控制理论时期 时间为20世纪40-60年代,经典控制理论主要是解决单输入单输出问题,主要采用以传递函数、频率特性、根轨迹为基础的频域分析方法。此阶段所研究的系统大多是线性定常系统,对非线性系统,分析时采用的相平面法一般不超过两个变量。 1.2现代控制理论时期 时间为20世纪60-70年代,这个时期由于计算机的飞速发展,推动了空间技术的发展。经典控制理论中的高阶常微分方程可以转化为一阶微分方程组,用以描述系统的动态过程,这种方法可以解决多输入多输出问题,系统既可以是线性的、定常的,也可以是非线性的、时变的。 1.3大系统理论、智能控制理论时期 时间为20世纪70年代末至今,控制理论向着“大系统理论”和“智能控制”方向发展。“大系统理论”是用控制和信息的观点,研究各种大系统的结构方案、总体设计中的分解方法和协调等问题的技术理论基础。而“智能控制”是研究与模拟人类智能活动及其控制与信息传递过程的规律,研究具有某些仿人智能的工程控制与信息处理系统。 2自动控制系统分类 按照控制方式和策略,系统可分为开环控制系统和闭环控制系统。 2.1开环控制系统 开环控制系统是一种简单的控制系统,在控制器和控制对象间只有正向控制作用,系统的输出量不会对控制器产生任何影响,如图1所示。在该类控制系统中,对于每一个输入量,就有一个与之对应的工作状态和输出量,系统的精度仅取决于元件的精度和执行机构的调整精度。 控制量输出量 图1 开环控制系统

污水厂自动控制系统的设计和组成剖析

污水厂自动化控制系统技术方案 1.系统概述 随着我国城市化建设力度的加强,大城市的改建及中小城市的扩容速度越来越快。我国在七、八十年代兴建的市政污水处理厂随着城市化步伐的加快,无论从处理工艺还是从日处理污水吞吐量上,都已经不能满足城市污水处理的需求。另一方面,随着我国人民对环保意识的整体提高,我国政府对污水处理建设方面的投资力度也在逐渐加大。从95年开始,我国政府开始逐渐把污水处理的建设正式提到工作日程上来。 在一些市政设施的自动化工程中,由于工程的重要性和投资力度的庞大,加上早期的控制系统发展比国外晚,所以一些大型市政污水处理工程主要还是以国外的控制系统为主。到了二十一世纪由于计算机技术的迅猛发展,国内的控制系统在组态软件、通信、测控终端、一次仪表等诸多方面都取得了长足的进步,很多产品已经大量应用于各大行业,可靠性和稳定性等都达到了国际先进水平。 深圳市华威世纪科技发展有限公司具有自主知识产权的污水处理控制系统软件HWKJV3.0,具体高度集成化、高度开放性、高度稳定性、极高性价比等特点,已应用于国内许多同类场合,现场运行,稳定可靠,在业界具有良好的声誉。本系统根据用户的需要,合理配置,将用户的自动化成本在保证性能情况下,降至最低, 实现产品供应商、集成商、最终用户多赢。 2、污水厂工艺处理 目前国内污水处理工艺可分为三类,即一级处理,二级处理,三级处理,还有考虑综合利用的。国内目前综合考虑投资,运行成本,处理效果等因素,根据污水水质情况,大多采用一级和二级处理方式。一级处理也称物理法处理,其工作原理是利用过滤、旋流分离等方法去除污水中的悬浮物和泥砂。一级处理可去除污水中约50%的污物,适用于污水中有机物质含量较低的情况,常作为二级污水处理厂的预处理工序。工业污水经工业企业自行处理达标后,连同生活污水一起,经由污水管网集中输入污水处理厂,一级污水处理工艺。主要设备有格栅、水泵、沉砂池、风机、吸砂泵、旋转筛网、除渣机、滤清器等。 工艺的流程为:城市污水汇集到集水池,由一组水泵提升到前池;弧形格栅清除污水中的体积较大的污物和漂浮物;在沉砂池中,压缩空气与污水混合,分离出的泥砂沉淀于底部,由吸砂泵吸出;旋转筛网进一步的滤除污物;滤清器用于对筛网进行冲洗。经过一级污水处理设备处理后的污水进入污水中 pH 值、固体悬浮物、动植物油类、酚类、石油类、氨氮类、表面活性剂类及 BOD、 COD 二级处理环节。使等污染物及汞、镉、铜、锌、铅、镍、铬、钴等元素或化合物含量接近渔业水质标准(TJ35-79),净化后的出水水质达到污水综合排放标准(GB8978-1996)二级以上标准。净化后,一部分污水可作为工业循环水循环使用,一部分就近排入清江,污 泥干化后送邻近的城市养渔场,垃圾处理场处理。 3、污水厂的功能划分 3.1、厂区变配电系统,重要机房的供电监控 对变电站和配电的监测采用交流采样的小型化 RTU,一条线路或一个变压器的遥测遥信遥控一个RTU就可以解决。RTU较高的 EMC 指标和工作温度范围(零下 20 到70度)保证系统的正常和稳定工作,完全适应户外的 各种运行环境。 3.2、办公区暖通送风的监控 通过PLC来对空调系统的变风量进行控制,使系统的空调效果达到最佳,通过合理的控制策略降低空调系统 的使用能耗。 3.3、一级和二级污水处理工艺流程的监控: 3.3.1 机械处理部分:

自动控制系统案例分析

北京联合大学 实验报告 课程(项目)名称:过程控制 学院:自动化学院专业:自动化 班级:0910030201 学号:2009100302119 姓名:张松成绩:

2012年11月14日 实验一交通灯控制 一、实验目的 熟练使用基本指令,根据控制要求,掌握PLC的编程方法和程序调试方法,掌握交通灯控制的多种编程方法,掌握顺序控制设计技巧。 二、实验说明 信号灯受一个启动开关控制,当启动开关接通时,信号灯系统开始工作,按以下规律显示:按先南北红灯亮,东西绿灯亮的顺序。南北红灯亮维持25秒,在南北红灯亮的同时东西绿灯也亮,并维持20秒;到20秒时,东西绿灯闪亮,闪亮3秒后熄灭。在东西绿灯熄灭时,东西黄灯亮,并维持2秒。到2秒时,东西黄灯熄灭,东西红灯亮,同时,南北红灯熄灭,绿灯亮。东西红灯亮维持25秒,南北绿灯亮维持20秒,然后闪亮3秒后熄灭。同时南北黄灯亮,维持2秒后熄灭,这时南北红灯亮,东西绿灯亮……如此循环,周而复始。如图1、图2所示。 图 1

图 2 三、实验步骤 1.输入输出接线 输入SD 输出R Y G 输出R Y G I0.4 东西Q0.1 Q0.3 Q0.2 南北Q0.0 Q0.5 Q0.4 2.编制程序,打开主机电源编辑程序并将程序下载到主机中。 3.启动并运行程序观察实验现象。 四、参考程序 方法1:顺序功能图法 设计思路:采用中间继电器的方法设计程序。这个设计是典型的起保停电路。

方法2:移位寄存器指令实现顺序控制 移位寄存器位(SHRB)指令将DATA数值移入移位寄存器。S_BIT指定移位寄存器的最低位。N指定移位寄存器的长度和移位方向(移位加=N,移位减=-N)。SHRB指令移出的每个位被放置在溢出内存位(SM1.1)中。该指令由最低位(S_BIT)和由长度(N)指定的位数定义。

水温自动控制系统毕业设计论文(DOC)

毕业设计论文 水温自动控制系统 钟野 院系:电子信息工程学系 专业:电气自动化技术 班级: 学号: 指导教师: 职称(或学位): 2011年5 月

目录 1 引言 (2) 2 方案设计 (2) 2.1 总体系统的设计思路 (2) 2.2 部分外围系统的设计思路 (3) 3 硬件电路设计 (3) 3.1 单片机最小系统的设计 (3) 3.2 温度检测电路的设计与论证 (4) 3.3 显示功能电路的设计与论证 (5) 3.4 温度报警提示功能电路的设计与论证 (5) 3.5 外围电路控制设计 (6) 3.6 扩展部分方案设计 (7) 4 软件设计 (7) 4.1 控制主程序设计 (7) 4.2 温度设置程序设计 (8) 4.3 上下限报警程序设计 (8) 5 结论 (9) 结束语 (9) 致谢 (10) 参考文献 (10) 附录............................................................................................................... 错误!未定义书签。

水温自动控制系统 钟野 (XXXX电子信息工程学系指导教师:CXJ) 摘要:本文设计主要是采用A T89C51单片机为控制核心、以温度传感器(DS18B20)为温度采集元件, 外加温度设置电路、温度采集电路、显示电路、报警电路和加热电路来实现对水温的显示同时自动检测及线性化处理,其误差小于±0.5℃。本文重点介绍硬件设计方案的论证和选择,以及各部分功能控制的软件的设计。本次设计的目标在于:由单片机来实现水温的自动检测及自动控制,实现设备的智能化。 关键词:单片机;温度传感器;自动控制 Abstract: This paper is designed AT89C51 microcontroller as control core and temperature sensor DS18B20) for (temperature gathering element, plus the temperature setting circuit, temperature gathering electriccircuit, display circuit, alarm circuit and heating circuit to achieve water temperature display while automatically detecting and linearization, its error is less than 0.5 + ℃. This paper mainly introduces the hardware design argumentation and choice, and some functional control software design. This design goal is: by single-chip microcomputer to realize the automatic detection and automatic temperature control, realize the intellectualized equipment. Keywords: Microcontroller; Temperature sensors; Automatic control

自动控制原理 典型系统分析

222010322072023 付珣利自动化01班位置随动系统: 控制系统原理图 (作业一) 1.1系统方块图 1.2控制方案 若电网电压受到波动,ui↑则δu↑u↑n↑uo↑ 所以δu↓u↓n↓从而使n达到稳定。 (作业二) 2.1由原理可知:

Θe (s )=Θi (s )—Θ0(s ) US (s )=K0Θe (s ) Us (s )=Raia(s)+LaSia+Eb (s ) M(s)=C m ia(s) JS 2θ0(S)+fs θ (S)= M(s)-Mc (s) Eb(s)=Kb θ0(S) 2.2系统传递函数 ) ()(0s s i θθ= () ) )((1))((1)(1))((3 2103 210f JS R S L S K C f JS R S L S C K K K K f JS R S L S K C f JS R S L S C K K K K a a b m a a m a a b m a a m +++ ++++++ ++= m b m a a m C K K K K K C f JS R S L S C K K K K 32103210))((++++ 2.3动态结构图 设定参数:f=20N,J=20K ·m 2,a R =20 Ω,La=1H,Ko=40,k1k2k3=100,Cm=1,Kb=0 (因为暂取Kb=0,测速反馈通道相当于没加进)

图.动态结构图 则开环传递函数为:G(s)= ) 105.0)(1(10 ++s s s 闭环传递函数:Ψ(s )=10 )105.0)(1(10 +++s s s 2.4信号流图 (作业三)系统性能 3.1系统响应及动态性能指标 单位阶跃响应曲线: 由阶跃响应曲线可得知:系统是稳定的,但震荡次数较多。由闭环主导极点

自动控制系统概要设计

目录 1引言 (3) 1.1编写目的 (3) 1.2背景 (3) 1.3技术简介 (4) https://www.360docs.net/doc/2a14833695.html,简介 (4) 1.3.2SQL Server2008简介 (5) 1.3.3Visual Studio2010简介 (5) 1.4参考资料 (6) 2总体设计 (8) 2.1需求规定 (8) 2.2运行环境 (8) 2.3数据库设计 (8) 2.3.1数据库的需求分析 (9) 2.3.2数据流图的设计 (9) 2.3.3数据库连接机制 (10) 2.4结构 (11) 2.5功能需求与程序的关系 (11) 3接口设计 (12) 3.1用户接口 (12) 3.2外部接口............................................................................................错误!未定义书签。 3.3内部接口............................................................................................错误!未定义书签。4运行设计.....................................错误!未定义书签。 4.1运行模块组合....................................................................................错误!未定义书签。 4.2运行控制............................................................................................错误!未定义书签。 4.3运行时间............................................................................................错误!未定义书签。5测试 (13)

自动控制原理-线性系统的频域分析实验报告

自动调节系统频域分析 班级11081801 学号1108180135 姓名王佳炜 日期2014.1.5

线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w) bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)

-100-80-60-40-200 20M a g n i t u d e (d B )10 -2 10 -1 10 10 1 10 2 10 3 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2 +-= s s s s G ) 106)(15() 1(8)(22++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100); nyquist(num1,den1,w)

春自动控制统课设题目

自动控制系统课程设计题目 题目1: 已知一光源自动跟踪系统,利用帆板上一对光敏元件检测光能,当帆板偏离光源时,光敏元件产生电压差并通过放大后驱动电机转动,使太阳能帆板对准光源,如图示,其中,电机电枢总电阻Ra=1.75欧,总电感La=2.83mH ,电机转子旋转产生的电动势Uv=Kv*W ,Kv=0.093,w 为转子角速度;电动机产生的电磁力矩为T=Kt*I ,Kt=0.09;电动机及负载的转动惯量J=30e-6;阻力矩为TL=B*w ,其中B=0.005。 要示: 1) 分析系统工作过程,建立数学模型,并画出结构图。 所用公式:dt dw J T T L e =- dt dI L IR U U a v +=- 其中,输入信号为电压U ,输出信号为角频率w 2) 系统跟踪阶跃响应的时间为0.5秒,超调量为小于5%,设计校正系统 题目2: 下面为单闭环直流调速系统原理图

其中,A 为放大器,GT 为触发装置,UPE 为晶闸管三相桥式整流装置,M 为被控的直流电动机,TG 为测速发电机,Un*为给定电压信号,Un 为反馈信号,Uc 为控制信号,Ud 为电动机电枢电压,Id 为电枢电流,n 为电动机转速。 已知,放大器A 的放大倍数是Ka=21,GT 和UPE 总的传递函数为1 0167.044 )(1+= s s G ,电 动机的传递函数为1 075.0001275.019 .5)(22++= s s s G ,反馈环节可看做一个比例环节,比例 系数为Ktg=0.02。 要求:设计调节器,使得系统稳定,并有足够好的动态性能,超调量小于20%,调节时间小于1s 。 题目3: 磁盘驱动器必须保证磁头的精确位置,并减小参数变化和外部振动对磁头定位造成的影响。作用于磁盘驱动器的扰动包括物理振动、磁盘转轴轴承的磨损和摆动,以及元器件老化引起的参数变化等。下图为磁盘驱动器示意图和磁头控制系统框图: 已知被控制对象(电机和驱动臂)的传递函数为) 1000)(20(5000 )(++= s s s s G ,传感器传递 函数H(s)=1。要求:设计控制器Gc (s ),使系统稳定,并满足调节时间小于0.5s ,超调量小于10%。

控制系统的工作过程及方式

控制系统的工作过程与方式 一、教学目标 1.通过案例分析,归纳控制系统的基本特征; 2.了解开环控制和闭环控制的特点; 3.分析典型案例,熟悉简单的开环控制系统的基本组成和简单的工作过程 4.学会用框图来归纳控制系统实例的基本特征,逐步形成理解和分析简单开环和闭环控制系统的一般方法 二、教学内容分析 本节是“控制与设计”第二节的内容,其内容包括“控制系统”、“开环控制系统与闭环控制系统的组成及其工作过程”是学生在学习控制在我们的生活和生产中的应用后,进一步学习有关控制系统的组成、工作方式以及两种重要的控制系统:开环控制和闭环控制,并熟悉它们工作原理和作用。 生活中不乏简单控制系统的应用,人们对此往往象看待日出日落一类自然景色般的习以为常。本部分内容的学习,正是要引导学生,从技术的角度、用控制的思维看周围的存在,分析其道理,理解其基本的组成和工作过程。 本课教学内容,从学生生活经验出发,从实例分析入手,归纳出对控制系统的一般认识,以及根据控制系统方式分类的开环控制系统和闭环控制系统两类,并侧重对开环控制系统的工作过程、方框图、重要参数进行分析。本课要解决的重点是:开环控制系统的工作过程分析,用方框图描述开环控制系统的工作过程。 三、学习者分析 学生在前面的学习中已经学习和分析了控制在生活生产中的应用,获得了有关控制及其应用的初步感性认识和体验,但是对控制的基本工作方式和工作机理还缺乏了解,他们对进一步了解控制系统的知识是有探究的欲望的。结合前面的应用案例分析,进一步分析案例中控制是如何工作的,以及有怎样的工作方式,是学生学习的最近发展区。 四、教学策略: 1. 教法: 本章的教学结合具体的教学内容和目标我们采用“案例情景—机理分析—总结归纳-认识提升”的模式展开。在教学中把知识点的教与学置于具体的案例情景当中,通过丰富而贴近生活的案例使学生从生活体验到理性分析的思维升华过程。同时关注学生能否用不同的语言表达、交流自己的体验和想法。通过富有吸引力的现实生活中的问题,使学生回想和体会控制系统的工作过程,激发学生的好奇心和主动学习的欲望。让学生本着“回想—分析—联想—猜想”的思维过程,对教学内容进行步步展开,使学生亲历自主探索和思维升华的过程。 2. 学法: 鼓励学生自主探究和合作交流,引导学生自主观察、总结,在与他人的交流中丰富自己的思维方式,获得不同的体验和不同的发展。注意引导学生体会控制系统的工作过程和方式,特别是引导学生会学用系统框图来抽象概括控制系统、帮助分析和理解控制系统的组成及其工作过程的方法 五、教学资源准备 多媒体设备、相关图片资料、技术试验工具、材料等

自动控制系统课程设计任务书范本

自动控制系统课程设计任务书

《自动控制系统》课程设计 一、教学目的 1.培养理论联系实际的设计思想,训练综合运用控制理论和相关课程知识的能力。 2.掌握自动控制原理中各种校正装置的作用及用法,根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。 3.学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试。 4.锻炼学生使用模拟机实现控制系统。 5.锻炼学生独立思考、动手解决问题的能力。 二、教学基本要求 了解控制系统设计原则、内容和步骤。 掌握控制器的几种常见算法。 掌握控制器的参数整定方法。 掌握数字仿真软件的使用方法。 学会使用硬件电路搭建模拟控制器。 三、教学内容 1.总结归纳出有实际背景的教学模型分别给各位同学提出设计题目及设计指标要求。同学经过查阅相关资料,根据各自题目确定合理的控制方式及校正形式完成设计。 2.首先要根据所学控制理论知识(频率法或根轨迹法)进行

人工设计校正装置,初步设计出校正装置传递函数形式及参数。 3.用MATLAB语言及Simulink动态仿真工具,对人工设计系统进行仿真调试,使其满足技术要求,并绘制打印出仿真框图、频率特性图及动态响应图。 4.确定校正装置的电路形式及电路参数。 5.在模拟机上实现控制系统,并按指标要求进行实际调试。 6.完成设计报告 报告包括: (1) 任务书 (2) 设计思想及设计过程、设计后校验;包括频率特性三条性曲线校正电路确定及参数选择。 (3) MATLAB设计仿真中仿真框图或语言,绘制打印出仿真框图、频率特性,要求的指标,动态特性图。 四、时间分配 五、指导教师分配

线性系统的频域分析-自动控制

实验三·线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 22 ()2n n n G s s s ωζωω=++ 绘制出6n ω=,0.1ζ =,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 2.系统的开环传递函数为 210 ()(51)(5)G s s s s =-+ 228(1) ()(15)(610) s G s s s s s += +++ 4(/31) ()(0.021)(0.051)(0.11) s G s s s s s += +++ 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 3.已知系统的开环传递函数为21()(0.11) s G s s s += +。求系统的开环截止频率 穿越频率、幅值裕度和相位裕度。应用频率稳定判据判定系统的稳定性。 三、实验内容及分析 1. 系统1:2 22 ()2n n n G s s s ωζωω=++中6n ω=,(1)0.1ζ=时 Matlab 文本如下: num=[36 0 0]; den=[1 1.2 36]; w=logspace(-2,3,100); bode(num,den,w) Grid 得到图像:

同理,得到其他值情况下的波特图:ξ=0.3时 ξ=0.5时 ξ=0.8时

ξ=2时 从上面的图像中可以看出:随着ξ的不断增大,波特图中震荡的部分变得越来越平滑。而且,对幅频特性曲线来说,其上升的斜率越来越慢;对相频特性曲线来说,下降的幅度也在变缓。 2. 开环传递函数1:210 ()(51)(5) G s s s s = -+ 奈奎斯特图函数及图像如下: num=[0 10]; den=[conv([5,-1],[1,5]),0,0]; [z,p,k]=tf2zp(num,den); p

自动控制系统课程设计

黑龙江科技大学 自动控制系统课程设计 课程名称自动控制系统课程设计 班级 学号 姓名

第一章系统工作原理 直流电机调速控制系统的原理框图如图1-1所示: 图1-1 原理框图 1.1 结构与调速原理 直流电机由定子和转子两部分组成,其间有一定的气隙。其构造的主要特点是具有一个带换向器的电枢。直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。其中电枢由电枢铁心和电枢绕组两部分组成。电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。换向器是一种机械整流部件。由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。各换向片间互相绝缘。换向器质量对运行可靠性有很大影响。 直流电机斩波调速原理是利用可控硅整流调压来达直流电机调速的目的,利用交流电相位延迟一定时间发出触发信号使可控硅导通即为斩波,斩波后的交流电经电机滤波后其平均电压随斩波相位变化而变化。为了达到控制直流电机目的,在控制回路加入了速度、电压、电流反馈环路和PID调节器来防止电机由于负载变化而引起的波动和对电机速度、电压、电流超常保护。

第二章主电路的设计与分析 2.1 主电路的各个部分电路 主电路主要环节是:整流电路、斩波电路。 图2-1 调速系统 直流脉宽调速系统的组成如图2-1所示,由主电路、控制及保护电路、信号检测电路三大部分组成。二极管整流桥把输入的交流电变为直流电,电阻R1为起动限流电阻,C1为滤波电容。可逆PWM变换器主电路系采用MOSFET所构成的H型结构形式,它是由四个功率IGBT管(VT1、VT2、VT3、VT4)和四个续流二极管(VD1、VD2、VD3、VD4)组成的双极式PWM可逆变换器,根据脉冲占空比的不同,在直流电机M上可得到正或负的直流电压。 2.1.1 整流电路 晶体二极管桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。

自动控制大作业—液位自动控制系统分析解答

自动控制原理大作业 班级:XXXXXXXX 学号:XXXXXXX 姓名:倪马 液位自动控制系统分析解答 题目:如图所示的液位自动控制系统,简述: (1)系统的基本工作原理,说明各元、部件的功能,控制器、被控对象、希望值、测量值、干扰量和被控量;绘制系统原理框图。 (2)假设:系统输入/输出流量和入/出水阀开度成正比,减速器加速比为i,H和电位计中点(零电位点)对应,电动机输入电压和输出转角的对应关系参0 见第二章第二节相应内容。试列写该系统以 H为输入,以实际液位高度H为输 出的系统数学模型。 (3)根据(2)的求解过程,绘制控制系统结构图,并求出系统闭环传递函数。 (4)利用劳斯判据,给出满足系统闭环稳定性要求的元、部件参数取值范围。

(5)取系统元、部件参数为:电动机电枢电阻Ω=35.1a R ,电枢电感 H L a 00034.0=,电机轴转动惯量26105.8Kgm J -?=,电动机反电动势系数)//(03.0s rad V C E =,电动机电磁力矩系数A Nm C M /028.0=;减速器原级齿轮转动惯量210555.0Kgm J =,减速器次级转动惯量22015.0Kgm J =,减速比2=i ;入水阀门转动惯量2301.0Kgm J =,阀门流量系数()rad s m K in //1.03=;m V K H /1=反馈电位计比例系数1=f K 。入水阀和减速器次级同轴,不计摩擦损耗。试求: ①绘制系统关于功率放大器放大系数1K 的根轨迹; ②根据控制系统稳、快、准的原则,在根轨迹上适当选取系统闭环极点,试求出系统对)(1)(t t u r =的响应函数的分析表达式,并分析各元、部件参数对系统输出特性的影响。 (6)绘制系统对数频率特性曲线,并对系统频率响应特性给出详细讨论。 解答分析: 一、系统工作原理 (1)基本工作原理 设定希望水位在高度H 0时,该系统处于平衡状态,即出水量和进水量一致。 此时,浮子和电位器连接的杆处于水平位置,电位器的滑头也位于中间位置。假设系统初始处于平衡状态(且阀门L1,L2关闭),当打开阀门L2(或其他因素),使水槽内水位下降(出水量大于入水量),浮子随水位下降而下沉,并通过连杆带动电位器滑头向上移动。此时,相当于给电位器输入一正电压,并使电动机正转,通过减速器开大阀门L1,进而使进水量增大(一直增大到入水量大于出水量),液面开始增高,当液面高度为H0时,电位器滑头又处于中间位置,无电压输出,电动机亦不会转动,系统处于平衡状态。 (2)各元、部件的功能 电位器:将浮子及连杆传来的高度值转化为电压值,其检测作用。 电动机:将电位器传递过来的电势能转化为机械能,然后传给减速器。 减速器:通过减速器内的齿轮比控制电动机传过来的速度。 阀门:控制流入流出水量的大小。 (3) 控制器:点位器、电动机、减速器 被控对象:水槽 被控量:液面水位实际高度H 希望值:水位高度H 0 测量值:0H H H ?=- 干扰量:出水口的出水量θ2

自动控制系统案例分析资料

学合大北京联 告报实验 制控:目)名称过程课程(项 化:专业院:学自动化学院自动 学:级班20091003021190910030201号: :张名:姓绩松成 日14 11 年2012 月 制灯控实验一交通 验目的一、实编程方法和程序调试方法,掌握交通灯控制的多PLC 的熟练使用基本指令,根据控制要求,掌握 种编程方法,掌握顺序控制设计技巧。二、实验说明南按以下规律显示:按先关控制,当启动开关接通时,信号灯系统信号灯受一个启动开开始工作, 20 秒,在南北红灯亮的同时东西绿灯也亮,并维持北红灯亮,东西绿灯亮的顺序。南北红灯亮维持 25 到秒。,东西黄灯亮,并维持 2 秒;到 20 秒时,东西绿灯闪亮,闪亮 3秒后熄灭。在东西绿灯熄灭时北绿秒,南,

绿灯亮。东西红灯亮维持 25 2 秒时,东西黄灯熄灭,东西红灯亮,同时,南北红灯熄灭东西绿秒后熄灭,这时南北红灯亮,23 秒后熄灭。同时南北黄灯亮,维持灯亮维持 20秒,然后闪亮 。所示……如此循环,周而复始。如图1、图2灯亮 1图 2图三、实验步骤 1. .输入输出接线1 G输出R Y G RSD输入输出YQ0.4I0.4东西Q0.1Q0.0Q0.3Q0.5Q0.2南北 2.编制程序,打开主机电源编辑程序并将程序下载到主机中。 3.启动并运行程序观察实验现象。 四、参考程序 方法 1:顺序功能图法 设计思路:采用中间继电器的方法设计程序。这个设计是典型的起保停电路。

2.

:移位寄存器指令实现顺序控制方法 2指指定移位寄存器的最低位。N 数值移入移位寄存器。)指令将移位寄存器位(SHRB DATA S_BIT 在溢出内存,移位减N=-N)。SHRB指令移出的每个位被放置=定移位寄存器的长度和移位方向(移位加)指定的位数定义。)和由长度()中。该指令由最低位(位(SM1.1S_BITN 3.

自动控制原理线性系统的频域分析实验四

武汉工程大学实验报告专业电气自动化班号指导教师 姓名同组者无

M a g n i t u d e (d B ) 10 1010101010P h a s e (d e g )Frequency (rad/sec) 当3.0=ζ时,程序如下: num=[0 0 36];den=[1 3.6 36];w=logspace(-2,3,100);bode(num,den,w) grid M a g n i t u d e (d B ) 10 1010101010P h a s e (d e g )Bode Diagram Frequency (rad/sec) 当5.0=ζ时,程序如下: num=[0 0 36];den=[1 6 36];w=logspace(-2,3,100);bode(num,den,w) grid

M a g n i t u d e (d B ) 10 1010101010P h a s e (d e g )Frequency (rad/sec) 当8.0=ζ时,程序如下: num=[0 0 36];den=[1 9.6 36];w=logspace(-2,3,100);bode(num,den,w) grid M a g n i t u d e (d B ) 10 1010101010P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 当2=ζ时,程序如下: num=[0 0 36];den=[1 24 36];w=logspace(-2,3,100);bode(num,den,w) grid

相关文档
最新文档