激光加工数值模拟技术研究现状

激光加工数值模拟技术研究现状
激光加工数值模拟技术研究现状

激光焊接数值模拟技术研究现状

摘要:介绍了激光焊接数值模拟技术在激光焊接温度场分析、激光焊接应力应变分析、激光焊接熔池流动场分析、激光焊接接头微观组织分析方面的研究现状, 并对激光焊接数值模拟技术在这几方面的模拟方法、原理及模型的建立进行了较为详细的介绍。最后, 对我国焊接数值模拟技术的发展进行了展望。

关键词:激光焊接数值模拟温度场应力应变熔池模拟接头

1.引言

激光焊接是利用高能量的激光光束作为热源照射到材料表面从而使材料汽化、熔化并冷却结晶形成焊缝的一种先进焊接方法。由于具有高能量密度,高效率,高精度,柔性好等优点,激光焊接受到了广泛的重视,并且已经应用到了航天航空,汽车制造等材料加工的领域。

随着激光焊接应用的增加,人们对激光焊接过程的研究也更加重视。在计算机仿真技术应用于焊接学科之前,人们为了某些材料制定合适的激光焊接工艺,往往需要进行大量的实验,耗费大量的物力人力财力。因此,建立激光焊接的数学模型并对激光焊接进行全过程的模拟仿真,对于预测焊接结果,实现激光焊接工艺参数预选和优化,减少工艺试验次数,甚至控制激光焊接过程,防止出现焊接缺陷都具有十分重要的意义。

2.焊接数值模拟发展历史

焊接过程的数值模拟研究由来已久。70年代,有限元法逐渐在焊接温度场分析计算中使用。1975年,加拿大的Poley和Hibbert提出利用有限元法研究焊接温度场,并编制了简单的温度场计算程序。1976年,Krutz在博士论文中专门研究了利用焊接温度场预测接头强度的问题[1]。随着80年代末90年代初,热弹塑性计算理论的逐步完善,焊接应力应变的数值模拟也逐渐发展起来并日益成熟。同时,计算机技术的发展也为焊接数值模拟提供了更有力的支持,使人们能够进一步对激光焊接的接头组织,熔池流动等进行更深入的数值模拟研究。

3.激光焊接温度场数值模拟

焊接过程中会产生温度场, 对其数值模拟的研究已广泛应用到焊接领域。焊接构件时会出现很多情况, 例如裂纹、凝固等。对不均匀温度场的数值模拟, 可以更好地研究其产生的原因及对其他性能的影响。

3.1 数学模型的建立

焊接时,焊件各点的温度会随着热源的移动和时间的变化而变化。焊件上个点在瞬时的温度分布称为焊接温度场。焊接过程属于动态热传导过程,因此对于该过程的研究,重点是对焊缝处材料温度变化的规律,所以可以只考虑热传导而忽略对流等特殊状况对温度场进行计算。作为三维热传导问题,其控制方程为:

()()()x y z T T T T c k k k Q t x x y y z z

ρρ???????=+++??????? (2-1) ------------------t------------------------------------T------------------Q-----------------,,---------x y z c k k k ρ焊接材料的比热容

时间

材料密度

温度场场变量

物体内部热源密度

材料沿物体三个主方向的导热系数

对于上述方程,通过给定温度场的边界条件,利用有限元法对结构进行离散,建立有限元模型,求得有限元方程,然后进行求解。

对于瞬态热传导问题,在能量守恒理论的基础上,瞬态的有限元求解方程可以表示为:

dT C KT P dt

+= (2-2) -----------------------------------------------------C K P T 热容矩阵

热传导矩阵

温度载荷列阵

节点温度列阵

这是一组以时间t 为独立变量的线性常微分方程组,通过引入初值,对其求解可以得到相应的温度场计算结果。

3.2 热源模型的选取

20世纪70年代以来,上田幸雄等人提出了考虑材料力学性能与温度有关的2维和3维焊接热弹塑性有限单元法,并发展成为一门新的学科“计算焊接力学”。他们对多道焊、角焊和圆周型压力容器焊接的残余应力和变形进行了3维热弹塑性有限元分析,并得出了满意的结论。此后,他们又发展了以固有应变作参数的2维和3维焊接残余应力的预测和测量方法,并且利用固有应变法分析T形、工字形焊接截面及平板多道焊焊接接头的残余应力。在70年代中期,用有限元建立计算二维温度场的模型得以实现,为以后的温度场模拟技术奠定的基础。在90年代,Lelingdren和Lkarlsson采用了壳单元对平板对接焊缝和薄壁管道环焊缝的残余应力进行研究,Bachorski等提出了收缩体积法的焊接变形有限元预测理论。20世纪90年代以来,人们开始用连续统力学的理论研究焊接问题,这样就为焊接过程数值模拟建立统一的模型。

4.2 存在的若干问题

焊接过程的应力与变形数值模拟虽然取得了很大进展,但是由于焊接工艺的复杂性,该项技术仍然存在很多问题。首先在理论研究等基础性工作方面还需要进行大量的工作,例如建立科学而精确地物理模型等。其次相应的检测技术和实验条件也有待提升。下面简单论述焊接应力与变形数值模拟存在的主要几个问题。

1.材料热物性参数数据较少

焊接过程是一个复杂的热弹塑性变化过程,温度变化区间大,材料组织性能变化大。因此,在进行焊接应力与变形数值模拟的时候,往往需要获取各温度区间的材料物性参数,实现有限元模型的精确计算。当前,对于低温区间的材料参数已经获得了较多可靠的数据,但是对于高温区间的材料参数研究还比较少,在实际处理中我们只能采取近似的方法,使得模拟结果准确性有所降低。同时,对于可能发生的相变,也需要考虑在模型之中。相变对于金属应力与变形的影响是不能够被忽略的,当前模拟技术对于这方面的处理也有所欠缺。最后,对于材料温度在熔点以上的部分,还需要加入流体力学的相关的处理方法。

2.边界条件的施加存在问题

目前焊接应力与变形数值模拟对于边界条件的施加存在一些随意性。主要体现在:位移边界条件的施加主要以固定的节点为主,而在具体的设定时主要的考

虑是结构不出现刚体位移;对于焊接工装夹具的作用,也经常采用固定位移的方式来解决,即使采用接触的方式施加夹具的约束也并没有考虑夹具的弹塑性变形,而是将夹具设置为了刚体;散热系数的确定存在一定的随意性,一般都依据经验判断,缺少具体数据的支持。

3.大型焊接结构应力变形的模拟问题

大型结构的焊接数值模拟涉及到结果的准确性与计算效率之间匹配的问题。同时对于网格划分也提出了更高的要求。另外,在对大型结构进行焊接问题的分析时,还涉及到材料填充的实现的问题,目前主流的方法是采取“生死单元法”,但是会使得网格在模拟过程中发生比较大的畸变,从而影响模拟结果。

4.包含焊接的连续加工过程数值模拟问题

当前的技术水平对于准确的测量和拟合工件的应力仍然有困难。不同模型之间数据的传递也存在问题,难以真正的切合实际情况。对于连续加工问题的数值模拟实现当前仍然有较多问题有待解决。

5.激光焊接接头微观组织的数值模拟

根据焊缝区和热影响区不同的物理转变机制,焊接接头微观组织模拟采用两种不同的方法分别再现焊接热作用下所发生的金属凝固结晶和晶粒长大过程。焊缝金属在热源作用下依次经历熔化,形核,结晶,晶粒生长等过程,而焊缝热影响区组织主要发生晶粒长大,由此焊接过程微观组织模拟由焊接熔池区域液态金属凝固结晶过程既随后的晶粒长大过程和焊接热影响区晶粒粗化过程组成。5.1 微观组织模拟中模拟晶粒生长的方法

1.MC(Monte Carlo)方法

该方法最初由Anderson等人提出。其基本思路为:将二维或三维空间离散成一定数量的网格,网格中每个点格代表一个微单元,每个单元赋值一个随机数代表其晶粒取向,晶界存在于不同晶粒取向微单元之间,两个不同取向为单元之间被定义为一个晶界段。模型中的晶粒长大过程仅仅依赖于MC网格系统,与材料性能及热循环无关。

图2 MC模拟微观组织形貌图形示意图

2.元胞自动机方法(CA)

CA法最早是由Von Neumann和Ulam作为一种可能的理想模型而提出的 , 是物理体系的一种理想化, 可以说是一种建立模型的基本方法。元胞自动机在刚刚提出的时候并未引起人们的足够重视, 直到SWolfram较为详细地给出了元胞自动机的一些数学理论基础, 才激发了人们对它的研究。Guillemot将CA模型与有限元(FE)模型结合, 建立了一个模拟晶粒生长过程的宏观偏析模型, 模拟晶粒在无过冷时的生长情况。在我国, 夏维国通过研究二维晶粒的生长动力学曲线,并分析对其生长的影响, 利用CA模型模拟了晶粒的成长过程。CA法已经普遍应用于相变微观组织的转变过程中, 并得到了很好的效果。

3.相场方法

相场方法是以金兹堡-朗道理论为基础,用微分方程来体现扩散,有序化势和热力学驱动的综合作用,其主要特点是引入相场变量来表示系统在空间/时间上每个位置的物理状态。相场方法可以描述平衡状态下新相与母相界面以及固液界面处复杂的生长过程。相场法需要求解复杂的相场方程,对计算机的性能要求较高,在目前研究中,多晶生长模拟方面有待继续完善。

6.激光焊接熔池模拟

6.1 激光焊接熔池数学模型

假设焊接熔池金属液为层流流动状态,且为不可压缩牛顿流体;熔池自由表面为平面。熔池数学模型的控制方程为

在通用流体运动方程中,材料随焊接热源移动的坐标系相对于模型坐标系是移动的,要计算出热源周围的速度场分布,需要完成坐标系的转换。

图3 焊接模型

6.2 CFD的一般求解过程

1.建立控制方程。

2.确定计算边界条件和初始条件。

3.将模型进行网格划分。

4.建立离散方程。

5.离散初始条件和边界条件。

6.给定求解控制参数,求解离散方程。

7.判断解得收敛性,根据需要显示和输出计算结果。

7.总结

20多年来, 激光焊接数值模拟技术在焊接温度场分析,焊接应力应变分析,焊接接头微观组织分析,焊接熔池行为等方面取得了越来越广泛的应用。把物理模拟和测试技术的配合使用, 提高数值模拟的精度和速度, 加强激光焊接数值模拟基础理论及缺陷形成原理的研究,将成为今后激光焊接数值模拟技术的重点。随着对焊接过程中各种现象的进一步深入了解以及计算机技术的快速发展, 激光焊接数值模拟技术及进一步发展的虚拟制造技术, 必将广泛地应用到激光

激光加工技术存在的问题及未来发展展望

激光加工技术存在的问题及未来发展展望一、国外激光加工技术及发展动态 以德国、美国、日本、俄罗斯为代表的少数发达国家,目前主导和控制着全球激光技术和产业的发展方向。 其中,德国Trumpf、Rofin-Sinar公司在高功率工业激光器上称雄天下;美国IPG公司的光纤激光器引领世界激光产业发展方向。欧美主要国家在大型制造产业,如机械、汽车、航空、造船、电子等行业中,基本完成了用激光加工工艺对传统工艺的更新换代,进入“光加工”时代。 经过几十年的发展,激光技术开辟了广阔的应用天地,应用领域涵盖通信、材料加工、准分子光刻及数据存储等9个主要类别。根据国外统计资料表明,2013年全世界总的激光销售超过1000亿元。其中全球激光器市场销售额较2013年增长6.0%,达到93.34亿美元。美国市场借助出口方面的出色表现有所增长;欧洲凭借德国的出口增长仅维持收支平衡;亚洲市场,东盟国家的增长抵消了中国的经济放缓以及日本的零增长。 二、国内激光产业发展现状 1.国内激光产业整体格局 国内激光企业主要分布在湖北、北京、江苏、上海及深圳等地,已基本形成以上述省市为主体的华中、环渤海、长三角、珠三角四大激光产业基地,其中有一定规模的企业约300家。 2014年我国激光产业链产值约为800亿元。主要包括:激光加工装备产业达到350亿元(其中,用于切割、打标和焊接的高功率激光设备占据了67%的市场份额);激光加工在重工业、电子工业、轻工业、军用、医疗等行业的应用达到450亿元。预计在今后三年,我国激光产业平均行业复合成长率将不低于20%。 我国激光加工产业可以分为四个比较大产业带,珠江三角洲、长江三角洲、华中地区和环渤海地区。这四个产业带侧重点不同,珠三角以中小功率激光加工机为主,长三角以大功率激光切割焊接设备为主,环渤海以大功率激光熔覆和全固态激光为主,以武汉为首的华中地区则覆盖了大、中、小激光加工设备。这四

激光加工技术的现状及国内外发展趋势

激光加工技术的现状及国内外发展趋势——激光英才网 作为20世纪科学技术发展的主要标志和现代信息社会光电子技术的支柱之一,激光技术和激光产业的发展受到世界先进国家的高度重视。 激光加工是国外激光应用中最大的项目,也是对传统产业改造的重要手段,主要是kW 级到10kW级CO2激光器和百瓦到千瓦级Y AG激光器实现对各种材料的切割、焊接、打孔、刻划和热处理等。 激光加工应用领域中,CO2激光器以切割和焊接应用最广,分别占到70%和20%,表面处理则不到10%。而Y AG激光器的应用是以焊接、标记(50%)和切割(15%)为主。在美国和欧洲CO2激光器占到了70~80%。我国激光加工中以切割为主的占10%,其中98%以上的CO2激光器,功率在1.5kW~2kW范围内,而以热处理为主的约占15%,大多数是进行激光处理汽车发动机的汽缸套。这项技术的经济性和社会效益都很高,故有很大的市场前景。 在汽车工业中,激光加工技术充分发挥了其先进、快速、灵活地加工特点。如在汽车样机和小批量生产中大量使用三维激光切割机,不仅节省了样板及工装设备,还大大缩短了生产准备周期;激光束在高硬度材料和复杂而弯曲的表面打小孔,速度快而不产生破损;激光焊接在汽车工业中已成为标准工艺,日本Toyota已将激光用于车身面板的焊接,将不同厚度和不同表面涂敷的金属板焊接在一起,然后再进行冲压。虽然激光热处理在国外不如焊接和切割普遍,但在汽车工业中仍应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理。在工业发达国家,激光加工技术和计算机数控技术及柔性制造技术相结合,派生出激光快速成形技术。该项技术不仅可以快速制造模型,而且还可以直接由金属粉末熔融,制造出金属模具。 到了80年代,Y AG激光器在焊接、切割、打孔和标记等方面发挥了越来越大作用。通常认为Y AG激光器切割可以得到好的切割质量和高的切割精度,但在切割速度上受到限制。随着Y AG激光器输出功率和光束质量的提高而被突破。Y AG激光器已开始挤进kw级CO2激光器切割市场。Y AG激光器特别适合焊接不允许热变形和焊接污染的微型器件,如锂电池、心脏起搏器、密封继电器等。Y AG激光器打孔已发展成为最大的激光加工应用。 目前,国外激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打

激光加工技术的原理及应用

激光加工技术 摘要 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔及微加工等的一种加工新技术,涉及到光、机、电、材料及检测等多门学科。由于激光加工热影响区域小,光束方向性好,几乎可以加工任何材料。常用来进行选择性加工,精密加工。由于激光加工的特殊特点,其发展前景广阔,目前已广泛应用于激光焊接、激光切割、表面改性、激光打标、切削加工,快速成形,激光钻孔和基板划片,半导体处理等。 关键词:原理、应用﹑新技术、精密加工、 引言 激光是本世纪的重大发明之一,具有巨大的技术潜力。专家们认为,现在是电子技术的全胜时期,其主角是计算机,下一代将是光技术时代,其主角是激光。激光因具有单色性、相干性和平行性三大特点,特别适用于材料加工。激光加工是激光应用最有发展前途的领域,国外已开发出20多种激光加工技术。激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。 激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。

正文 1﹑激光加工技术的原理及其特点 1.1激光加工的起源 早期的激光加工由于功率较小,大多用于打小孔和微型焊接。到20世纪70年代,随着大功率二氧化碳激光器、高重复频率钇铝石榴石激光器的出现,以及对激光加工机理和工艺的深入研究,激光加工技术有了很大进展,使用范围随之扩大。数千瓦的激光加工机已用于各种材料的高速切割、深熔焊接和材料热处理等方面。各种专用的激光加工设备竞相出现,并与光电跟踪、计算机数字控制、工业机器人等技术相结合,大大提高了激光加工机的自动化水平和使用功能。 1.2激光加工的原理 激光加工是以激光为热源对工件进行热加工。 激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。 从激光器输出的高强度激光经过透镜聚焦到工件上,其焦点处的功率密度高达107~1012瓦/厘米2,温度高达1万摄氏度以上,任何材料都会瞬时熔化、气化。激光加工就是利用这种光能的热效应对材料进行焊接、打孔和切割等加工的。通常用于加工的激光器主要是固体激光器(图1)和气体激光器(图2)。使用二氧化碳气体激光器切割时,一般在光束出口处装有喷嘴,用于喷吹氧、氮等辅助气体,以提高切割速度和切口质量。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。

激光微技术

1987 年美国科学家提出了微机电系统(MEMS)发展计划,这标志着人类对微机械的研究进入到一个新的时代。目前,应用于微机械的制造技术主要有半导体加工技术、微光刻电铸模造(LIGA)工艺、超精密机械加工技术以及特种微加工技术等。其中,特种微加工方法是通过加工能量的直接作用,实现小至逐个分子或原子的去除加工。特种加工是利用电能、热能、光能、声能、化学能等能量形式进行加工的,常用的方法有:电火花加工、超声波加工、电子束加工、离子束加工、电解加工等等。近年来发展起来一种可实现微小加工的新方法:光成型法,包括立体光刻工艺、光掩膜层工艺等。其中利用激光进行微加工显示出巨大的应用潜力和诱人的发展前景。 2 常用激光微加工技术 激光微加工技术具有非接触、有选择性加工、热影响区域小、高精度与高重复率、高的零件尺寸与形状的加工柔性等优点[1]。实际上,激光微加工技术最大的特点是“直写”加工,简化了工艺,实现了微型机械的快速成型制造。此外,该方法没有诸如腐蚀等方法带来的环境污染问题,可谓“绿色制造”。在微机械制造中采用的激光微加工技术有两类:1) 材料去除微加工技术,如激光直写微加工、激光LIGA 等;2)材料堆积微加工技术,如激光微细立体光刻、激光辅助沉积、激光选区烧结等。 2.1 激光直写技术 准分子激光波长短、聚焦光斑直径小、功率密度高,非常适合于微加工和半导体材料加工。在准分子激光微加工系统中,大多采用掩膜投影加工,也可以不用掩膜,直接利用聚焦光斑刻蚀工件,将准分子激光技术与数控技术相结合,综合激光光束扫描与X-Y 工作台的相对运动以及Z 方向的微进给,可以直接在基体材料上扫描刻写出微细图形,或加工出三维微细结构[2]。图1 为准分子激光加工出来的微型齿轮,最小齿轮直径为50mm。目前采用准分子激光直写方式可加工出线宽为数微米的高深宽比微细结构。另外,利用准分子激光采取类似快速成型(RP)制造技术,采用逐层扫描的方式进行三维微加工的研究也已取得较好结果[3]。 2.2 激光LIGA 技术

浅谈激光加工技术的发展及应用

浅谈激光加工技术的发展及应用 浅谈激光加工技术的发展及应用 【摘要】因为激光的加工技术的优点是生产的效率极高、加工的质量极好、适用的范围很广等,所以越来愈多的人希望在很多的领域中使用激光加工技术。本文介绍其相关的理论,重点论述其发展和应用。 【关键词】激光加工技术相关理论发展应用 一、前言 近年来重大的发明之一是激光技术。随着社会经济的快速发展,把激光器当成基础的激光加工的技术得到了快速发展。目前其正在被广泛应用在生产、通讯、医疗、军事及科研等多种领域。并且在这些领域都取得了非常好的经济与社会的效益,是我国未来经济的发展的关键。 二、激光加工技术相关理论 笔者认为,了解与应用激光加工技术需要对其相关理论深入的研究。以下笔者从其原理和特点来介绍激光加工技术。 (一)原理 激光加工能够获得极高的能量密度与极高的温度是因为采用的光学系统能够让激光聚焦成为一个非常小的光斑,在这样的高温下,每种坚硬的材料都会被瞬间熔化与气化,然后熔化物被气化而产生的蒸汽压力推动,以很高的速度喷射出来,从而实现了对工件加工的特种加工方法。 (二)特点 激光加工的技术对于加工工具与特殊环境没有要求,不会造成工具的磨损,易于使用自动控制来进行连续加工,且加工效率极高;同时激光的强度极高,聚焦后差不多能够熔化和气化全部的材料,所以能够加工所有硬度的金属与非金属的材料;加上激光加工是属于非接触的加工,及加工速度非常的快,工件没有受力与受热而产生变形;其还能聚焦成为极小的光斑(微米级),能够调节输出的功率,所以

可进行精密且细微的加工。这些均是激光加工优点。但由于其设备的投资比较大,及操作和维护技术要求比较高;且在精微加工的时候,重复的精度与表面的粗糙度难以保证等。这些缺点尽管在一定的程度上缩小了其应用规模,也限制了其发展,但是由于进一步的研究,越来越成熟的技术,激光加工技术有着非常广阔的发展前景。 三、激光加工技术的发展及应用 近年来,由于激光加工技术的快速发展,其被应用于许多的领域。以下是笔者从激光器与激光加工技术领域来介绍激光加工技术的发展,同时介绍目前激光加工技术的具体应用。 (一)激光加工技术的发展 了解激光加工技术的发展,就要研究激光器以及其应用的领域的变化。只有这样才能从根本上了解其发展。 迅速发展的激光器。我国研制出的第一台激光器是在1961年。通过几十年的努力,我国的激光器技术快速的发展起来了,从固体的激光器到气体的激光器,再到如今光纤的激光器、半导体的激光器与飞秒的激光器。光纤的激光器与传统激光器来比较,其优势是功率输出大,光束的质量较好,转换的效率较高,良好的柔性传输等。其在使用激光加工技术加工材料中有着极大的吸引力。现在应用于使用激光来打标、切割以及焊接。而飞秒的激光器则能够使超精微的加工可以实现。其在高技术的领域如微电子、光子学等应用的前景极宽广。同时半导体的激光器正在被直接用在焊接、热处理等方面。总之激光器的迅速发展导致了激光加工技术的快速发展。 广泛的应用领域。激光加工是在机械加工、力加工、火焰加工与电加工之后新产生的一种的加工技术,是借助激光束和物质相互作用的特性,对材料进行切割、焊接、表面处理、打孔以及微加工的综合性技术。激光焊接广泛应用在汽车的零件、密封的器件等多种要求焊接无污染与无变形的器件。激光切割主要应用在汽车的行业、航天的工业等领域。而激光打孔则应用在汽车的制造、化工等产业。广泛的应用领域也使得激光加工技术快速发展。 (二)激光加工技术的应用 激光加工技术在我国的许多领域里占据着重要的位置,以下是笔

材料先进加工技术

1. 快速凝固 快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。 2. 半固态成型 半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings 教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压) 3. 无模成型 为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。 4.超塑性成型技术 超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。 5. 金属粉末材料成型加工 粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。 6. 陶瓷胶态成型 20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。 7. 激光快速成型 激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组

激光加工技术

激光加工技术 班级:学号: 摘要:作为20世纪科学技术发展的主要标志和现代信息社会光电子技术的支柱之一,激光技术和激光产业的发展受到世界先进国家的高度重视。本文论述了激光加工技术的主要内容,以及它的加工原理、特点及其应用。 关键词:激光技术特点应用 1.引言 激光技术是20世纪60年代初发展起来的一门新兴科学,在材料加工方面,已逐步形成一种崭新的加工方法——激光加工(Lasser Beam Machining 简称LBM)。由于激光加工不需要加工工具、而且加工速度快、表面变形小,可以加工各种材料,已经在生产实践中愈来愈多地显示了它的优越性,所以很受人们重视。 激光技术在我国经过30多年的发展,取得了上千项科技成果,许多已用于生产实践,激光加工设备产量平均每年以20%的速度增长,为传统产业的技术改造、提高产品质量解决了许多问题,如激光毛化纤技术正在宝钢、本钢等大型钢厂推广,将改变我国汽车覆盖件的钢板完全依赖进口的状态,激光标记机与激光焊接机的质量、功能、价格符合国内目前市场的需求,市场占有率达90%以上。 2.激光技术研究的主要内容 (1)激光加工用大功率CO2和固体激光器及准分子激光器的引进机型研究,提高国产机水平;同时开发和研制专用配套的激光加工机床,提高激光器产品在生产线上稳定运行的周期,力争在国内建立较全面的加工用激光器的生产基地。 (2)建立激光加工设备参数的检测手段,并进行方法研究。 (3)激光切割技术研究。 (4)激光焊接技术研究。 (5)激光表面处理技术研究。

(6)激光加工光束质量及加工外围装置研究。 (7)择优支持2~3个国家级加工技术研究中心,开展激光加工工艺技术研究,重点是材料表面改性和热处理方面的研究和推广应用;开展激光快速成形技术的应用研究,拓宽激光应用领域。 3激光加工的原理和特点 3.1.加工原理和特点 1)聚集后,光能转化为热能,几乎可以熔化、气化任何材料。例如耐热合金、陶瓷、石英、金刚石等硬脆材料都能加工。 2)激光光斑大小可以聚集到微米级,输出功率可以调节,因此可用以精密微细加工。 3)加工所用工具是激光束,是非接触加工,所以没有明显的机械力,没有工具损耗问题。加工速度快、热影响区小,容易实现加工过程自动化。还能通过透明体进行加工,如对真空管内部进行焊接加工等。 4)和电子束加工等比较起来,激光加工装置比较简单,不要求复杂的抽真空装置。5)激光加工是一种瞬时、局部熔化、气化的热加工,影响因素很多,因此,精微加工时,精度,尤其是重复精度和表面粗糙度不易保证,必须进行反复试验,寻找合理的参数,才能达到一定的加工要求。由于光的反射作用,对于表面光泽或透明材料的加工,必须预先进行色化或打毛处理,使更多的光能被吸收后转化为热能用于加工。 6)加工中产生的金属气体及火星等飞溅物,要注意通风抽走,操作者应戴防护眼镜。 4.激光技术的应用 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为:(1)激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统。

激光加工技术的应用研究

激光加工技术的应用研究 摘要:激光加工技术作为一门科学技术,广泛应用于许多工程领域。作为科学发展中出现的一种全新产物,该技术为国防军事、工业机械和农业商业等领域带来了诸多便利。科学技术的不断进步推动着施工质量在提高,激光技术也在不断改进。激光加工技术在工程机械制造中的应用是本文研究的重点,目的是与行业相关人员讨论如何更有效地提高机械产品的制造精度和质量。 关键词:激光加工;机械制造;应用 引言 日益提升的国民经济水平下,信息现代及激光技术也得到了进一步发展。激光技术凭借自身的多项优点,在军事、医学等相关领域之中得到了普遍认可。可以说,激光技术在各个行业之中都属于一项顶尖的技术,是各领域应用激光而产生的一系列技术,备受各国相关人员的重视。 1激光技术工作原理 激光具有单色波长、平行光束的性能特征。科学实验中,采用电管依托光或电流的能量撞击个别原子里含有易激发物质或晶体,原子所带电子在经历了撞击之后处于高能量状态,而高能量电子逐渐朝着平和低能量转化并完成之后,原子会有更大能量产生,进而有光子发出;该状态下,释放出来的光子会继续撞击原子,而原子在撞击下会有光子继续产生,重复撞击、释放这一循环过程,且是以同一运行方向进行的,会集中形成一束具有极强能量的该方向的光,即为激光原理。聚集之后形成的激光具有强大的能量,各类材质即可穿透。如红宝石激光输出脉冲尽管不具备能让冷水沸腾的能量,然而却能将5mm钢板穿透。而激光虽然具有一般的光能,但却具备极高的功率密度和强大的穿透力,是一般光束根本无法达成的,也正是因为激光的该优势,因此在各个行业领域之中得到了广泛地应用。 2激光加工概述 激光的全称是受激辐射光放大,如何从技术上实现数反转是激光产生的必要条件,当高能粒子与特定频率的光子发生入射时,高能级的粒子会有一定的概率跃至低能级。除此之外,粒子会辐射出与外光子频率、相位、偏振和传播方向相同的光子,上述过程就是受激辐射。受激辐射就意味着原始光信号会被放大,受激光辐射过程中衍生出的光被称为激光。激光的显著特点主要有:亮度极高、指向性强、色度比较单一、相干度较高等。随着工业技术近年来的技术改革逐步深入,激光切割、激光焊接、激光熔覆、激光材料制造等激光加工技术在制造业中扮演着越来越重要的角色。 2.1激光切割 激光切割是借助高能量密度的激光束对器件进行强光照射,目的是使照射温度迅速上升。物料气化后,蒸汽会在短时间内被迅速排出或熔化,而辅助气体会为液体的顺利排出提供一定的帮助,进而形成相应的狭缝。激光切割通常会被用于加工钢、铝合金、钛合金等常见金属材料,玻璃、陶瓷、塑料等非金属材料也是激光切割的切割对象。值得一提的是,激光切割是一种非接触加工工艺,切割过程中工件并不会出现机械变形,激光束不会对不受激光照射的工件产生影响,其热冲击面积小,工件的热变形校激光切割快速灵活,节省投资和生产成本。在汽车工业中,三维激光切割逐步取代冲切模和切边模成为生产车身板件的主要切割技术,相较于传统技术节省了大量的切割时间。在工程机械行业,日本以激光

激光加工技术发展的研究

激光加工技术发展的探究 摘要:激光加工是将激光束照射到工件的外表,以激光的高能量来切除、熔化质料以及转变物体外表性能。由于激光束的能量和光束的移动速率均可调治,因此激光加工可应用于任意层面和领域上。本文分别从激光加工技术的原理及其应用综合品评了激光加工较传统加工技术的良好性,说明其在制造行业中不行替换的作用.结合我国激光加工制造现状与国际的差距,对我国激光加工业发展做了良好的预测.在阐发外国研究动向的基础上,指出激光制造技术的发展趋向,将重点定位在微结构、微刻蚀、微工具以及多功效性微技术、微工程的研究与开发上。可以预测,三维微纳尺度的激光微制造技术必将成为新世纪的主流制造技术。 关键词:激光加工激光制造体系技术发展 1.前言 激光的研究及其在各个领域的应用得到了迅速的发展。其高相干性在高细密丈量、物质结构阐发、信息存储及通讯等领域得到了普遍应用。激光的高单色性,可在光化学领域对一些相距很近的能级作选择引发,进行重金属的同位素疏散;激光的高偏向性和高亮度可普遍应用于加工制造业(大到航天器、飞机、汽车工业,小到微电子、信息、生物细胞疏散等微技术)。随着激光器件、新型受激辐射光源,以及相应工艺的不停改造与优化,尤其是近20年来,激光制造技术已渗透到诸多高新技术领域和产业,并开始取代或革新某些传统的加工行业。 2.正文 激光制造技术包括两方面的内容,一是制造激光光源的技术,二是使用激光作为工具的制造技术。前者为制造业提供性能优良、稳固可靠的激光器以及加工体系,后者使用前者进行各种加工和制造,为激光体系的不停发展提供广阔的应用空间。两者是激光制造技术中不可或缺的部分,不行偏废。激光制造技术具有许多传统制造技术所没有的优点,是一种切合可持续发展战略的绿色制造技术。比如,质料浪费少,在大规模生产中制造资本低;凭据生产流程进行编程控制(自动化),在大规模制造中生产屈从高;可靠近或到达“冷”加工状态,实现通例技术不能实验的高细密制造;对加工工具的顺应性强,且不受电磁干扰,对制造工具和生产情况的要求低;噪声低,不孕育发生任何有害的射线与剩余,生产历程对情况的污染小等等。因此,为顺应21世纪高新技术的产业化、满足宏观与微观制造的需要,研究和开发高性能光源势在必行。现在正在积极研制超紫外、超短脉冲、超大功率、高光束质量等特性的激光,尤其是能顺应微制造技术要求的激光光源更是倍受关注,并已形成国际性竞争。可以

激光加工技术及其应用(精)

激光加工技术及其应用 概述: 激光加工(Laser Beam Machining,简称LBM是指利用能量密度非常高的激光束对工件进行加工的过程。激光几乎能加工所有材料,例如,塑料、陶瓷、玻璃、金属、半导体材料、复合材料及生物、医用材料等。 在1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。 与传统加工技术相比,激光加工技术有以下特点 (1激光功率密度大,工件吸收激光后温度迅速升高而熔化或汽化,即使熔点高、硬度大和质脆的材料(如陶瓷、金刚石等也可用激光加工; (2、激光头与工件不接触,不存在加工工具磨损问题; (3、工件不受应力,不易污染; (4、可以对运动的工件或密封在玻璃壳内的材料加工; (5、激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工; (6、激光束容易控制,易于与精密机械、精密测量技术和电子计算机相结合,实现加工的高度自动化和达到很高的加工精度; (7、在恶劣环境或其他人难以接近的地方,可用机器人进行激光加工。

2.基本原理 激光被广泛应用是因为它具有的单色波长、同调性和平行光束等3大特性。科学家在电管中以光或电流的能量来撞击某些晶体或原子易受激发的物质,使其原子的电子达到受激发的高能量状态。当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量。这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的连锁反应,并且都朝同一个方前进,进而形成集中的朝向某一方向的强烈光束。由此可见,激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,所以利用聚焦后的激光束可以穿透各种材料。以红宝石激光器为例,它输出脉冲的总能量不够煮熟一个鸡蛋,但却能在 3mm的钢板上钻出一个小孔。激光拥有上述特性,并不是因为它有与别不同的光能,而是它的功率密度十分高,这就是激光能够被广泛应用的主要原因。激光加工技术先进性激光的上述特性给激光加工带来一些其它加工方法所不具备的优势。由于激光加工是无接触加工,对工件无直接冲击,所以无机械变形。激光加工过程中无刀具磨损,无切削力作用于工件;激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小,因此受其热影响的工件热变形小,后续加工量少。激光束易于导向、聚焦,能够便捷地实现方向变换,使其极易与数控系统配合,对复杂的工件进行加工。因此,它是一种极为灵活的加工方法,具备生产效率高、加工质量稳定可靠、经济效益和社会效益好等优点。激光加工作为先进制造技术已广泛应用于航空、汽车、机械制造等国民经济重要部门,在提高产品质量、劳动生产率、自动化、降低污染和减少材料消耗等方面起到重要的作用。激光切割激光切割一直是激光加工领域中最为活跃一项技术,它是利用激光束聚焦形成高功率密度的光斑,将材料快速加热至汽化温度,再用喷射气体吹化,以此分割材料。脉冲激光适用于金属材料,连续激光适用于非金属材料,通过与计算机控制的自动设备结合,使激光束具有无限的仿形切割能力,切割轨迹修改十分方便。激光切割技术的出现使人类可以切割一些硬度极高的物质,包括硬质合金,甚至金刚石。高科技已经让“削铁如泥”的传说变成了现实。激光切割技术是激光加工技术应用的重要方面之一,广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质

先进激光加工技术与装备

先进激光加工技术与装备 摘要:随着我国经济和社会建设的全面进步,对各种先进技术有了更大的需求,其中,激光加工技术对于我国的科技发展有着至关重要的影响。信息产业中需要 利用激光对半导体硅片材料进行加工,制成所需的芯片。而因为激光加工技术的 不足,使得我国在相关领域的发展受到了较大的限制,这些问题的产生,与我国 在激光加工技术和装备研发方面的落后有直接关系。信息社会的建设,激光加工 技术是最基本的技术保障方式,对相关技术以及装备的研究,需要重视。 关键词:硅片;激光加工技术;装备 中国是一个制造业大国,在很多工业生产领域,都占据了世界第一的位置,但同时,也暴露 出我国很多产业大而不强的问题。一些核心技术与世界先进水平存在较大差距,以激光加工 技术为例,就是一个非常好的证明。近段时间来,我国通信产业面临着巨大的经营压力,最 主要的原因就是芯片的保障难以充分实现。在半导体产业中光刻机的缺失,使得我国相关企 业的巨大被动。解决这些问题已经不只是企业自身的问题,更关系到国家的发展战略,基于此,其研究的现实价值和深远影响得以体现。 1.激光加工技术概述 激光在当前的科技和工业领域具有非常广泛的用途,尤其是激光加工技术,在当前的现 代化建设过程中有着极为重要的影响,包括对社会进步产生巨大影响的信息产业,也需要将 激光加工技术加以充分利用。就目前来说,先进的激光加工技术代表着一个国家最重要的核 心科技能力,特别是半导体加工中必须通过光刻机完成对硅片的处理,到目前为止已经达到 几纳米的加工数量级。没有如此尖端的激光加工技术,就只能将相关的加工需求进行外包, 在核心科技方面会受制于其他国家的技术限制。 激光加工技术主要利用激光束对被加工物进行处理,通过激光与这些物质间存在的作用,对材料完成加工处理。这些材料可以是金属也可以是非金属,激光加工技术都可以有很好的 适应性。其加工方式通常包括几种,即:切割、表面处理、打孔、焊接、微加工等。这一方 面利用了激光可以在微小区域产生巨大热量的原理,这些热量可以融化被加工物质,实现切 割等目的;另一方面,激光具有良好的单色性和直线传播的优势,能够在加工物体表面进行 蚀刻等操作,使得很多极高精度的加工均采用激光加工技术。从目前来看,激光加工技术已 经充分用在电子、航空、机械制造等重要领域,并对整个加工技术的优化有非常突出的促进 作用。 2.先进激光加工技术与装备研究 与传统加工技术相比,先进的激光加工技术可以在加工精度和工作质量和稳定性方面有 着非常突出的表现。这些先进的技术与相应的装备融合,可以对加工能力产生巨大的影响。 本文以光刻机技术及其装备为例,系统探究先进激光加工技术的相关内容,有一定的借鉴价 值和参考意义。 2.1光刻机技术 现代光学工业中,激光加工技术是最为核心的内容,而其最高技术成就的代表就是光刻机。光刻机之所以享有如此声誉,不仅在于其应用领域的重要性,同时也表现在其制造难度上,截至目前,整个世界范围内仅几家企业具备研发制造能力,而光刻机的单台售价甚至达

激光加工专业技术有哪些【详情】

激光加工技术有哪些【详情】

————————————————————————————————作者:————————————————————————————————日期:

激光加工技术有哪些 内容来源网络,由深圳机械展收集整理! 更多激光加工设备技术展示,就在深圳机械展! 激光加工技术是利用激光束与物质相互作用的特性,对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔及微加工等的一门加工技术。激光加工作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等起到愈来愈重要的作用。 激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为以下9个方面: 1.激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统; 2.激光加工工艺。包括焊接、表面处理、打孔、打标、微调等各种加工工艺; 3.激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器; 4.激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。使用激光器有YAG激光器和CO2激光器; 5.激光打标:在各种材料和几乎所有行业均得到广泛应用,使用的激光器有YAG激光器、CO2激光器和半导体泵浦激光器; 6.激光打孔:激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打孔的迅速发展,主要体打孔用YAG激光器的平均输出功率已由400w提高到了800w至1000w。国内比较成熟的激光打孔的应用是在人造金刚石和天然金刚石拉丝模的生产及钟表和仪表的宝石轴承、飞机叶片、多层印刷线路板等行业的生产中。使用的激光器多以YAG激光器、CO2激光器为主,也有一些准分子激光器、同位素激光器和半导体泵浦激光器; 7.激光热处理:在汽车工业中应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理,同时在航空航天、机床行业和其它机械行业也应用广泛。我国的激光热处理应用远比国外广泛得多。使用的激光器多以YAG激光器,CO2激光器为主; 8.激光快速成型:将激光加工技术和计算机数控技术及柔性制造技术相结合而形成,多用于模具和模型行业。使用的激光器多以YAG激光器、CO2激光器为主; 9.激光涂敷:在航空航天、模具及机电行业应用广泛。使用的激光器多以大功率YAG激光器、CO2激光器为主。 激光加工为工业制造提供了一个清洁无污染的环境及生产过程,而这也是当下激光加工的优势。 技术特性

激光加工技术应用领域研究(通用版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 激光加工技术应用领域研究(通 用版)

激光加工技术应用领域研究(通用版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 激光加工技术作为一项高新技术一直是国家重点支持和推动的,在国家制定中长期发展规划时,也将激光加工列为关键支撑技术,这就给激光加工技术应用带来前所未有的发展机遇。本文就对激光加工技术的在快速制造应用领域进行简单的探讨。 激光快速制造技术弥补了激光烧结工艺中的不足。现代激光技术的应用,采用了专门研发的、申请了专利保护的激光照射方案,使用了标准钢材粉末为原料的技术,获得了巨大的成功,可制造出无收缩的、几乎是百分之百密实的零部件。现在,在使用正品原材料的情况下可以制作大型的零件,如强力冷却的模具型芯。所用材料的特性与大批量生产时所用的钢材相同,使制造出来的零件满足了大批量生产的条件。铝合金铸造厂采用这种工艺技术为汽车生产厂制造铝合金材料的压铸模具。 激光快速制造技术是一种“常规的”生产制造工艺,它使得所有可以焊接的金属材料,如不锈钢、耐热钢和调质钢,按照一层层焊接

激光切割技术的原理及应用

1. 激光切割技术简介 (2) 1.1激光切割技术概述 (2) 1.2激光切割技术的原理 (4) 1.3激光切割技术的发展历史 (5) 2.激光切割的特点 (6) 2.1激光切割的总体特点 (6) 2.2 CO2激光切割技术的特点 (7) 2.3半导体激光切割机 (8) 2.4光纤激光切割机 (8) 3. 激光切割技术的应用及发展前景 (10) 3.1激光切割技术的市场现状 (10) 3.2激光切割技术的应用 (12) 结论 (13)

材料12A文修曜 摘要 激光加工技术是一种先进制造技术,而激光切割是激光加工应用领域的一部分,激光切割是当前世界上先进的切割工艺。由于它具备精密制造、柔性切割、异型加工、一次成形、速度快、效率高等优点,所以在工业生产中解决了许多常规方法无法解决的难题。激光能切割大多数金属材料和非金属材料。 Abstract The laser processing technology is a kind of advanced manufacturing technology, and laser cutting is part of the laser processing applications, laser cutting is the current advanced cutting technology in the world.Because it has flexible cutting, stone processing, precision manufacturing, a forming, fast speed, higher efficiency, so in industrial production solved many conventional methods cannot solve the problem.Can laser cutting most of the metal materials and nonmetal materials. 关键词:激光切割的原理;激光切割的分类及特点;激光切割技术的应用 1.激光切割技术简介 1.1激光切割技术概述 激光切割是激光加工行业中最重要的一项应用技术。它占整个激光加工业的70%以上。激光切割与其他切割方法相比,最大区别是它具有高速、高精度及高适应性的特点。同时还具有割缝细、热影响区小、切割面质量好、切割时无噪声、切割过程容易实现自动化控制等优点。激光切割板材时,不需要模具,可以替代

激光加工技术-教学基本要求

高等职业教育激光加工技术专业教学基本要求 专业名称激光加工技术 专业代码580114 招生对象 普通高中毕业生、中职毕业生 学制与学历 三年制,专科 就业面向 本专业覆盖激光加工技术等职业领域的岗位群。 1.毕业生可适应的初始职业岗位有: (1)激光加工设备制造企业的各加工工种岗位、激光加工设备装配、调试、使用、维护、维修等岗位; (2)光电设备、机电设备及相关成套设备的安装、调试、使用与维护。 2.毕业生在获得一定工作经验(进修)后发展职业岗位有: (1) 激光及数控加工设备制造企业的产品营销、生产管理、技术管理、质量控制等企业管理岗位群; (2) 升迁的职业岗位及预计平均获得的时间为三年。 培养目标与规格 一、培养目标 本专业培养德、智、体、美、劳全面发展,适应现代制造业需要,主要面向激光加工设备制造和使用行业,培养从事大功率激光加工设备操作及维护,小功率激光加工设备组装、调试及售后服务等岗位,兼顾光电设备、机电设备及相关成套设备的安装、调试、使用、数控加工设备操作等岗位的高端技能型专门人才。 激光加工设备装配调试、操作使用、销售及售后服务各工种岗位主要包括激光美容仪、激光打标机、激光雕刻机、激光焊接机、激光切割机等设备的生产制造、销售服务、使用维护等岗位构成本专业毕业生初始就业岗位群。 毕业生经过三年左右的工作经验累积或进修,可升迁至激光及数控加工设备制造企业的生产管理(计划员、统计员、调度员、采购员、对外协作员等)、技术管理(工艺师、工装夹具设计师等)、质量控制(对产品质量的控制、检验、分析)、产品营销等企业管理岗位群。 二、培养规格 本专业的职业核心能力主要有: 在掌握激光加工设备本体的装配与调试工艺的基础上,重点掌握激光器光路装置的装配与调试工艺。

激光加工技术的应用与发展

激光加工技术的应用与发展 摘要:激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工等的一门技术。激光加工作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等起到愈来愈重要的作用。 关键词:加工原理、发展前景、强化处理、发展前景。 一激光加工的原理及其特点 1.激光加工的原理 激光加工利用高功率密度的激光束照射工件,使材料熔化气化而进行穿孔、切割和焊接等的特种加工。早期的激光加工由于功率较小,大多用于打小孔和微型焊接。数千瓦的激光加工机已用于各种材料的高速切割、深熔焊接和材料热处理等方面。各种专用的激光加工设备竞相出现,并与光电跟踪、计算机数字控制、工业机器人等技术相结合,大大提高了激光加工机的自动化水平和使用功能。 激光具有的宝贵特性决定了激光在加工领域存在的优势: ①由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。 ②它可以对多种金属、非金属加工,特别是可以加工高硬度、高

脆性、及高熔点的材料。 ③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。 ④激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。因此,其热影响区小,工件热变形小,后续加工量小。 ⑤它可以通过透明介质对密闭容器内的工件进行各种加工。 ⑥由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。 ⑦使用激光加工,生产效率高,质量可靠,经济效益好。虽然激光加工拥有许多优点,但不足之处也是很明显的。 二激光技术 用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光加工有许多优点:①激光功率密度大,工件吸收激光后温度迅速升高而熔化或汽化,即使熔点高、硬度大和质脆的材料(如陶瓷、金刚石等)也可用激光加工;②激光头与工件不接触,不存在加工工具磨损问题;③工件不受应力,不易污染;④可以对运动的工件或密封在玻璃壳内的材料加工;⑤激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工;⑥激光束容易控制,易于与精密机械、精密测量技术和电子计算机相结合,实现加工的高度自动化和达到很高的加工精度;⑦在恶劣环境或其他人难以接近的地方,可用

相关文档
最新文档