紫外可见光谱在生物无机化学中的应用

紫外可见光谱在生物无机化学中的应用
紫外可见光谱在生物无机化学中的应用

紫外可见光谱在生物无机化学中的应用

摘要综述了紫外可见光谱在生物无机化学各方面应用中的最新进展和独特之处,探讨了紫外可见光谱研究金属离子与生物分子相互作用的基本原理及所得主要信息。

关键词紫外可见光谱生物无机化学

生物无机化学是近几十年来发展起来的一门新兴的边缘学科,它是无机化学(特别是配位化学) 、生物化学、医学临床化学、营养化学、环境科学等学科相互渗透、相互融合的产物,是近年来自然科学中十分活跃的一个领域,是在分子水平上研究生物金属与生物配体之间的相互作用,研究分析测定这些生物化合物结构和性能以及它们在活体中作用的一门学科。

生物无机化学发展迅速。除了在金属蛋白和金属酶方面由铁、铜、锌?8943 .等扩大到诸如镍酶、钒酶、锰酶、钼酶、钨酶?8943 .以外,还从金属蛋白扩大到以非金属元素为活性元素的蛋白。研究各种金属与生物配体相互作用的方法有电子吸收光谱、圆二色谱、红外光谱、核磁共振谱、X 射线衍射光谱、荧光光谱等。在生物分子结构的研究中,很重要的目的是了解金属蛋白和金属酶。金属蛋白和金属酶中仅含少量的金属离子,但它们起至关重要的作用,即它们及其配位环境往往就是生物分子的活性中心,因而测定金属离子及其微环境的结构是很有意义的。金属蛋白和金属酶中金属离子的基态及最低激发态往往与它们所处的环境有直接的联系。因此,金属蛋白和金属酶的电子吸收光谱研究是表征金属离子所处环境的主要手段。本文对紫外可见光谱(电子吸收光谱) 在生物无机化学中的应用研究最新进展作了综述。

1 紫外可见光谱的基本原理

所有的光谱都是由于粒子(原子、离子、自由基、分子、晶体等) 与电磁波以某种类型的相互作用产生的。电子吸收光谱是由电子在一系列能级上跃迁产生的。当电磁波的能量接近△E电子的能量时,可引起电子在各能级之间的跃迁并伴随分子的振动能级和转动能级的变化而产生的吸收光谱。由于是电子跃迁所需的能量通常落在光谱的紫外、可见区,因而又称作紫外可见吸收光谱。从本质上说,电子跃迁是原子或分子

中变化的偶极矩与光波的电磁场相互作用产生的。这种跃迁称作电偶极跃迁或磁偶极跃迁。电磁波与样品瞬间偶极矩之间作用的大小,以电子跃迁矩来描写:

式中μ是体系的偶极矩长时算符,Ψm 和Ψn 是跃迁的始态和终态波函数,星号表示复共轭,只有当跃迁矩不为零时,体系才能从电磁波吸收能量,跃迁强度正比于跃迁矩的平方。

电子跃迁是否产生吸收峰,受宇称选择和自旋选择定则的约束,宇称和自旋不允许的跃迁是禁阻的即μmn为零。吸收峰的位置和电子跃迁的始态和终态有关。故从配合物的电子吸收光谱可以得到许多有关结构和能级的信息,它可用于研究配合物的对称性、配位方式、配合物内部配位的几何大小及中心离子的能级分布和电子结构等。生物配合物的电子吸收光谱可以明显地分为中心离子谱带和电荷转移谱带两个部分。这两组谱带大体上以350 ~400 nm为界,在低能一侧(长波长) 主要是中心离子谱带(d - d ,f - f) ,在高能一侧(短波长) 的主要是电荷转移谱带。这种光谱的特征与中心离子的电子组态和配位环境有关。过渡金属离子吸收光能后可以产生d - d 跃迁,而镧系和锕系元素离子能产生f - f跃迁并得到相应的吸收光谱。如Co ( Ⅱ) 具有相同的d7 电子组态,六配位八面体物种一般有三个跃迁 :4 T1g →4 T2g ,4 T1g →4A2 ,4 T1g →4 T1g ( P) 。因配位环境的影响而出现高自旋的六配位和低自旋的六配位,高自旋六配位Co ( Ⅱ) 络合物一般观察到两个主要吸收。一个谱带在8000~10000 cm- 1附近,ε为1~10 M- 1cm- 1 ;另一在20000 cm- 1附近,ε为5~20 M- 1cm- 1 。低自旋六配位Co ( Ⅱ) 常发生John

- Teller 畸变,畸变后络合物光谱常只能观察到一个分辨不良的宽谱带,对于四配位的Co ( Ⅱ) 络合物因配位环境的差别也有上述类似情形。

电荷转移跃迁的谱带位置与金属和生物配体的性质密切相关,根据电荷转移的方向可分为金属氧化谱带(M →L) 和金属还原谱带(L →M) 两类。谱带位置和谱带强度是电子吸收光谱的重要参数。电子吸收光谱多用于鉴别配合物构型和中心原子的配位环境,也用于研究溶液中的物种平衡和有关物种的氧化还原性等。对于生物配合物电子吸收光谱的研究常用方法有 :动力学分光光度法、等吸收点的测定、差示光谱法、差

光谱技术、导数光谱法、离子探针法等等。动力学光谱法 ,通过观察样品的某一个物理量,如吸光度、logε随时间而变化的情况来研究反应的动力学性质。一种方法是选定合适的波长后在此波长扫描样品随时间变化而发生的吸光度变化;另一种是用程度控制器或重复扫描装置在一波段范围内重复扫描或相隔一定时间重复扫描,以观察样品吸收光谱变化的情况。从而得知反应过程是否进行或进行到何种程度的信息,即起到监测整个反应过程的作用。

生物体内的一些必需金属离子如Ca ( Ⅱ) ,Mg( Ⅱ) ,Zn ( Ⅱ) 等 ,由于它们属于闭壳层电子结构,在紫外可见区还没有找到适当的光信号,使得对它们在生物体内的成键性质以及输运过程等的研究受到限制,尤其是对它们在液体中的研究一直是较难解决的问题。而离子探针这一实验技术就显示出它们对溶液状态中大分子构象和结构进行研究的优越性。离子探针的使用应满足的第一个条件是所有使用的探针离子,必须与原(非过渡系) 生命金属具有相同或相近的化学行为(离子半径、结合行为、立体化学行为等) ,可以同型置换,这是离子探针的化学基础。从生物学角度出发,离子探针应满足的第二个条件是离子探针的探针离子对原(非过渡系) 生命金属置换后,仍全部保留原有生物活性的条件,这是离子探针的生物学基础。基于上述两个条件,用紫外可见光谱法研究Ca ( Ⅱ) ,Zn ( Ⅱ) ,Mg ( Ⅱ) 时,常使用的探针离子分别是La ( Ⅲ) ,Co ( Ⅱ) ,Ni ( Ⅱ)。

2 紫外可见光谱在生物无机化学中的应用

2. 1 研究生物大分子的构象和构型

通过电子吸收光谱研究蛋白质分子构象。牛血清白蛋白(BSA) 水溶液在276 nm 和193 nm 有两个吸收峰。前者主要是蛋白质中酪氨酸、色氨酸的光吸收,后者主要是由肽基团的吸收而产生的。由紫外吸光谱的性质知,193 nm 附近的吸收峰是肽链α(螺旋和无规则卷曲构象的主要识别峰) ,而β(折迭构象型的吸收峰) 应在波长198 nm附近。故可推测此BSA 溶液中没有β(折迭构象或极少) 。

研究金属蛋白和金属酶中金属离子配位环境的几何构型及其变化过程。尿酶是一种Ni ( Ⅱ) 金属酶,在吸收光谱上可观察到407 nm、745 nm 和1060nm 三条谱带。这些是尿酶中Ni ( Ⅱ) 的d - d 跃迁谱带,与Ni ( Ⅱ) 在八面体场中d - d 跃迁谱带相对应。故可确定Ni ( Ⅱ) 在尿酶中所处的配位环境是八面体构型。二价金属离子在生理pH 下,M( Ⅱ) :HSA(人血清白蛋白) 或BSA (牛血清白蛋白)摩尔比为1∶1

体系的LMCT 谱带均由较低浓度时的三个峰转变为较高浓度的一个峰。据光谱特征并结合分子轨道理论,可知此条件下配合物的金属中心均位于白蛋白分子的N - 端三肽段上,且均由较低浓度时五配位四方锥构型转变成较高浓度时的四方平面构型。这说明金属离子在较高浓度时对称性较高,故吸收峰数目较少。同时可用紫外可见光谱研究M( Ⅱ) 在HSA 和BSA 中由四方锥构型变为四方平面构型的过程。

Mo - Fe - S 簇合物有立方烷型和线型 ,由于立方烷型的Mo - Fe - S 紫外可见光谱缺乏特征性。线型的吸收光谱均显示出若干个又窄又强的吸收带。其中在400~500 nm 范围内有两个吸收带,这个值相当于[MoS4 ]2 离子中S →Mo 的电子跃迁能量。即可利用紫外可见光谱鉴别Mo - Fe - S 簇合物的构型。

Bjarnason 等用Co2 + 离子取代HT - e 中的Zn2 + 离子,发现Co ( Ⅱ) HT - e 的UV 吸收光谱与Holo HT - e 几乎完全相同, 可见Co2 + 离子取代Zn2 + 离子后,酶的结构无变化。Bjarnason 等又在可见光区内研究了Co ( Ⅱ) HT - e 的吸收光谱,有两个峰(505 nm ,600 nm) 和一个负峰(550 nm) 。Bjarna2son 等发现这些结果很象其它的Co ( Ⅱ) 酶,这些Co( Ⅱ) 酶具有变形四面体的结构。另外与已报道的三种类型配位结构(八面体,三角双锥,四面体) 的Co( Ⅱ) 配合物的可见光吸收光谱相比较,发现该谱峰的位置、分开情况和复杂情况与已报道的四面体配合物(与氧、氮配体) 的光谱相似。因此可以推测Co( Ⅱ) 和Co ( Ⅱ) HT - e 中的配位结构很可能是变形四面体结构,进一步得出Zn ( Ⅱ) HT - e 中处于变形四面体环境。

2. 2 监测反应过程

对Mo - fe - S 原子簇化合物成簇条件的研究中,考虑到NaOCH3/ FeCl3 (摩尔比) 配比对成簇的影响,在固定Mo/ Fe = 2 :1 (原子比) ,当NaOCH3/FeCl3 < 5 时, 体系很快产生黑色沉淀, 该沉淀在DMF 中溶解。用光谱分析,在可见区无吸收,紫外区呈现DMF 峰,说明沉淀物不是Mo - Fe - S 簇合物,即在此条件下不能成簇合物。当在NaOCH3/FeCl3 > 20 时,反应需很长时间后,光谱临测仅呈现原料峰, 即说明此条件下也不能成簇。当6

反应也变慢,体系由鲜红变为紫色,无沉淀物生成。光谱测定在可见区有两个新峰,580 nm 和505 nm ,其中580nm 被认为是Mo 的d →d 跃迁带,505 nm 则被认为是Fe 的d →d 跃迁带。可知体系生成了Mo - Fe -S 簇。

细胞色素c 是呼吸链的一个重要组成部分,位于细胞色素c1 和细胞色素a 之间,血红素辅基中的铁原子可交替地处于+ 3 或+ 2 价。细胞色素c中铁氧化态的转化过程可用紫外可见光谱跟踪。标准的还原型细胞色素c 吸收光谱在415 nm ,520 nm和550 nm 处出现三个吸收峰。标准的氧化型细胞色素c 吸收光谱在408 nm 和530 nm 处出现两个吸收峰。由以上细胞色素c 吸收光谱特征,可用重复扫描谱法确定两者相互转化的程度。

用差示分光光度法研究生物大分子与配基之间的相互反应。差示分光光度法所得的差示光谱,既可用以分析生物大分子与配基之间是否发生反应,提供定性的证据,也可对这种反应进行定量分析。只要测出λmax , 以及λmax 时的△A (吸光度变化) 。除此之外,许多大分子物质也用此方法研究。配基种类多种多样,包括辅基和辅酶以及一些金属离子。

2. 3 研究反应机理

人血清白蛋白是由585 个氨基酸残基组成的单肽链蛋白质,17 个二硫键使分子稳定化,它在体内起着重要的输运作用。它的铜运输机理以及铜与组氨酸的作用可用紫外可见吸光谱来考察。在pH= 7. 4 ,离子强度为0. 15 mol/ L ,温度25 ℃为条件下,[ HSA] : [ Cu ] = 1∶1 体系的吸收光谱为:在530nm 处有一最大吸收峰,当向该体系加入等摩尔的L- 组氨酸后,最大吸收峰出现在545 nm 处,即发生了红移。若继续增加L - 组氨酸,最大吸收峰逐渐红移,向1∶2 的Cu2 + (L - His) 2 配合物最大吸收峰(640 nm) 处靠近。这表明结合在人血清白蛋白N端的铜逐渐被组氨酸活化,最终会使大部分铜以Cu2 + (L - His) 2 配合物形式存在。

抗坏血酸氧化酶对抗坏血酸氧化为脱氢抗坏血酸的催化机理的研究是另一个例子。在pH =5. 6 的含有抗坏血酸氧化酶的蓝色溶液中,加入少量L - 抗坏血酸时,溶液的颜色很快褪至淡黄色,电子吸收光谱中原606 nm 的吸收峰消失,这是由于抗坏血酸氧化酶的金属离子Cu ( Ⅱ) 被还原为Cu( Ⅰ) 。当氧气进入该体系时,酶中Cu ( Ⅰ) 重新被氧化为Cu ( Ⅱ) ,电子吸收光谱又重新出现606 nm 的吸收峰,溶液又渐呈蓝色。

即可知铜离子在催化过程中起着关键的作用。

用紫外可见光谱研究蛋白质- 银( Ⅰ) - 铜( Ⅱ)络合物的生成机理[17 ] 。在BSA - Ag ( Ⅰ) - Cu ( Ⅱ)络合物中,有一个明显的最大吸收峰位于405 nm。用UV - Vis 吸收光谱与反应时间变化的曲线,就可探明这种络合反应的机理。不同浓度的BSA 和Hb获得的曲线相似,充分显示了它们“S”形特征,反映出反应的自催化过程。

2. 4 研究酶的活性中心

研究铁硫蛋白的活性中心Fe4S4 簇合物中的μ3 - S 的酸不稳定性。在表观pH 2~3 的体系中,有Tris - HCI 缓冲液存在下, Fe4S4 簇的特征吸收只在最初的2. 5 min 内发生急剧减弱,以后基本保持恒定,即表明Fe4S4 分解较快,μ3 - S 极不稳定,在表观pH 3~4 体系中, Fe4S4 簇的特征吸收的相对初始变化率比在上述情况下的来得低,特征吸收主要在最初的10 min 内,Fe4S4 分解相对较慢,μ3 - S的稳定性受到一定影响。在pH 4~5 体系中,Fe4S4簇的特征吸收在20 min 内,仅有微弱的减小,表明在此体系μ3 - S 较稳定。

在生理pH 下,钴离子与HAS 或BSA 的1∶1 配合物的可能有包含羧基和α- NH2 的配位环境,取六配位的八面体构型,金属中心离子以Co ( Ⅱ) 和Co ( Ⅲ) 两种氧化态共存。但当浓度大于3. 0 ×10 - 4 mol. L - 1时,金属中心仅以Co ( Ⅲ) 存在。这些都是紫外可见光谱研究得到的结果。

综上所述,紫外可见光谱可用于研究大多数生物配体与金属离子的相互作用,可确定金属蛋白和金属酶中金属离子配位环境的几何构型,并能追踪金属酶的催化机理以及酶活性中心的稳定性,金属离子的氧化态形式。生物无机化学的研究内容涉及面很广,在实际应用中通常尚需要和其它研究方法(荧光光谱,扩展X 射线吸收精细结构谱,旋光光谱和磁圆二色谱) 配合使用。

参考文献:

1. 杨频1 生物无机化学导论1 西安:西安交通大学出版社, 1991

2. 周永洽1 分子结构分析1 北京:化学工业出版社,1991

3.郭尧君1 分光光度技术及其在生物无机化学中的应用1

北京:科学出版社,1987

4.黄量,于德泉。紫外光谱。北京:科学出版社,1988

紫外吸收光谱的应用

紫外吸收光谱的应用

第九章紫外吸收光谱分析ultraviolet spectro-photometry, UV 第三节紫外吸收光谱的应用applications of UV 一、定性、定量分析qualitative and quantitative analysis 1. 定性分析 εmax:化合物特性参数,可作为定性依据; 有机化合物紫外吸收光谱:反映结构中生色团和助色团的特性,不完全反映分子特性; 计算吸收峰波长,确定共扼体系等 甲苯与乙苯:谱图基本相同; 结构确定的辅助工具; εmax ,λmax都相同,可能是一个化合物; 标准谱图库:46000种化合物紫外光谱的标准谱图 ?The sadtler standard spectra ,Ultraviolet?2. 定量分析 依据:朗伯-比耳定律 吸光度:A= ε b c 透光度:-lg T = ε b c 灵敏度高:

εmax:104~105 L· mol-1 · cm -1;(比红外大) 测量误差与吸光度读数有关: A=0.434,读数相对误差最小; 二、有机化合物结构辅助解析structure determination of organic compounds 1. 可获得的结构信息 (1)200-400nm 无吸收峰。饱和化合物,单烯。(2)270-350 nm有吸收峰(ε=10-100)醛酮n →π* 跃迁产生的R带。 (3)250-300 nm 有中等强度的吸收峰(ε=200-2000),芳环的特征吸收(具有精细解构的B带)。 (4)200-250 nm有强吸收峰(ε≥104),表明含有一个共轭体系(K)带。共轭二烯:K带(~230 nm);?β,α不饱和醛酮:K带~230 nm ,R带~310-330 nm 260nm,300 nm,330 nm有强吸收峰,3,4,5个双键的共轭体系。 2.光谱解析注意事项 (1) 确认λmax,并算出㏒ε,初步估计属于何种吸收带;

2014生物无机化学考试练习题

生物无机化学习题(2014-12-22) 1.写出十种生命必须元素的符号 2.写出组氨酸和半胱氨酸英文简写符号,画出这两种氨基酸侧链基团与金属离子配位的可能的模式。 3.哺乳类动物体内的血红蛋白和肌红蛋白的生理功能有什么不同?简述产生这种不同之处的原因。 4.举出四种不同的无机药物的名称(结构式、分子式或商品名均可),并说明它们的用途。 5.很多双原子分子具有生理作用,而它们生理作用有一部分通过和金属离子配位而实现的。画出双原子分子和金属离子配位的几种可能的模式。NO是美国《科学》杂志1992年命名的明星分子,可以在体内发挥信息传递的作用。用分子轨道法预测NO和金属离子结合的模式。 6.A)写出组氨酸和半胱氨酸英文简写符号,画出这两种氨基酸侧链基团与金属离子配位的可能的模式。 B) 画出多肽片段[gly-asp-ala-cys]结构图,预测哪个氨基酸侧链易和Fe3+结合, 为什么? 7.芳香环之间的弱相互作用有哪两种常见构型?用Hunter-Sanders规则予以定性解释,并说明这些弱相互作用的生物学上的意义。 8.画出下列几种金属-双氧物种的结合方式,并指出氧合血兰蛋白的活性中心采取的是哪一种构型 1) ”end-on” bent MO2 superoxo 2) trans-μ2-1,2-peroxo 3) cis-μ2-1,2-peroxo 4) μ2-η2,η2-peroxo 9.A)写出顺铂和金诺芬的分子式,指出它们的在医学上的用途。 B)指出下列疾病是由于什么金属离子(过量或缺乏)引起的? 日本水俣病,贫血,门凯氏病(Menkes disease), 威尔逊氏病(Wilson disease) 10.CO与人血红蛋白的结合能力比氧气和血红蛋白结合能力大210倍,而CO与血红素的结合能力要比氧气与血红素的结合能力大25000倍!请解释这种现象的生物学意义,并从生物无机化学的角度解释产生这种现象的原因。 11. 血红素是血红蛋白的载氧活性部位。画出血红素的结构图。实验表明:氧合

紫外吸收光谱的基本原理

紫外吸收光谱的基本原理,应用与其特点 紫外吸收光谱的基本原理 吸收光谱的产生 许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱 紫外光谱的表示方法 通常以波长入为横轴、吸光度 A (百分透光率T% )为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(l0/I1), 10 入射光强度, 11透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0 透光率T与吸光度A 的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度c成正比A= b e &为摩尔吸光系数,它是浓度为 1mol/L的溶液在1em的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;e为物质的浓度,单位为mol/L ; b为液层厚度,单位为cm。 在紫外吸收光谱中常以吸收带最大吸收处波长加ax和该波长下的摩尔吸收系数 max来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具 有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的 分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱?通常以波长入为横轴、吸光度 A (百分透光率T% )为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(I0/I1), I0 入射光强度, I1透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0 透光率T与吸光度A 的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度e成正比A= b e &为摩尔吸光系数,它是浓度为 1mol/L的溶液在1em的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;e为物质的浓度,单位为mol/L ;b为液层厚度,单位为em。 在紫外吸收光谱中常以吸收带最大吸收处波长加ax和该波长下的摩尔吸收系数 max来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的形状、?max和max与吸光分子的结构有密切的关系。各种有机化合形状、?max 和max与吸光分子的结构有密切的关系。各种有机化合物的?max和max都有定值, 同类化合物的e max比较接近,处于一个范围。 紫外吸收光谱是由分子中价电子能级跃迁所产生的。由于电子能级跃迁往往要引起分子 中核的运动状态的变化,因此在电子跃迁的同时,总是伴随着分子的振动能级和转动能级的跃迁。考虑跃迁前的基态分子并不是全是处于最低振动和转动能级,而是分布在若干不同的

生物无机化学的认识

生物无机化学的认识 生物无机化学是无机化学、生物化学、医学等多种学科的交叉领域。其研究对象是生物体内的金属(和少数非金属)元素及其化合物,特别是衡量金属元素和生物大分子配体形成的生物配合物,如各种金属酶、金属蛋白等。侧重研究它们的结构-性质-生物活性之间的关系以及在生命环境内参与反应的机理。 生物无机化学虽然听起来有些不实用,其实在生活中,我们经常可以看到一些运用了生物无机化学的地方。比如农业方面,我们熟知的化肥,就运用了生物无机化学的知识,农作物的生长发育,不仅需要常量营养元素,还需要如铁、锰、铜、锌、钼等微量元素,这些微量元素和氮、磷、钾同等重要,不可代替。同样,在我们熟知的一些保健品,像“脑白金”、“黄金搭档”等等,都是补充我们人体内的微量元素的保健食品。以我们最熟悉的钙来说,从小我们的父母就给我们补钙,喝牛奶、吃钙片等等方式,可见钙对于我们的重要性。人体缺钙,就容易腿软、抽筋、蛀牙,但钙多了也不行,人体内的钙过量容易得佝偻病。所以,微量元素虽然重要,但是也不能过多。 生物无机化学无疑正在迅速发展。生物无机化学主要分为两部分:一是研究生物体本身微量元素的作用,二是研究外界微量元素对机体的影响。 含有微量元素的蛋白是生物无机化学中偏向生物领域的研究对象,做此项研究主要依靠生物化学技术。含有微量元素的蛋白是微量元素与蛋白质形成的配合物,与酶的区别在于含有微量元素的蛋白并不表现催化活性,但却有其他的重要功能。现在的研究在于发现新的蛋白,确定其结构、性质。现在热门的蛋白有硒蛋白,因为硒蛋白是硒在体内存在和发挥生物功能的主要形式。硒的作用,主要在癌症、神经退行性疾病和病毒等方面,但结论不统一。现在主要在探索新的硒蛋白作为预防药物开发、癌症治疗和药物筛选靶标。如杜明等通过硫酸铵沉淀等方法,从富硒灵芝中获得了一种新的含硒蛋白,并研究了它的抗氧化活性与其硒含量间的关系。研究发现该蛋白的抗氧化活性与其硒含量具有相关性。 无机药物的发展在生物无机领域中有很重要的地位。顺铂的抗肿瘤作用的发现开辟了无机药物化学的新领域。在抗癌药物应用中,顺铂药物目前仍在临床上使用,主要有四种铂配合物:顺铂、卡铂、顺糖氨铂、奥沙利铂。从1980年发现二烃基锡衍生物具有抗癌活性以来,人们先后合成了具有顺铂结构的二烃基二卤化锡配合物,与卡铂结构类似的有机锡化合物,以及有机锡羧酸衍生物等等。在锗化合物方面,从发现1971年合成的β-羧基乙基锗倍半氧化物具有抗癌活性以来,人们先后合成了许多有机的锗化合物。此外还有茂钛衍生物和稀土配合物。因为癌症是人类健康寿命最主要的杀手,所以在抗癌药物的研究开发方面将有很大

紫外可见吸收光谱习题集及答案(20200925103547)

专业资料 值得拥有 一、选择题(共85题) 1. 2 分(1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 () (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 2 分(1019) 用比色法测定邻菲罗啉-亚铁配合物时 ,配合物的吸收曲线如图 1所示,今有a 、b 、 c 、 d 、 e 滤光片可供选用,它们的透光曲线如图 2所示,你认为应选的滤光片为 () 3. 2 分(1020) 欲测某有色物的吸收光谱,下列方法中可以采用的是 () (1) 比色法 (2) 示差分光光度法 (3)光度滴定法 (4) 分光光度法 4. 2 分(1021) 按一般光度法用空白溶液作参比溶液,测得某试液的透射比为 10% ,如果更改参 比溶液,用一般分光光度法测得透射比为 20%的标准溶液作参比溶液,则试液的透 光率应等于 () (1) 8% (2) 40% (3) 50% ⑷ 80% 5. 1 分(1027) 邻二氮菲亚铁配合物,其最大吸收为 510 nm ,如用光电比色计测定应选用哪一种 滤光片? () (1)红色 (2) 黄色 (3) 绿色 (4) 蓝色 6. 2 分(1074) 下列化合物中,同时有 n →d , τ→d , C →

紫外可见光谱及其应用(结合文献)

紫外-可见吸收光谱法 UV-Vis Spectrophotometer UV-Vis Spectrophotometer 主要内容 紫外-可见吸收光谱法的原理 紫外-可见吸收光谱法 紫外-可见分光光度计构造 紫外-可见分光光度计的应用 UV-Vis Spectrophotometer 基本原理:光的选择性吸收 紫外-可见吸收光谱法 分子中的某些基团吸收了紫外可见辐射光后,发生了电 子能级跃迁,而产生了相应的吸收光谱。属分子吸收光谱。分子吸收光谱的分析方法。 紫外-可见吸收光谱分析是研究物质在紫外-可见光波下的 紫外-可见区可细分为: (1)10-200nm;远紫外光区(2)200-400nm;近紫外光区(3)400-800nm;可见光区 UV-Vis Spectrophotometer 光的吸收定律 1.朗伯比尔定律:A=kbc。 紫外-可见吸收光谱法 表明:一定温度下,一定波长的单色光通过均匀的、非散射的溶液时,溶液的吸光度与溶液的浓度和液层厚度的乘积成正比。 入射光 I0 透射光 It A=kbc 式中: A:吸光度;描述溶液对光的吸收程度; k:摩尔吸光系数,单位 L mol-1 cm-1; b:液层厚度(光程长度),通常以cm为单位; c:溶液的摩尔浓度,单位 mol L-1; UV-Vis Spectrophotometer

紫外-可见吸收光谱法 紫外-可见吸收光谱与分子结构 (一)电子跃迁类型 (1)电子类型 形成单键的σ电子形成双键的π电子未成对的孤对电子n电子 C-H C-C C=C C=O C=O s H C H O p n UV-Vis Spectrophotometer 紫外-可见吸收光谱法 π*、n 能量高低σ<π<n<π*<σ* 分子轨道有σ、σ*、π、 σ* π* n →σ* π→π* n→π*跃迁 n π 能量 σ→σ* 其中σ-σ* 跃迁所需能量最大,n-π*及配位场跃迁所需能量最小,因此,它们的吸收带分别落在远紫外和可见光区。从图中纵坐标可知π-π*及电荷迁移跃迁产生的谱带强度最大,π-π*、nσ*跃迁产生的谱带强度次之,配位跃迁的谱带强度最小。

生物无机化学与健康

生物无机化学与健康 生物无机化学是近年来在无机化学和生物学的边缘上发展起来的一门新兴科学。生物无机化学与人类的健康息息相关,而人的健康又与生物无机化学中的微量元素有密切关系, 它们对维持机体的平衡和健康, 各自发挥着至关重要的作用。本文仅阐述锌这种微量元素对人的健康作用。 锌( Zn) 是人体必需的营养元素, 正常人体内含锌量为2~ 3 g , 绝大部分组织中都有极微量的锌分布, 其中肝脏、肌肉和骨骼中含量较高。血浆中锌的浓度是10~ 20 mol/ L,其中60%与血清白蛋白结合, 30% ~ 40%与α-巨球蛋白结合, 少量与氨基酸结合。Zn 对生长发育、免疫功能、消化功能、生殖功能和物质代谢等均有重要作用。锌在人体内的含量对身体健康至关重要, 缺乏或过量均会对人体造成危害。本文主要概述锌对人体健康的生理效应及缺乏的防治途径, 以期对日常生活中合理科学的补充锌提供一些理论依据。 一、锌的生理效应 1、锌影响正常的生长发育 锌可通过直接作用于中枢神经系统和改变受体对神经递质的反应性而控制食欲, 由此改变味觉、嗅觉等功能, 导致厌食和体重减轻。锌参与基因表达和内分泌功能, 并在DNA、RNA 合成和细胞分化中发挥重要作用。同时, 锌还参与促进骨骼生长的激素, 对骨骼生长发育起着积极的作用。另外, 锌还参与生长激素合成和分泌。因此, 促生长因子C 不仅有赖生长激素的刺激, 而且需要有锌的存在。据报道, 锌对生长激素的合成及噬菌体T4 转为噬菌体T3 均有直接作用, 故对身高的影响较为明显。因此, 缺锌将影响儿童正常的生长发育。 目前, 锌与行为的关系日益受到重视,资料指出,人体缺锌将引起昏睡、表情淡薄、性行为减退, 探究行为减少以及学习能力降低, 脑中锌的含量远高于机体其他部位。近几十年来研究发现, 锌缺乏和不足可以影响脑发育和智能。低锌或高锌明显影响幼脑的发育及脑功能, 急性锌缺乏使实验动物和人脑功能受损。锌对脑发育的影响主要发生在神经系统发育的初期( 胚胎期及出生后一定时期内) , 这也正是神经系统发育成熟的关键时期。在这一时期, 锌对神经细胞的增殖、DNA 的复制用户蛋白质合成影响较大, 之后, 锌主要影响神经细胞的蛋白质合成, 进而影响细胞结构和功能。 锌对小儿神经系统的发育有不可忽略的影响, 如果缺乏或减少就会影响大脑中一些生要酶( 如细胞色素氧化酶、多巴胺- B羟化酶和过氧化物岐化酶) 的活性, 使脑的结构发生改变, 从而产生智力低下、反应迟钝、学习能力下降。长期的锌缺乏与儿童生长限制有关已得到充分证实。缺锌对生长发育期儿童影响是最突出, 出现的症状有: 生长迟缓、脑垂体调节机能障碍, 食欲不振,嗅觉与味觉减退, 创伤难愈合, 易感染, 肝脾肿大、贫血症、嗜睡症。还造成性器官发育不全, 性机能降低。缺锌还能影响脑垂体使相应的促性腺激素、生长激素等分泌不足而间接作用于生殖系统。 2、锌异常影响免疫功能, 减弱抵抗力 锌是参与免疫功能的一种重要元素, 能增强体液及细胞的免疫功能。缺锌可以通过对与锌有关的酶不良影响而造成生长停滞、散在性全身性皮肤病变、腹泻、脱发、精神障碍、男性机能减退和易感染,由于反复感染能造成继发的免设功能受损。缺锌也可短暂地损伤B 淋巴细胞,从而影响体液免疫应答。缺锌还能造成迟发性皮肤过敏反应受到损伤。与此同时,大量的锌也能抑制吞噬细胞的活性和杀菌力,从而降低人体的免疫功能, 使抵抗力减弱, 对疾病异感性增加。锌是淋巴细胞凋亡的一个重要调节因子, 缺锌使胸腺萎缩, 淋巴细胞减少, 且因凋亡机制改变淋巴细胞产物, 使前细胞丧失。锌摄入量不足会很快消弱细胞核抗体介导的免疫,使人体对病菌的抵抗力下降, 白细胞杀菌趋向性降低,同时会降低人体中“T”细胞的功能, 出现伤口不能愈合、身体瘦弱、食欲不好、易患感冒等状况。可见, 锌在完善人体

紫外光谱仪的原理及应用

紫外光谱仪的原理及应用 一、基本原理 利用紫外-可见吸收光谱来进行定量分析由来已久,可追溯到古代,公元60年古希腊已经知道利用五味子浸液来估计醋中铁的含量,这一古老的方法由于最初是运用人眼来进行检测,所以又称比色法。到了16、17世纪,相关分析理论开始蓬勃发展,1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的朗伯-比尔定律。 紫外-可见吸收光谱的形成 吸光光度法也称做分光光度法,但是分光光度法的概念有些含糊,分光光度是指仪器的功能,即仪器进行分光并用光度法测定,这类仪器包括了分光光度计与原子吸收光谱仪(AAS)。吸光光度法的本质是光的吸收,因此称吸光光度法比较合理,当然,称分子吸光光度法是最确切的。 紫外-可见吸收光谱是物质中分子吸收200-800nm光谱区内的光而产生的。这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级跃迁(原子或分子中的电子,总是处在某一种运动状态之中。每一种状态都具有一定的能量,属于一定的能级。这些电子由于各种原因(如受光、热、电的激发)而从一个能级转到另一个能级,称为跃迁。)当这些电子吸收了外来辐射的能量就从一个能量较低的能级跃迁到一个能量较高的能级。因此,每一跃迁都对

应着吸收一定的能量辐射。具有不同分子结构的各种物质,有对电磁辐射显示选择吸收的特性。吸光光度法就是基于这种物质对电磁辐射的选择性吸收的特性而建立起来的,它属于分子吸收光谱。跃迁所吸收的能量符合波尔条件: 二、应用范围 紫外-可见分光光度计可用于物质的定量分析、结构分析和定量分析。而且还能测定某些化合物的物理化学参数,如摩尔质量、配合物的配合比例和稳定常熟、酸碱电离常数等。 1.定性分析 紧外-可见分光光度法对无机元素的定性分析应用较少,无机元素的定性分析可用原子发射光谱法或化学分析的方法。在有机化合物的定性鉴定和结构分析中,由于紫外-可见光谱较简单,特征性不强,因此该法的应用也有一定的局限性。但是它适用于不饱和有机化合物。尤其是共轭体系的鉴定,以此推断未知物的骨架结构。此外,可配合红外光谱、核磁共振波谱法和质谱法进行定性鉴定和结构分析,因此它仍不失为是一种有用的辅助方法。 一般有两种定性分析方法,比较吸收光谱曲线和用经验规则计算最大吸收波长λmax,然后与实测值进行比较。 2.结构分析

生物无机化学思考题

什么是生物体的必需元素和有害元素?区分必需元素和有害元素的标准1一 是什么?)宏量元素都是必需元素;而微量元素不一定都是必需元素。必需微(1 F 、、V、Sn、、Cu、Mn、Cr、Mo、Co、SeNi 量元素:Fe、Zn 、. B)Sr(SiI、、有害元素:指哪些存在于生物体内时,会阻碍生物机体正常代谢过程和影响生理功能的微量Be等Pb 、As 、元素,如:Cd 、Hg、 该元素直接影响生物体的生物功能,并参与正常代谢过程。)条件(1)(2 )该元素在生物体内的作用不可能被其它元素所代替。(2)缺乏该元素时,生物体内会发生某种病变,补充该元素时,可防止3(异常的发生或使其恢复正常。你如何理解这种看起来矛有的元素既是人体必需的,又是对人体有害的,2. 盾的现象?。即它们既是必需的,又是有害的。“双重品格”是生物体重要的微量元素,对肿瘤有抑制作用,成人每(元素浓度)Se例 ,可能引起癌症、心肌损伤等;但过gg。若长期低于50μμ天摄取量为100 量摄取又可能造成腹泻、神经官能症及缺铁性贫血等中毒反应,甚至死亡。铁是重要的必需微量元素,正常人体内的铁几乎全部(元素存在形式)如 被限制在特定的生物大分子结构包围的封闭状态之中,这样的铁才能担负正常的生理功能3生物体内的宏量元素包括哪些?举例说明生物体内的微量元素。Mg 、Na 、Ca、、N、P S、Cl、K、C: 宏量元素11种、H、O 宏量元素是指含量占生物体总质量%以上的元素。、、Mn、FeCu、Zn 微量元素:指含量占生物体总质量%以下的元素。Cr 、Se 、I 、Mo 、Si等 4. 必需微量元素具有哪些主要的生物功能?举例说明。 (硒)对免疫系统的影响 1973年证明硒是代谢过氧化氢的酶—谷胱甘肽过氧化物酶(GSHPX)的必需成分。硒参与过氧化物的代谢,体内各种吞噬细胞如中性粒细胞、单核细胞、吞噬细胞中均含有GSHPX。 硒对细胞保持氧化还原的平衡和清除活性氧起重要作用,最起码的作用是延缓衰老。硒缺乏所致的免疫系统的改变与肿瘤的易患性增加,一些慢性炎症及病毒性疾病的发生与此有关 锌与免疫 锌缺乏可削弱免疫系统功能,导致机体对多种致病因素易感性增高,而许多种疾病可导致锌缺乏而影响免疫系统功能。这些疾病包括酒精中毒、肾病、烧伤、消化道 功能紊乱以及HIV感染和腹泻。 锌对免疫系统作用包括对淋巴细胞成熟、细胞因子产物、细胞凋亡及基因表达的影. 响等方面。锌缺乏可导致胸腺萎缩和淋巴细胞减少。儿童缺锌可导致发育缓慢,甚至影响大脑发育。 铁与免疫 实验表明缺铁时中性白细胞的杀菌能力降低,淋巴细胞功能受损,在补充 铁后免疫功能可能可以得到改善。铁过剩和缺铁时均可引起机体感染性增加,微生物生长繁殖也需要铁的存在,有时补铁会增加感染的危险性什么是微量元素的拮抗和协同作用?它们有何生物学意义?5. 拮抗作用:指生物体内的一种元素抑制另一种元素的生物学作用的现象。协同作用:指一种元素促进生物体内另一种元素的生物学作用的现象。CuCu和Zn呈

实验1紫外-可见吸收光谱实验报告

实验一:紫外-可见吸收光谱 一、实验目的 1.熟悉和掌握紫外-可见吸收光谱的使用方法 2.用紫外-可见吸收光谱测定某一位置样品浓度 3.定性判断和分析溶液中所含物质种类 二、实验原理 紫外吸收光谱的波长范围在200~400,可见光吸收光谱的波长在400~800,两者都属于电子能谱,两者都可以用朗伯比尔(Lamber-Beer’s Law)定律来描述 A=ε bc 其中A为吸光度;ε为光被吸收的比例系数;c为吸光物质的浓度,单位mol/L; b为吸收层厚度,单位cm 有机化合物的紫外-可 见吸收光谱,是其分子中外 层价电子跃迁的结果,其中 包括有形成单键的σ电子、 有形成双键的π电子、有未 成键的孤对n电子。外层 电子吸收紫外或者可见辐 射后,就从基态向激发态(反键轨道)跃迁。主要有四种跃迁,所需能量ΔE 大小顺序为σ→σ*>n→σ*>π→π>n→π*

三、实验步骤 1、开机 打开紫外-可见分光光度计开关→开电脑→软件→联接→M(光谱方法)进行调节实验需要的参数:波长范围700-365nm 扫描速度高速;采样间隔:0.5nm 2、甲基紫的测定 (1)校准基线 将空白样品(水)放到比色槽中,点击“基线”键,进行基线校准 (2)标准曲线的测定 分别将5ug/ml、10ug/ml 、15ug/ml 、20ug/ml甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始”键,进行扫描,保存 (3)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 3、甲基红的测定 (1)校准基线

将空白样品(乙醇)放到比色槽中,点击“基线”键,进行基线校准 (2)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 四、实验结果 1.未知浓度的测定 分别测定了5μg/ml,10μg/ml,15μg/ml,20μg/ml和未知浓度的甲基紫溶液的紫外吸收光谱,紫外吸收谱图如下: 甲基紫在580nm是达到最大吸收见下表: 浓度/μg*ml-1吸光度 50.665 10 1.274 15 2.048 20 2.659

生物无机化学的应用

生物无机化学的应用 化学化工学院12化本3班洪璐2012364353 生物无机化学是建立在生物学与无机化学基础上的一门新兴的边缘学科。其研究对象从广义来讲,是在分子水平上探讨无机元素及其化合物与生物体的相互作用。生物无机化学的任务之一是应用无机化学的理论和实验技术研究生物体系中无机金属离子的行为,从而阐明金属离子和生物大分子形成配合物的结构与功能的关系。另一任务是用比较简单的化学模型对复杂的生物催化现象进行模拟研究,即模型研究。 近10余年来,生物无机化学的研究主要集中在金属离子活化酶的领域及金属蛋白的结构、性质、功能和升华反应机理方面。用最新的升华理论设计某些金属离子的配合物的催化反应模型,以探索生命金属元素在生物体中的存在方式、状态及对生命运动的作用机理,诸如基因转移、氧化还原或水解过程。 1 微量金属离子在医学中的应用 生物无极化学的研究成果表明:人体必需的金属离子主要是以配合物的形式存在于人体内,它是控制体内政策代谢活动的关键因素。但是,人体必需的金属元素在体内的存在量有严格的浓度范围,眼中地缺乏或过量都会引起疾病。 1.1 微量元素铜锌与癌症 研究表明,90%以上的癌症与环境有关。病人癌组织的微量元素谱往往发生变化,其中铜锌与癌症的关系最为重要。对肝癌、胃肠道癌、女性生殖器官肿瘤等多种患者的血清分析都得出一致的结论:恶性肿瘤患者血清Zn/Cu比值明显低于常人,而进行手术摘除恶性组织或药物治疗后,患者血清中Zn/Cu比值回升。因此,有人认为血清中的Zn/Cu可反映肿瘤恶性程度及判别患者愈后状况。 1.2 微量元素与眼科 目前,微量元素与眼科研究主要集中于微量元素在白内障发生、发展中所起的作用。白内障者晶体中Zn、Cu含量较正常晶体含量少,Ca、Se含量增加,血清中锌含量减少,Mg、Ca含量增加。 1.3 微量元素钴和铁 钴是维生素B12分子的一个必要组成部分。维生素B12能促进血红球的增加和肌肉蛋白的合成。根据实验,如果草饲料中缺少钴,将会引起严重的脱毛症,然而,只要在饲料中加

紫外可见吸收光谱仪原理及使用

紫外可见吸收光谱仪 分光光度法分析的原理是利用物质对不同波长光的选择吸收现象来进行物质的定性和定量分析,通过对吸收光谱的分析,判断物质的结构及化学组成。本仪器是根据相对测量原理工作的,即选定某一溶剂(蒸馏水、空气或试样)作为参比溶液,并设定它的透射比(即透过率T)为100%,而被测试样的透射比是相对于该参比溶液而得到的。透射比(透过率T)的变化和被测物质的浓度有一定函数关系,在一定的范围内,它符合朗伯—比耳定律。 T=I/Io A=KCL=‐㏒I/Io 其中T 透射比(透过率) A 吸光度 C 溶液浓度K 溶液的吸光系数L 液层在光路中的长度 I 光透过被测试样后照射到光电转换器上的强度 Io 光透过参比测试样后照射到光电转换器上的强度 1. 液晶显示器:用于显示测量信息、参数及数据。 2. 键盘:共有八个触摸式按键,用于控制和操作仪器 3. 样品室:用于放置被测样品。

基本操作步骤: 连接仪器电源线,确保仪器供电电源有良好的接地性能。接通电源,使仪器预热30分钟。若要实现精确测试或作全性能检查,请再执行一次自动校正功能。在仪器与电脑非连接状态时,按<方式>键5秒左右,待显示器显示“SELFTESTING FILTER”后松手,至仪器自动校正后,显示器显示“XXX..Xnm 0.000A”即可进行测试。用<方式>键设置测试方式,透射比(T),吸光度(A)用<设置>键和<∧>键或< ∨>键设置您想要的分析波长。如没有进行上步操作,仪器将不会变换到您想要的分析波长。根据分析规程,每当分析波长改变时,必须重新调整0ABS/100%T。 UV-2102C/PC/PCS型紫外可见分光光度计根据这一规程,特别设计了防误操作功能:当波长改变时,显示器第二列会显示“WL=×××.×nm”字样,(设置波长)与第一列左侧显示“×××.×nm”(当前波长)不一致时,提示您下步必须按<确认>键,显示器第一列右侧会显示“BLANKING”,即仪器变换到您所设置的波长及调0ABS/100%T。 根据设置的分析波长,选择正确的光源。光源的切换位置在340.0nm处。正常情况下,仪器开机后,钨灯和氘灯同时点亮。为延长光源灯的使用寿命,仪器特别设置了光源灯开关控制功能,当您的分析波长在340.0nm-1000nm时,应选用钨灯。将您的参比样品溶液和被测样品溶液分别倒入比色皿中,打开样品室盖,将盛有溶液的比色皿分别插入比色皿槽中,盖上样品室盖。一般情况下,参比样品放在第一个槽位中。仪器所附的比色皿,其透射比是经过配对测试的,未经配对处理的比色皿将影响样品的测试精度。比色皿透光部分表面不能有指印、溶液痕迹,被测溶液中不能有气泡、悬浮物,否则也将影响样品测试的精度。将参比样品推(拉)入光路中,按<0ABS/100%T>键调0ABS/100%T。此时显示器显示的“BLANKING”,直至显示“100.0”%T或“0.000A”为止。 当仪器显示器显示出“100.0%T”或“0.000A”后,将被测样品推(或拉)入光路,这时,您便可以从显示器上得到被测样品的测试参数。根据您设置的方式,可得到样品的透射比或吸光度参数。

生物无机化学汇总

生物无机化学姓名:崔慧慧 学号:C14201008 专业:无机化学

碳酸钙的仿生合成 摘要:碳酸钙矿物材料广泛分布于大自然,具有环境协调性和相容性。生物矿化过程形成的材料具有特定的生物学功能,因此人们通过不同途径进行仿生合成,尤其是碳酸钙的仿生合成。本文主要介绍了碳酸钙仿生合成的方法,如加入添加剂、双模板法等,制备得到不同形貌和不同晶型的的碳酸钙晶体。通过研究不同方法合成碳酸钙为真正意义上的生物矿化提供一定的理论依据。 关键字:生物矿化碳酸钙仿生合成 Abstract:The materials through Biomineralization have a specific biological function, so people try to synthesis it by finding different ways, especially the biomimetic synthesis of calcium carbonate. In this paper, many methods of biomimetic synthesis of calcium carbonate are mainly introduced, such as adding additives, dual template method and so on, to obtained different morphogenesis and polymorphism of calcium carbonate. We study the different methods of calcium carbonate, in order to provide certain theoretical basis for biomineralization. Key words: biomineralization calcium carbonate 一、生物矿化及仿生合成 生物矿化广泛存在于大自然中,生物体经过长时间进化,会在身体的某些部位生成矿物组织,这些矿物组织在某些方面形成了性能优异的生物材料。生物矿化的种类已超过60种,它们的组成各异,并赋有特定的生物学功能。生物矿化的优点是它的过程是一个天然存在的高度控制过程,受生物机体内在机制调制,可以实现从分子水平到介观水平上对晶体形状、大小、结构、位向和排列的精确控制和组装,从而形成复杂的分级结构。生物矿化的一个重要特点就是自组装的有机聚集体或超分子模板通过材料复制而转变为有序化的无机结构,因此有机基质在生物矿化过程中具有非同寻常的作用,有机基质在水溶液环境中通过自组装过程形成胶束、反胶束、囊泡、微乳液、泡沫、溶致液晶等结构,为生物矿物的形成提供微环境或模板;有机基质也可以作为可溶性添加剂,在晶体生长过程中,能吸附在特定的晶面上或能结合与其电荷相反的游离离子,从而改变晶体的生长速[1]。生物矿化可分为四个阶段,有机大分子预组织。在矿物沉积前构造一个有组织的反应环境,该环境决定无机物成核的位置;界面分子识别。在已形成的有

生物无机化学复习题目(含答案)

2014级生物无机化学复习题目(黄老师部分) 1、什么是生命必需元素?简述作为生命元素必须满足哪些条件? 必需元素可以这样定义:它们的缺乏会导致生物组织严重的、不可逆的损伤。 必需元素应该满足以下几个条件: ①这些元素在不同组织中均有一定浓度; ②除去这些元素会造成生物组织在生理或结构上的不正常; ③这些元素的存在能够使生物生理或结构的不正常现象消失或预防不正常现象的产生; ④这些元素应有专门的生理功能。 2、根据生物学功能分类,简述并举例金属蛋白主要涉及哪几种类型? ①具有催化功能的蛋白质——酶。生命体内的化学反应几乎都是在生物催化剂的催化下完成的,而酶是生物催化剂中最重要的一类物质。金属酶的结构、功能、催化机理及其模拟构成了生物无机化学的主体部分。 ②具有运输功能的蛋白质。这类蛋白质在生物体系中结合并携带着特殊的分子或离子从一个部位到另一个部位,如:运铁蛋白、载氧蛋白等。 ③具有营养储存功能的蛋白质。它们将氨基酸、金属离子等营养物质储存并使之用于生物体的生长、发育等过程,如:铁蛋白。 ④具有结构功能的蛋白质。它们作为机体的支架和结构成分参与细胞组织的形成。细胞膜、线粒体、叶绿体、头发、指甲等都有蛋白质或脂质组成。 ⑤具有防御功能的蛋白质。它们能够起到抵御有害物质的侵袭、保护生物体的作用。免疫球蛋白、超氧化物歧化酶等属于这类蛋白质。 ⑥具有调控功能的蛋白质。它们能起到调节或控制细胞生长、分化以及遗传信息的表达作用,如:胰岛素、锌指蛋白等。 3、蛋白质由多少种氨基酸组成?在结构上的主要区别是什么?根据侧链的不同,主要可以分为哪些类型?氨基酸与金属离子配位的主要基团有哪些? 参与组成蛋白质的氨基酸有20种。这些氨基酸的区别在于各自不同的侧链基团。根据侧链的不同,这些氨基酸可以被分为以下几种: ①含非极性、脂肪族侧链的氨基酸:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸; ②含极性、不带电荷的侧链的氨基酸:丝氨酸、苏氨酸、半胱氨酸、蛋氨酸、组氨酸、天冬氨酸、谷酰胺酸; ③含芳香族侧链的氨基酸:苯丙氨酸、酪氨酸、色氨酸 ④带正电荷侧链的氨基酸:赖氨酸、精氨酸; ⑤带负电荷侧链的氨基酸:天冬氨酸、谷氨酸。 4、DNA的主要结构形式有几种?其中B型在结构上有什么特点? DNA的主要结构形式有B型、A型和Z型。最常见的结构为B型,其结构特点是: ①两条反向平行的多核苷酸链围绕同一中心轴,向右盘旋形成右手双螺旋结构; ②分子以大沟和小沟交替缠绕; ③平行的碱基对之间的平均距离为3.4 A; ④碱基中的糖环采取C2’向内的折叠形式; ⑤双螺旋的骨架是由磷酸和脱氧核糖组成的,位于外侧;碱基位于双螺旋结构内侧,配对平行,与轴垂直。 ⑥碱基按互补配对原则进行配对:A与T配对,之间形成2个氢键;C与G配对,之间形成3个氢键。

紫外光谱的应用

紫外光谱分析的应用 摘要:紫外吸收法是基于物质对不同波长的紫外光的吸收来测定物质成分和含量的方法。紫外光谱法能够适用于不饱和有机化合物,尤其是共轭体系的鉴定,以此推断未知物的骨架结构,对从分子水平去认识物质世界,推动近代有机化学的发展是十分重要的。采用现代仪器分析方法,可以快速、准确地测定有机化合物的分子结构。近年来紫外光谱在很多方面的研究与应用十分活跃,对实际工作取得了较好的效果。文章综述了近年来紫外光谱法的应用及发展动态。 关键词:紫外光谱;应用;检测 1、前言 光谱学的研究已有一百多年的历史了。1666年,牛顿把通过玻璃棱镜的太阳光分解成了从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的。这是可算是最早对光谱的研究。其后一直到1802年,渥拉斯顿观察到了光谱线,其后在1814年夫琅和费也独立地发现它。牛顿之所以没有能观察到光谱线,是因为他使太阳光通过了圆孔而不是通过狭缝。在1814~1815年之间,夫琅和费公布了太阳光谱中的许多条暗线,并以字母来命名,其中有些命名沿用至今。此后便把这些线称为夫琅和费暗线。 实用光谱学是由基尔霍夫与本生在19世纪60年代发展起来的;他们证明光谱学可以用作定性化学分析的新方法,并利用这种方法发现了几种当时还未知的元素,并且证明了太阳里也存在着多种已知的元素。从19世纪中叶起,氢原子光谱一直是光谱学研究的重要课题之一。在试图说明氢原子光谱的过程中,所得到的各项成就对量子力学法则的建立起了很大促进作用。这些法则不仅能够应用于氢原子,也能应用于其他原子、分子和凝聚态物质。 具有光学活性的化合物,在紫外—可见光区( 200 ~800 nm) 范围内,吸收一定波长的光子后,其价电子在分子的电子能级之间跃迁,由此而产生的分子吸收光谱被称为紫外—可见吸收光谱,简称紫外光谱[1]。紫外光谱与电子跃迁有关,在分子中用分子轨道来描述其中电子的状态,分子轨道可以看作是由对应的原子轨道以线性组合而成的,组成分子的两个原子其原子轨道线性组合,就形成了两个不同的分子轨道。其中轨道能量低的为成键分子轨道,是由两原子轨道相加而形成的,另一轨道能量高的为反键分子轨道,是由两原子轨道相减而成的。组成键的两个电子均在能量低的成键分子轨道中,一个自旋向上,一个自旋向下,此状态为分子的基态,但当成键的两个电子分别处在成键分子轨道和反键分子轨道时,分子便处在高能态。当分子受到紫外光的照射,并且紫外光的能量恰好等于分子基态与高能态能量的差额时,就会发生能量转移,从而使电子发生跃迁。当电子从基态向激发态某一震动能级跃迁时,通常我们由基态平衡位置向激发态做垂线,若与某一震动能级的波函数最大处相交,即说明在这个能级电子跃迁的概率最大。当电子能级改变时,振动能级和转动能级也不可避免地会有变化,即电

生物无机习题

生物无机化学习题 第1章 1.简述生物无机化学的概念? 生物无机化学是利用现代无机化学、配位化学和量子化学的理论和方法研究生体系中各种化学元素的反应机理和能量交换与代谢规律的学科。生物无机化学是一与无机化学、配位化学、医药化学、营养化学边缘学科、农业、地质学、环境科学生物化学等学科交叉的边缘学科。 2.什么是必需氨基酸和非必需氨基酸?并举几例。 必需氨基酸:指人(或其它脊椎动物)自己不能合成需要从食物中获得的氨基酸。如:苏氨酸、缬氨酸、亮氨酸、异亮氨酸、蛋氨酸、苯丙氨酸、色氨酸和赖氨等。非必需氨基酸:指人(或其它脊椎动物)自己能由简单的前体合成不需要从食中获得的氨基酸。如:丝氨酸、酪氨酸、半胱氨酸、天冬酰胺、脯氨酸、谷氨酰胺甘氨酸、丙氨酸等。 3.什么是肽键与肽? 肽键:一个氨基酸的羧基与另一个的氨基酸的氨基缩合,除去一分子水形成的氨键。 肽:两个或两个以上氨基酸通过肽键共价连接形成的缩合物。 4.氨基酸侧基对于蛋白质特殊微区形成有什么意义? 根据氨基酸侧基的不同对于蛋白质特殊微区的形成具有重要意义。表现在极性基丰富的链段可形成亲水微区;非极性侧基丰富的链段可行成疏水微区;碱性侧基酸性侧基为特异性结合提供可能的基团。具有配位作用的氨基酸侧基对于蛋白质与

属离子的作用提供了可能。 5.什么是蛋白质的一级结构? 是指多肽链的氨基酸残基的排列顺序,也是蛋白质最基本的结构。每一种蛋白分子都有自己特有的氨基酸的组成和排列顺序即一级结构。蛋白质的一级结构在一程度上决定了蛋白质的二级、三级等高级结构。 6.什么是蛋白质的二级结构?包含哪几种主要形式? 二级结构是指多肽链借助于氢键沿一维方向排列成具有周期性结构的构象,是肽链局部的空间结构(构象)。主要有α-螺旋、β-折叠、β-转角等几种形式它们是构成蛋白质高级结构的基本要素。 7.什么是蛋白质的超二级结构?包含哪几种主要形式? 超二级结构是介于蛋白质二级结构和三级结构之间的空间结构,指相邻的二级结单元组合在一起,彼此相互作用,排列形成规则的、在空间结构上能够辨认的二级构组合体,并充当三级结构的构件(block building)。其基本形式有αα、βα和βββ等。 8.什么是蛋白质三级结构? 三级结构主要针对球状蛋白质而言的,是指整条多肽链由二级结构元件构建成总三维结构,包括一级结构中相距远的肽段之间的几何相互关系,骨架和侧链在内的有原子的空间排列。

紫外可见吸收光谱在生物方面的应用

1.概述 人们在实践中早已总结出不同颜色的物质具有不同的物理和化学性质。根据物质的这些特性可对它进行有效的分析和判别。由于颜色本就惹人注意,根据物质的颜色深浅程度来对物质的含量进行估计,可追溯到古代及中世纪。1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的比尔朗伯定律。1854年,杜包斯克(Duboscq)和奈斯勒(Nessler)等人将此理论应用于定量分析化学领域,并且设计了第一台比色计。到1918年,美国国家标准局制成了第一台紫外可见分光光度计。此后,紫外可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,使光度法的灵敏度和准确度也不断提高,其应用范围也不断扩大。 紫外可见分光光度法从问世以来,在应用方面有了很大的发展,尤其是在相关学科发展的基础上,促使分光光度计仪器的不断创新,功能更加齐全,使得光度法的应用更拓宽了范围。目前,分光光度法已为工农业各个部门和科学研究的各个领域所广泛采用,成为人们从事生产和科研的有力测试手段。我国在分析化学领域有着坚实的基础,在分光光度分析方法和仪器的制造方面国际上都已达到一定的水平[1][2] 2.原理

物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。 紫外可见分光光度法的定量分析基础是朗伯-比尔(Lambert-Beer)定律。即物质在一定浓度的吸光度与它的吸收介质的厚度呈正比,其数学表示式如下: A=錬c 式中:A—吸光度(又称光密度、消光值), ?—摩尔吸光系数(其物理意义为:当吸光物质浓度为1摩尔/升,吸收池厚为1厘米,以一定波长原光通过时,所引起的吸光值A),b—吸收介质的厚度(厘米),c—吸光物质的浓度(摩尔/升)。 物质的颜色和它的电子结构有密切的关系,当辐射(光子)引起电子跃迁使分子(或离子)从基态上升到激发态时,分子(或离子)就会在可见区或紫外呈现吸光,颜色的发生或变化是和分子的正常电子结构的变形联系的。当分子中含有一个或更多的生色基因(即具有不饱和键的原子基团),辐射就会引起分子中电子能量的改变。常见的生色团有:CO,-N=N-,-N=O,-C N,CS

相关文档
最新文档