功分器耦合器电桥原理与分析

功分器耦合器电桥原理与分析
功分器耦合器电桥原理与分析

功分器、耦合器、电桥原理与分析

2010-05-21 13:00

本文主要介绍通信链路上的部分无源器件,介绍器件的外观、作用、种类、主要技术指标定义和范围等。

1功分器

1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。

2)种类:功分器一般有二功分、三功分和四功分3种。

功分器从结构上分一般分为:微带和腔体2种。腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是

几条微带线和几个电阻组成,从而实现阻抗变换.

主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。

以下对各项指标进行说明:

l 分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。

(因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测

得与理论值接近的分配损耗)

耦合器和三功分器图示

分配损耗的理论计算方法:如上图所示。比如有一个30dBm的信号,转换成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话,

每份功率=1000÷3=333.33毫瓦,将333.33毫瓦转换成dBm=

10lg333.33=25.2dBm, 那么理想分配损耗=输入信号-输出功率=30-

25.2=4.8dB,同样可以算出2功分是3dB,4功分是6dB

l 插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率

通过实际功分器后输出的功率和原输入信号相比所减小的量)。插入损

耗的取值范围一般腔体是:0.1dB以下;微带的则根据二、三、四功分

器不同而不同约为:0.4~0.2dB、0.5~0.3dB、0.7~0.4dB。

插损的计算方法:通过网络分析仪可以测出输入端A到输出端B、C、D

的损耗,假设3功分是5.3dB,那么,插损=实际损耗-理论分配损耗=

5.3dB-4.8dB=0.5dB.

微带功分器的插损略大于腔体功分器,一般为0.5dB左右,腔体的一般为

0.1dB左右。由于插损不能使用网络分析仪直接测出,所以一般都以整

个路径上的损耗来表示(即分配损耗+插损):3.5dB/5.5dB/6.5dB等

来表示二/三/四功分器的插损。

l 隔离度:指的是功分器输出各端口之间的隔离,通常也会根据二、三、四功分器不同而不同约为:18~22dB、19~23dB、20~25dB。

隔离度可通过网络分析仪测,直接测出各个输出端口之间的损耗,如上图淡蓝色曲线所示,BC间,及 CD间的损耗。

l 输入/输出驻波比:指的是输入/输出端口的匹配情况,由于腔体功分器的输出端口不是50欧姆,所有对于腔体功分器没有输出端口的驻波要求,输入端口要求则一般为:1.3~1.4 甚至有1.15的;微带功分器则每个端

口都有要求,一般范围为输入:1.2~1.3 输出:1.3~1.4。

l 功率容限:指的是可以在此功分器上长期(不损坏的)通过的最大工作功率容限,一般微带功分器为:30~70W平均功率,腔体的则为:100~500W

平均功率。

l 频率范围:一般标称都是写800~2200MHz,实际上要求的频段是:824-960MHz加上1710~2200MHz,中间频段不可用。有些功分器还存在800~

2000MHz和800~2500MHz频段

l 带内平坦度:指的是在整个可用频段内插损含分配损耗的最大值和最小值之间的差值,一般为:0.2~0.5dB。

2耦合器

1) 耦合器的作用是将信号不均匀地分成2分(称为主干端和耦合端,也有的

称为直通端和耦合端)

2)种类:耦合器型号较多如5 dB、10 dB、15 dB、20 dB、25 dB、30 dB等。

从结构上分一般分为:微带和腔体2种。腔体耦合器内部是2条金属杆,组成的一级耦合.

微带耦合器内部是2条微带线,组成的一个类似于多级耦合的网络.

3主要指标:耦合度、隔离度、方向性、插入损耗、输入输出驻波比、功率容限、频段范围、带内平坦度。

以下对各项指标进行说明:

l 耦合度:信号功率经过耦合器,从耦合端口输出的功率和输入信号功率直接的差值。(一般都是理论值如:6dB、10dB、30dB等)

耦合器和三功分器图示

耦合度的计算方法:如上图所示。是信号功率 C-A 的值比如输入信号A为30dBm 而耦合端输出信号C为24dBm 则耦合度=C-A=30-24=6dB,所以此耦合器为6dB耦合器。因为耦合度实际上没有这么理想,一般有个波动的范围,比如标称为6dB的耦合器,实际耦合度可能为:5.5~6.5之间波动。

l 隔离度:指的是输出端口和耦合端口之间的隔离;一般此指标仅用于衡量微带耦合器。并且根据耦合度的不同而不同:如:5-10dB为18~23dB,15dB为20~25dB,20dB(含以上)为:25~30dB;腔体耦合器的隔离度非常好所以没有此指标要求。

计算方法:如上图指的是图中的淡蓝色曲线上的损耗,使用网络分析仪将信号由B输入,测C处减小的量即为隔离度。

l 方向性:指的是输出端口和耦合端口之间的隔离度的值再减去耦合度的值所得的值,由于微带的方向性随着耦合度的增加逐渐减小最后30dB以上基本没有方向性,所以微带耦合器没有此指标要求,腔体耦合器的方向

性一般为:1700~2200MHz时:17~19dB,824~960MHz时:18~22dB。

计算方法:方向性=隔离度-耦合度

例如6dB的隔离度是38dB,耦合度实测是

6.5dB,则方向性=隔离度-耦合度=38-6.5=31.5dB。

l 插入损耗:指的是信号功率经过耦合器至输出端出来的信号功率减小的值再减去分配损耗的值所得的数值。一般插损对于微带耦合器则根据耦合

度不同而不同,一般为:10dB以下的:0.35~0.5dB,10dB以上的:

0.2~0.5dB。

计算方法:由于实际上耦合器的内导体是有损耗的,如上图所示以6dB耦合器为例,在实际测试中假设输入A是:30dBm,耦合度实测是:6.5dB,

输出端的理想值是28.349dBm(根据实测的输入信号,和耦合度可以计

算得出),再实测输出端的信号,假设是27.849dBm,那么插损=理论输

出功率-实测输出功率=28.349-27.849=0.5dB;

l 输入/输出驻波比:指的是输入/输出端口的匹配情况,各端口要求则一般为:1.2~1.4;

l 功率容限:指的是可以在此耦合器上长期(不损坏的)通过的最大工作功率容限,一般微带耦合器为:30~70W平均功率,腔体的则为:100~200W

平均功率。

l 频率范围:一般标称都是写800~2200MHz,实际上要求的频段是:824-960MHz加上1710~2200MHz,中间频段不可用。有些功分器还存在800~

2000MHz和800~2500MHz频段

l 带内平坦度:指的是在整个可用频段耦合度的最大值和最小值之间的差值,微带一般为:0.5~0.2dB。腔体:由于耦合度是一条曲线,所以没有

此要求。

耦合损耗:理想的耦合器输入信号为A,耦合一部分到B,则输出端口C必定就要有所减少。耦合器和功分器均为无源器件,在工作中不使用电源(即不消耗能源),没有功率补充,因为能量是守恒的,输入信号与多个输出信号之和相等(不计插入损耗)。

计算方法是:首先将所以端口的“dBm”功率转换成“毫瓦”为单位表示,比如A输入端的功率原来是30dBm,转换成“毫瓦”是1000毫瓦,而耦合端的输出是

25.5dBm(先假设用的是6dB耦合器,并且6dB耦合器实际耦合度是6.5dB),将25.5dBm转换成毫瓦是:316.23毫瓦。再假设此耦合器没有其它损耗,那么剩下的功率应该是1000-316.23=683.77毫瓦,全部由输出端输出。将683.77毫瓦转换成“dBm”=28.349, 那么此耦合器的耦合损耗就等于输入端的功率(dBm)-输出端的功率(dBm)=30dBm-28.349dBm=1.651dB,这个值指的是耦合器没有额外损耗(器件损耗)的情况下的耦合损耗。

微带耦合器平坦度: 10dB以下一般为0.5dB,10~20dB一般为1.5dB,20~30一般为2.0dB

腔体耦合器的平坦度:由于腔体耦合器的耦合度是一条类似于抛物线的曲

线,所以平坦度非常差.实际使用中表示起来比较困难可以参考下表:

3合路器和电桥

1)作用:合路器的主要作用是将几路信号合成起来.

双频合路器照片电桥照片

2)种类:合路器分为双频合路器和电桥合路器2种。双频合路器分为

GSM/CDMA两网合路器和GSM/DCS两网合路器。

3)工作机理说明:双频合路器的工作原理类似于双工器,但要求被合成的信号不在同一频段范围内,比如G网和C网,G网和D网,有C网和D网之间的合路均可以才用双工合路器,而且双频合路器具有插损低(有的只有零点几dB)隔离度大(大于70~90dB) 等特点。由于C网二次谐波落在D网内,因此,C 网和D网的隔离度比其他种类的小约10 dB。

当被合路的信号在同一频段内是就只能采用电桥合路器了.电桥合路器有合路损耗,比如2合1有3dB的合路损耗,而且电桥合路器的隔离度远远低于双工合路器,一般只有20dB左右。

液力耦合器的工作原理

液力耦合器的工作原理 (一)液力耦器的结构: 液力耦合器是一种液力传动装置,又称液力联轴器。液力耦合器其结构主要由壳体、泵轮、涡轮三个部分。 泵轮和涡轮相对安装,统称为工作轮。在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。两者之间有一定的间隙(约 3mm 一 4mm ) ;泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。 (二)液力耦合器的安装方式: 液力耦合器的输入轴与电动机联在一起,随电动机的转动而转动,是液力耦合器的主动部分。涡轮和输出轴连接在一起,是液力耦合器的从动部分,与负载连在一起。 在安装时,液力耦合器安装在电动机与负载之间,通常由于负载较大,且与其它设备有联锁,采用将电机后移方案,在改造方案中需重新做电机的基础。 (三)液力耦合器的工作原理: 电动机运行时带动液力耦合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下随之一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在受到液压油冲击力而旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘,然后又被泵轮再次甩向外缘。液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮而形成循环的液流。液力耦合器中的循环液压油,在从泵轮叶片内缘流向外缘的过程中,泵轮对其作功,其速度和动能逐渐增大;而在从涡轮叶片外缘流向内缘的过程中,液压油对涡轮作功,其速度和动能逐渐减小。液压油循环流动的产生,是泵轮和涡轮之间存在着转速差,使两轮叶片外缘处产生压力差。液力耦合器工作时,电动机的动能通过泵轮传给液压油,液压油在循环流动的过程中又将动能传给涡轮输出。液压油在循环流动的过程中,除受泵轮和涡轮之间的作用力之外,没有受到其他任何附加的外力。根据作用力与反作用力相等的原理,液压油作用在涡轮上的扭矩应等于泵轮作用在液压油上的扭矩,这就是液力耦合器的工作原理。 (四)、液力耦合器的调速方法: 液力耦合器在实际工作中的情形是:电动机驱动泵轮旋转,泵轮带动液压油进行旋转,涡轮即受到力矩的作用,在液压油量较小时,当其力矩不足于克服载的起步阻力矩,所以涡轮还不会随泵轮的转动而转动,增加液压油,作用在涡轮上的力矩随之增大,作用在涡轮上的力矩足以克服负载起步阻力而起步,其液压油传递的力矩与负载力矩相等时,转速随之稳定。负载的的力矩和转速成平方比,当随着液压油量的增加,输出力矩加大,涡轮的转速随之加大,达到调节转速的目的。 油液螺旋循环流动的流速 VT 保持恒定, VL 为泵轮和涡轮的相对线速度, VE 为泵轮出口速度, VR 为油液的合成速度。涡轮高速转动,即输出和输入的转速接近相同时小,而合成速度 VR 与泵轮出口速度之的夹角很大,这使液流对涡轮很小,这将使输出元件滑动,速度降低。当将油液量加大,相对速度 VL 和合成速度 VR 都很这就使液流对涡轮叶片的推力变得直到有足够的循环油液对涡轮产生足够的冲击力,输出转速变高。 (五)液力耦合器的转换效率: 液力耦合器调速原理表明,传动速度的改变,实质是机械功率调节的结果。因此液力耦合器输出转速的降低,实际是输出功率减小。在调速过程中,液力耦合器的原传动转速没有发生变化,假设负载转矩不变,原传动的机械功率也不变,那么输入与输出功率的差值功率那里去了呢,显然是被液力耦合器以热能形式损耗掉了。

固态去耦合器的工作原理及使用方法

固态去耦合器的工作原理及使用方法 说到固态去耦合器,可能很多人都丌是很清楚其具体用途。实际上,固态去耦合器常常用在管道的阴极保护上,一般是用来延长管道的使用寿命。在管道的具体使用中有可能会发生一些故障,或者是雷雨等恶劣天气会影响其使用寿命,这就要用到固态去耦合器。那么,大家对于固态去耦合器的工作原理、具体作用了解吗?还有,固态去耦合器是如何安装的呢?对于这些问题的解答,请看下文分解。 固态去耦合器的作用 固态去耦合器的主要作用是起保护作用,也就是对管道阴极迚行保护,减少电路故障,以延长其使用寿命。这是因为管道的阴极保护系统存在着一些弊端,也就是电磁干扰多,或者说是耦合的杂散电流变多了。这些杂散电流在日常使用中所造成的干扰大,在很大程度上影响了管道的使用寿命。这样,固态去耦合器就应运而生了,它丌断能够有效排除丌符合阴极保护的电流,减少故障概率以及对通讯的干扰;还能防止雷电、雷雨等恶劣天气对管道的损坏。另外,固态去耦合器也能减少一些对人体丌利的因素。 固态去耦合器的工作原理 固态去耦合器的主要工作原理是运用整流装置来释放多余丌需要的电流以及压制电压,在这里,所针

对的电流和电压都是由交直流干扰引起的。另外,固态去耦合器还采用了响应快速的压敏电阻型电涌保护器和火花间隙型电涌保护器来排除电磁干扰以及雷雨恶劣天气的影响,并在这两种功能间迚行智能切换。还有,固态去耦合器采用了先迚的固态技术,在行业内颇受欢迎。 固态去耦合器的安装 固态去耦合器有两种安装方式,也就是地表安装和支架安装。其中,地表安装是将固态去耦合器的一端连接在管道上,另一端则连在接地网上,在这里要注意接地网的电阻值大小。还有,支架安装,是将固态去耦合器安装在防爆箱结构中,这种安装方式下的固态去耦合器的使用寿命会较地表安装长一下。

等分威尔金森功分器的设计与仿真

摘要 摘要 本文对一个等分威尔金森功分器进行了仿真,分析了功分器的基本原理,介绍了ADS软件基本使用方法,并选择了频率范围:0.9~1.1GHz,频带内输入端 口的回波损耗:C 11>20dB,频带内的插入损耗:C 21 <3.1dB,C 31 <3.1dB,两个输出端 口间的隔离度:C 23 >25dB为设计指标的等分威尔金森功分器。先进行威尔金森功分器原理图的设计,再用ADS软件进行原理图仿真,得出的结论采用理论计算的结果作为功分器参数时,功分器并没有达到所需设计的指标,所以要对功分器的各个参数进行优化。优化后所得到的最佳数据保存以后再进行功分器版图的仿真,各项指标基本达到设计所需的要求。 关键词:仿真,威尔金森功分器,ADS,优化

ABSTRACT ABSTRACT In this paper a power dividers quintiles Wilkinson is simulated, and analyzes the basic principle of power dividers, introduces the basic use ADS software method, and choose the frequency range: 0.9~GHz, frequency band 1.1 input ports C11 > 20dB return loss:, frequency band insertion loss: C21 < 3.1 dB, C31 < 3.1 dB, between the two output port C23 > 25dB isolation ratio: for the design index equal power dividers Wilkinson. First conducts the power dividers Wilkinson schematic design, reoccupy ADS software simulation principle diagram, the conclusion of the theoretical calculation result as parameters when power dividers power dividers did not reach the required design to index, so the power dividers various parameters were optimized. After optimization of the best data preserves received after power dividers again, and all the indexes of simulation territory to meet the design requirements of basic required. Key words:Simulation Wilkinson Power dividers ADS optimization

电子水处理器使用维护说明书

电子水处理器使用维护说明书 一、工作原理: 电子水处理技术是物理水处理方法的一种典型应用。该方法不改变水质结构,但却能改变水质特性,以满足暖通、空调或生产工艺的要求。功能:防垢、除垢杀菌、灭藻防腐、除锈 二、性能特点 1、对环境友好,无污染。 2、替代或节省投药,运行免维护,运行成本极低。 3、减小水流阻力,降低能耗。 4、提高设备工作效率。 5、延长管道及设备寿命。 6、减少停车检修、清洗时间和费用。 7、可避免传统的化学清晰无法清除干净的生物粘泥。 三、应用领域 电子水处理器广泛应用于: 1、空调系统:冷冻、冷却水循环系统 2、热水系统:热水采暖、生活热水系统 3、工业系统:循环冷却(闭式、开式)、直流冷却系统 1

四、安装 1、安装须知 (1)必须保证系统内所有水都能流经电子水处理。 (2)电子水处理器水流没有方向性,不分出入口,用户可根据需要自行设定出入口。 (3)采用电子水处理器还需另行安装过滤器。 (4)系列电子水处理器一般可不设旁路,另行安装的过滤器应定期对滤网进行反冲洗。 (5)电子水处理器无论是垂直、水平、倾斜安装均可。 (6)主机和副机可一体安装,也可分体安装。当分体安装时,则可把主机移装在便于观察和维护的地方,主副机间的连接同轴线一般不超过5米。 (7)新系统和结垢较严重的老系统,必须先清洗再安装。 (8)电子水处理器安装时请注意保护水处理器内阳极,切勿碰撞。 2、安装位置: 电子水处理器应安装在水泵出水口之后,靠近需处理的管道和用水设备。 2

(1)冷水机组型中央空调系统,在冷却循环水和冷媒水的管路上个安装一台电子水处理器。 (2)热泵机组型中央空调系统,在冷媒水管路上安装一台电子水处理器。 (3)工业冷却系统,城需要冷却的设备前管道上安装一台电子水处理器。 (4)热交换系统,在热回水管路和供冷水管道上安装一台电子水处理器。 (5)热水锅炉系统,在供冷却水管道和供热水管上安装一台电子水处理器。 电子水处理器设备所用的电源为220V/50HZ,只需要在电子水处理的安装处附近设置的220V的三芯插座即可。 3、安装步骤 (1)对新系统,需在设计中按所选用的电子水处理器的尺寸预留安装位置。对老系统,要在管道上切割出安装位置,尺寸要与所选用的电子水处理器相符。 (2)将与电子水处理器的法兰相符的两块法兰分别套在管道上。 3

液力耦合器常见故障及维护

液力耦合器原理、常见故障及处理 一、常见故障及处理 油泵不上油或油压太低或油压不稳定原因1.油泵损坏2.油泵调压阀失灵或调整不好3.油泵吸油管路不严,有空气进入4.吸油器堵塞5.油位太低,吸6.油压表损坏7.油管路堵塞处理1.修复或更换油泵2.重新调整或更换油泵调压阀使压力正常3.拧紧各螺栓使其密封4.清洗吸油口过滤5.加油至规定油位6.更换压力表7.清洗油管路2.油温过高原因1.冷却器堵塞或冷却水量不足2.风机负荷发生变动使偶合器过负荷处理1.清洗冷却器,加大冷却水量2.检查负荷情况,防止过负荷3.勺管虽能移动但不能正常调速原因无工作油进入处理1.修复或更换油泵2.重新调整或更换油泵调压阀使压力正常3.拧紧各螺栓使其密封4.清洗吸油口过滤器5.加油至规定油位6.更换压力表7.清洗油管路4.箱体振动原因1.安装精度过低2.基础刚性不足3.联轴节胶件损坏4.地脚螺栓松动处理1.重新安装校正2.加固或重新做基础3.更换橡胶件4.拧紧地脚螺丝 二、原理及故障排除: 1、原理: 液力偶合器工作原理液力偶合器相当于离心泵和涡轮机的组合,当电机通过液力偶合器输入轴驱动泵轮时,泵轮如一台离心泵,使工作腔中的工作油沿泵轮叶片流道向外缘流动,液流流出后,穿过泵轮和涡轮间的间隙,冲击涡轮叶片以驱动涡轮,使其象涡轮机一样把液

体动能转变为输出的机械能;然后,液体又经涡轮内缘流道回泵轮,开始下一次的循环,从而把电机的能量柔性地传递给工作机。二、液力偶合器的调速原理液力偶合器在转动时,工作油由供油泵从液力偶合器油箱吸油排出,经冷却器冷却后送至勺管壳体中的进油室,并经泵轮入油口进入工作腔。同时,工作腔中的油液从泵轮泄油孔泻入外壳,形成一个旋转油环,这样,就可通过液力偶合器的调速装置操纵勺管径向伸缩,任意改变外壳里油环的厚度,即改变工作腔中的油量,实现对输出转速的无级调节,勺管排出的油则通过排油器回到油箱。 2、故障现象及处理: (1)过热 1)、冷却器冷却水量不足,加大水量; 2)、箱体存油过多或少调节油量规定值; 3)、油泵滤芯堵塞清洗滤芯; 4)、转子泵损坏打不出油,换内外转子; 5)、安全阀溢流过多; 6)、弹簧太松上紧弹簧; 7)、密封损坏泄油换密封件; 8)、油路堵塞,清除。 (2)输出轴不转 1)、安全阀压力值太低,上紧弹簧; 2)、油路堵塞,清除;

液力耦合器原理word版

液力耦合器的模型与工作原理 液力耦合器是一种利用液体介质传递转速的机械设备,其主动输入轴端与原传动机相联结,从动输出轴端与负载轴端联结,通过调节液体介质的压力,使输出轴的转速得以改变。理想状态下,当压力趋于无穷大时,输出转速与输入转速相等,相当于钢性联轴器。当压力减小时,输出转速相应降低,连续改变介质压力,输出转速可以得到低于输入转速的无级调节。液力耦合器的功控调速原理与效率 根据液力耦合器的上述特点,可以等效为图1所示的模型 功率控制调速原理表明,传动速度的改变,实质是机械功率调节的结果。因此液力耦合器输出转速的降低,实际是输出功率减小。在调速过程中,液力耦合器的原传动转速没有发生变化,假设负载转矩不变,原传动的机械功率也不变,那么输入与输出功率的差值功率那里去了呢,显然是被液力耦合器以热能形式损耗掉了。因此,我们不能简单地认为液力偶合器调速是"丢转",而实际是丢功率。设原传动功率为PM1,输出功率为PM2,损耗功率则为 液力偶合器是一种耗能型的机械调速装置,调速越深(转速越低)损耗越大,特别是恒转矩负载,由于原传动输入功率不变,损耗功率将转速损失成比例增大。对于风机泵类负载,由于负载转矩按转速平方率变化,原传动输入功率则按转速的平方率降低,损耗功率相对小一些,但输出功率是按转速的立方率减小,调速效率仍然很低。液力耦合器的调速效率曲线如图2所示,平均效率在50%左右。 1 / 1

斩波内馈与变频调速的对比 斩波内馈与串级调速的对比 电磁滑差离合器的功控调速原理与效率 液力耦合器的模型与工作原理 斩波内馈调速与其它交流调速的技术性能对比 (注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

T型功分器的设计与仿真.

T型功分器的设计与仿真 1.改进型威尔金森功分器的工作原理 功率分配器属于无源微波器件,它的作用是将一个输入信号分成两个(或多个)较小功率的信号,工程上常用的功分器有T型结和威尔金森功分器。 威尔金森功分器是最常用的一种功率分配器。图1所示的为标准的二路威尔 金森等功率分配器。从合路端口输入的射频信号被分成幅度和相位都相等的两路信号,分别经过传输线Bl和BZ,到达隔离电阻两端,然后从两个分路端口输出,离电阻R两端的信号幅度和相位都相等,R上不存在差模信号,所以它不会消耗功率,如果我们不考虑传输线的损耗,则每路分路端口将输出二分之一功率的信号。 图1威尔金森功分器 但是这种经典威尔金森等功率分配器有几个缺点: 1、大功率应用的时候,要求隔离电阻的耗散功率大因此电阻的体积也会比较大 2、如果功分器应用于较高的频段,波长就会与大功率电阻的尺寸相比拟,这样就需要考虑电阻的分布参数。 3、为了提高功分器性能,就要尽量减小Bl和BZ这两段传输线之间的藕合,因此在实际设计时,要求四分之一波长传输线Bl、BZ之间的距离较大,在低频应用时,由于四分之一波长较长,占用面积还是太大了,此外,四分之一波长传输线Bl、BZ的阻抗较高,因此线宽较细,制板的相对误差更大[24]。为克服这些缺点,本文采用了一种改进型的威尔金森等功率分配器,如图2所示

图2 改进型威尔金森功分器 可以看到,它仅由四段传输线组成,没有隔离电阻。传输线A 、Cl 、CZ 的特 征阻抗均为Z0。传输线B 位于A 和Cl 、CZ 之间,它的电长度为四分之一波长, 特征阻抗为Z0/2。从合路端输入的信号,通过传输线B ,被分成幅度和相位相等的的两路信号,分别经过传输线Cl 和C2到达分路端口一和二,在整个结构中,传输线B 起到了阻抗变换的作用。从传输线A 、B 相接处向左看,输入阻抗为Z0。从传输线B 与C1、C2相接处向右看,输入阻抗为Z0/2。利用四分之一阻抗变换器的原理我们知道,传输线的特征阻抗为2/00Z Z ?,即Z0/2。因此,整个电路处于功率分配与合成时,在中心频点处,三个端口都能匹配良好,没有反射。这种改进型的结构克服了标准威尔金森功分器的一系列缺点,同时由于省略了隔离电阻,所以成本降低,也不存在电阻分布参数的问题,与传统威尔金森功分器相比,减少了一段四分之一波长传输线,另外,构成变换器的四分之一波长传输线B 的特征阻抗较低,线宽较宽,能有效降低制板误差。 2功分器的设计与仿真 通过前面的分析,我们知道改进型威尔金森功分器四段传输线特征阻抗之间 的比例关系。由此可得,传输线A 、C1和C2的特征阻抗均为50Ω,而传输线B 的特征阻抗为352/0=Z Ω 为了实现右旋圆极化,经过C2输出的信号要比经过Cl 的相位超前?90,即Cl 要比C2长λ4/1g (λg 为中心频率所对应的介质波长)。设计的功率分配器 如图3所示,传输线段B 的长度约为λ4/1g ,起阻抗变换的作用。传输线段

射频电子水处理器

射频电子水处理器 ■工作原理 兴宇系列射频电子水处理器也称作过滤型 电子水处理仪或管道式综合水处理器。是根据 水中普遍存在的结垢、腐蚀、菌藻以及肉眼可 见物等杂质,公司研发生产了集除垢、防腐、 杀菌灭藻和过滤为一体的水处理设备,它适用 于循环冷却系统。该设备采用机、电、磁和超 微过滤为一体的物理处理手段,不加入任何化 学药品,具有流量大,阻力小,运行费用低,操作简便,自动反冲排污,维修容易等特点。 防垢:主机产生的高频电磁场,使流经副机的水的物理结构发生变化,水分子间的键角被拉大,使Ca2+、Mg2+离子的运动速度降低,与水中的CO32-、SO42-等离子有效碰撞次数减少,静电引力下降,所以受热壁或管面上无法结垢,从而达到了防垢的目的。 除垢:主机产生的高频电磁场,使水的渗透力与溶解度增大,并对金属表面的水垢薄弱环节纵向渗透到金属表面后,开始沿金属表面横向渗透,使水垢呈片状脱离金属表面,从而达到除垢的目的。 杀菌、灭藻:微电环境可遏制微生物的生长,破坏其生存环境,另外设备工作过程中生成的活性氧自由基,具有损伤生物大分子,改变菌类、藻类生存的生物场等作用以达到杀菌、灭藻的目的。 过滤:采用高质量不锈钢滤网,耐腐蚀、寿命长、过滤效果好,自动反冲洗不间断供水。 ■功能参数 1、电源电压:220V 2、阻垢率大于95%;除垢率大于98%; 3、杀菌率大于95%;灭藻率大于95%; 4、腐蚀速度不大于未经处理的腐蚀速度;

■型号说明 ■规格型号 型号进出口法兰(DN)L L1 排污口法兰(DN1)H XYSP-50 50 570 195 25 130 XYSP-65 65 615 195 40 150 XYSP-80 80 660 195 40 150 XYSP-100 100 900 215 50 160 XYSP-125 125 900 215 50 160 XYSP-150 150 900 215 50 190 XYSP-200 200 920 225 65 220 XYSP-250 250 920 225 80 270 XYSP-300 300 1070 245 80 280 XYSP-350 350 1250 280 100 300 XYSP-400 400 1400 285 100 300 XYSP-450 450 1510 285 100 400 XYSP-500 500 1720 365 100 400

【原创】南京邮电大学 课程设计 Wilkinson(威尔金森)功分器的设计

南京邮电大学电子科学与工程学院电磁场与无线技术Wilkinson功分器 课题报告 课题名称 Wilkinson功分器 学院电子科学与工程学院 专业电磁场与无线技术 班级 组长 组员 开课时间 2012/2013学年第一学期

一、课题名称 Wilkinson(威尔金森)功分器的设计 二、课题任务 运用功分器设计原理,利用HFSS软件设计一个Wilkinson功分器,中心工作频率3.0GHz。 ?基本要求 实现一个单阶Wilkinson等功分设计,带内匹配≤-10dB,输出端口隔离≤-10dB,任选一种微波传输线结构实现。 ?进阶要求 多阶(N≥2),匹配良好(S11≤-15dB),不等分,带阻抗变换器(输出端口阻抗 不为50Ω),多种传输线实现。 三、实现方式 自选一种或者多种传输线实现,如微带线,同轴线,带状线等,要求输入输出端口阻抗为50Ω,要求有隔离电阻(通过添加额外的端口实现) 四、具体过程 1.计算基本参数 通过ADS Tool中的Linecalc这个软件来进行初步的计算。 在HFSS中选定版型为Rogers RT/duroid 5880 (tm),如具体参数下图

50Ω微带线计算 得到选取微带线宽度约为0.67mm。 70.7Ω微带线计算 得到选取微带线宽度约为0.34mm,由于微带线电长度与其宽度没有必然联系,所以两个分支微带线的长度根据具体情况进行更改。

2.绘制仿真模型 微带单阶功分器

◆微带参数:w50:阻抗为50Ω的微带线宽度;w2:两分支线宽度; l1,l2,l3,l4:各部分微带线长度; rad1,rad2:各部分分支线长度(即半环半径) ◆在本例中,需要调整的调整关键参数为w2,rad1,空气腔参数随关键参数相应调 整即可。 ◆根据计算,此处的吸收电阻值应该为100Ω,但是在实际情况中,选取97Ω。 微带多阶功分器

电子水处理仪使用说明

MHW-I-G 智能除垢型电子水处理仪操作使用说明书

目录 一、产品概述 (1) 二、运用场合 (1) 三、产品特点 (1) 四、产品型号说明 (1) 五、结构及外型尺寸 (2) 六、技术性能参数 (4) 七、运行注意事项 (4) 八、安装、调试 (5) 九、故障处理 (9) 十、效果检查 (10)

一、产品概述 MHW-I-G智能除垢型电子水处理仪是利用电控器产生的高频电磁场对流经水处理仪主管的水进行电磁处理。水经过水处理仪后,聚合度降低,结构发生变形,产生一系列物理化学性质的微小弹性变化,偶极矩增大,极性增加,因而增加了水的水合能力和溶垢能力,起到防垢除垢的作用;在电磁场的作用下,偶极子产生的微电流破坏细胞赖以生存的酶系统,从而起到杀菌灭藻的作用。 该设备具有自动运行功能,可以有效通过特定输出的指定参数处理不同的水质质,其智能化和复合电场技术保证了最佳的处理效果。 二、运用场合 本设备的主要功能是防垢除垢,兼具杀菌灭藻和缓蚀的功能。 适用于循环冷却水系统、热交换系统、空调制冷系统、集中供暖系统、热水锅炉系统等,分别用来保护冷却设备、热交换装置、空调器、锅炉等。 适用行业包括建筑、化工、电力、冶金、橡胶、造纸、轻纺、煤炭、食品等行业。 该设备要求流经水处理仪的水温不可超过95℃。 禁止单独用于蒸汽锅炉和管架式锅炉,允许与其他阻垢方法同时使用,以强化阻垢效果。 三、产品特点 1、本设备操作简便,无需专业人员进行操作指导。 2、本设备实现了智能化,可以自动输出最有效参数。 3、本设备采用模拟化技术,质量稳定。 4、本设备采用复合电场技术,处理能力强。 四、产品型号说明 该设备按进出水口径分,常规产品有3″、4″、5″、6″、8″、10″、12″、

功分器的设计

功分器现在有如下几种系列[11]: 1、400MHz-500MHz 频率段二、三功分器,应用于常规无线电通讯、铁路通 信以及450MHz 无线本地环路系统。 2、800MHz-2500MHz 频率段二、三、四微带系列功分器,应用于GSM / CDMA/PHS/WLAN 室内覆盖工程。 3、800MHz-2500MHz 频率段二、三、四腔体系列功分器,应用于GSM / CDMA/PHS/WLAN 室内覆盖工程。 4、1700MHz-2500MHz 频率段二、三、四腔体系列功分器,应用于PHS/WLAN 室内覆盖工程。 5、800MHz-1200MHz/1600MHz-2000MHz 频率段小体积设备内使用的微带二、三功分器。 这里介绍几种常见的功分器: 一、威尔金森功分器 我们将两分支线长度由原来的4λ变为43λ,这样使分支线长度变长,但作用效果与4λ线相同。在两分支线之间留出电阻尺寸大小的缝隙,做成如图1-1所示结构。 图1-1 威尔金森功分器 二、变形威尔金森功分器 将威尔金森功分器进行变形,做成如图1-2所示结构。两圆弧长度由原来的4λ变为43λ,且将圆伸展开形成一个近似的半圆。每个支路通过2λ传输线与隔离电阻相连,这样做虽然会减小电路的工作带宽,但使输出耦合问题得到了解决,而且可以用于不对称,功分比高的电路,隔离电阻的放置更加容易,且两支路间的距离足够大,在输出口可直接接芯片。

图1-2 变形威尔金森功分器 三、混合环 混合环又称为环形桥路,它也可作为一种功率分配器使用。早期的混合环 是由矩形波导及其4个E-T 分支构成的,由于体积庞大已被微带或带状线环形桥路所取代。图1-3为制作在介质基片上的微带混合环的几何图形,环的平均周长为 23g λ,环上有四个输出端口,四个端口的中心间距均为4g λ。环路各段归一化特性导纳分别为a, b, c ,四个分支特性导纳均为0Y 。这种形式的 功率分配器具有较宽的带宽,低的驻波比和高的输出功率。理论上来说,它的带宽可以同威尔金森功分器相比。混合环功分器相对威尔金森功分器的优点在于,在实际应用中它在高频率上的性能更好一些。 图1-3 混合环 对比以上三种功分器,首先对比威尔金森功分器及变形威尔金森功分器, 变形威尔金森功分器性能与仿真结果相差较大,其原因可能有以下几点:加入两个21波长微带线,引入了T 型接头,使微带线产生不连续性;为了保证两21波长微带线之间的距离正好可以焊接电阻,两微带线均倾斜,使焊接电阻处微带不均匀,另外电阻焊接的非对称性影响了功分器输出两端的功分比[9]。 威尔金森功分器和混合环的插损性能较好,可以满足一般功率合成的要求。在隔离方面,威尔金森功分器隔离较好,混合环的隔离要稍差。 从上述三种功分器分析可以得出:要获得具有良好性能的微波毫米波功分 器,需保证一定的加工精度,对加隔离电阻的功分器,要特别注意选择尺寸较小的电阻,焊接时要求电阻两端对称,且从电阻反面焊接,也可以考虑使用薄膜电阻来实现。这三种功分器都可以串联用作多路功率分配/合成器。 1.3 本课题研究内容 4g λ4g λ4 g λ43g λ对称平面

电子水处理器操作维保说明书

电子水处理器操作维保说明书 一、工作原理 水龙王HL系列杀菌灭藻型电子水处理器,是利用电子集成线路产生静电场,利用静电场的作用,达到防垢、除垢、杀菌灭藻的的。 在防垢方面,水在静电场作用下,水分子受到极化、水偶极子极性增强,这使得它与水中的阴、阳离子作用增大,使得水中阴阳离子分别被水偶极子包围,包围后的各离子接触器壁的机会减少,总体来说各离子与器壁间的距离增大,根据库仑定律,作用力与距离的平方成反比,从而各离子与器壁间的引力变小,因此不易靠近器壁,同时被水偶极子包围的阴、阳离子不能在水中自由流动,有效碰撞机会减少,不易产生化学结合,即可防止水垢生成。 在除垢方面,当热交换器已存在老垢时,因水的极化作用,使水分子趋向器壁,从而使老垢龟裂变形,逐渐脱落;当老垢坚实、致密时,由于水不能进入金属与水垢底层之间,因极化后的水,水合能力增强,这时水垢就在其与水的接触面徐徐溶解、直至完全清除为止。 在杀菌灭藻方面,在物理静电作用下,一方面使水分子受到极化,引起生物电势的变化,改变细胞表面电荷,促使菌体凝聚,阻碍菌细胞的正常代谢,导致菌体死亡;另一方面使水产生一定量的活性氧、过氧化氢、自由基如O2、H2O2、O3等,它们能对细胞膜、细胞中的各种酶类产生破坏作用,导致菌藻死亡。 实验证明:杀菌灭藻型电子水处理器对斜生栅列藻细胞的杀伤率很高,实践证明,在使用2周后,散热片的菌藻繁殖得到控制,原有藻类死亡并成片脱落,达到杀菌灭藻的目的,水池水质也逐步清彻见底,达到了净化水质目的;在游泳池水的杀菌处理中,其水质都达到国家游泳池水质卫生标准(微生物指标:细胞总数小于1000个/ml,大肠杆菌数小于18个/升)。在缓蚀防腐方面,经静电处理的水,杀灭了水中的菌藻类,水流通畅,因此生物腐蚀已不存在,在静电场作用下,水中释放出活性氧自由基,具有较强的氧化性,能使金属表面生成钝化保护膜,达到缓蚀、防腐目的。 二、产品功能 1、杀菌灭藻、除垢、防垢。 2、缓蚀、阻锈、节水节能。 三、应用领域 中央空调循环水系统;工业循环冷却水系统;热水锅炉、低压蒸汽锅炉;泳池、桑拿、喷泉

威尔金森功分器

威尔金森功分器 一、实验目的: 1、了解功率分配器电路的原理及设计方法。 2、学习使用ADS软件进行微波电路的设计,优化,仿真。 3、掌握功率分配器的制作及调试方法。 二、实验任务: 1、了解功分器的工作原理。 2、使用ADS软件设计一个功分器,并对其参数进行优化、仿真。 3、根据软件设计的结果绘制电路版图,并加工成电路板。 4、对加工好的电路进行调试,使其满足设计要求。 三、实验内容、实验过程描述: 1、设计指标:通带0.9-1.1GHz,功分比为1:1,带内各端口反射系数小于-20dB ,两输出端隔离度小于-25dB,传输损耗小于3.1dB。 在进行设计时,主要是以功分器的S参数作为优化目标进行优化仿真。S21、S31是传输参数,反映传输损耗;S11、S22、S33分别是输入输出端口的反射系数。S23反映了两个输出端口之间的隔离度。2、用ADS软件设计 (1)、打开ADS软件 (2)、创建新的工程文件

(3)、打开原理图设计窗口

在原理图所设计窗口中选择微带电路的工具栏 选用微带线以及 连接好的原理图如下

(5)设置微带电路的基本参数 双击图上的控件MSUB设置微带线参数 H:基板厚度(1 mm) Er:基板相对介电常数(4.8) Mur:磁导率(1) Cond:金属电导率(5.88E+7) Hu:封装高度(1.0e+33 mm) T:金属层厚度(0.03 mm) TanD:损耗角正切(1e-4) Roungh:表面粗糙度(0 mm) (6)设置微带器件的参数 双击每个微带线设置参数,W、L分别设为相应的变量或常量,单位mm,注意上下两臂的对称性。 单击工具栏上的V AR 图标,把变量控件V AR放置在原理图上,双击该图标弹出变量设置窗口,依次添加W,L参数。 中间微带线的长度大约为四分之一波长(根据中心频率用微带线计算工具算出),各个线宽的初始值可以用微带线计算工具算出,微带线的宽度最窄只能取0.2 mm(最好取0.5 mm以上)。 (7)S参数仿真电路设计 在原理图设计窗口中选择S参数仿真的工具栏

电子水处理器

SGV 高效多功能电子水处理器 电子水处理技术,是通过高频电磁场、高压静电或低压电场的作用,使溶解在水中的正负离子(垢分子)被水分子包围,通过磁场、电场作用,降低离子间引力,减少有效碰撞次数,使带电离子结晶习性发生改变,不易发生化学反应。 一、功能与用途 电子水处理器是具国际领先水平的最新一代水处理设备。该设备具有防垢除垢、防腐阻锈、杀菌灭藻、活化水质等功能。可广泛应用于中央空调系统,工业冷却系统、热交换系统、热水锅炉系统及其它各种用水设备系统。可用于建筑、化工、冶金、煤炭、橡胶、轻工、制药、食品、制冷等行业的冷却水系统,中央空调水系统,热水锅炉水系统,生活用水系统,热交换系统。其明显的效果已得到广大用户的认可。 二、工作原理 1、电子式水处理器是利用电子元器件产生的高频交变电磁场,让水在经过水处理器时,物理性能发生改变。由原来易吸咐在容器表面的斜方晶系晶体,变成不易吸附的三斜晶系的针装晶体,从而在管壁上无法结垢,达到防垢的目的。由于水分子在磁场、电场的作用下减弱了垢盐离子的结合,使垢盐离子形成开垢表面,成为水合离子进入水中,使受热炉壁、管壁上原来的水垢逐渐软化、疏松、自行脱落,起到除垢的作用。水中的细菌、藻类细胞因高频电磁场、电场的作用,使细胞内原生质产生电离,影响细胞的正常代谢,导致菌藻死亡,起到杀菌、灭藻的作用。

2、该设备由主机产生变频高频电场对水进行处理,产生共鸣作用,使原有的大缔合体状态水的结合键被深度打断,离解成活性很强的单分子或小缔合体状态的水,从而改变了水的物理结构与特性,增强了水分子的极性,增大了水分子的偶极矩,提高了水分子对钙镁离子、碳酸根离子等成垢组份的水合能力,起到阻止水垢形成的作用。同时,在高频电场的作用下,使原有的水垢结晶体逐渐变得松软、脱落、溶解,从而达到除垢之目的。 3、氧化腐蚀和垢下原电池腐蚀是水系统管道及设备腐蚀和生锈的主要原因,而在高频电场作用下,水垢得以控制和去除,溶解氧与水分子结合不易析出,从而抑制氧化腐蚀和垢下原电池腐蚀的发生,起到良好的防腐阻锈的作用。 4、高频电磁场使细菌、藻类赖以生存的环境被破坏,并且溶解氧在高频电磁场的作用下形成一些如03、H202等对细菌、藻类具极强杀伤力的物质,起到杀菌灭藻的作用。 三、高频电子水处理器的防垢机理 高频电磁场水应用于防垢,是由于存在大量的“离子缔合体”或“颗粒缔合体”,在水溶液中提供了大量的结晶核心。结晶核心越多,生成的结晶数量也越多,水垢结晶的线性尺寸就越小。此外,由于单个或双氢联结的水分子数量增多,水分子的活动更“自由”,它占据水溶液的其它空隙,象形成极薄的膜一样,因而阻碍晶体生长,促使水垢结晶线性尺寸减小,使水垢呈松软的细小颗粒,随排污水排除。 四、技术效果检验 功能:①防垢;②除垢;③杀菌灭藻;④缓蚀防腐。 适用范围:①空调、制冷循环水系统;②工业冷却循环水系统;③热交系统及冷却系统; ④热水锅炉、菜炉、洗浴沪、游泳池;⑤一切因升温而结垢的设备。

液力耦合器的结构组成及工作原理

液力耦合器的结构组成及工作原理 来源:互联网作者:匿名发表日期: 2010-4-5 9:12:15 阅读次数: 141 查看权限:普通文章 液力耦合器主要由:壳体(housing)、泵轮(impeller)、涡轮(turbine)三个元件构成。在发动机曲轴1 的凸缘上,固定着耦合器外壳2。与外壳刚性连接并随曲轴一起旋转的叶轮,组成耦合器的主动元件,称为泵轮了。与从动轴5相连的叶轮,为耦合器的从动元件,称为涡轮4。泵轮与涡轮统称为工作轮。在工作轮的环状壳体中,径向排列着许多叶片。涡轮装在密封的外壳中,其端面与泵轮端面相对,两者之间留有3~4mm 间隙。泵轮与涡轮装合后,通过轴线的纵断面呈环形,称为循环圆。在环状壳体中储存有工作液。 液力耦合器的壳体和泵轮在发动机曲轴的带动下旋转,叶片间的工作液在泵轮带动一起旋转。随着发动机转速的提高,离心力作用将使工作液从叶片内缘向外缘流动。因此,叶片外缘处压力较高,而内缘处压力较低,其压力差取决于工作轮半径和转速。 由于泵轮和涡轮的半径是相等的,故当泵轮的转速大于涡轮时,泵轮叶片外缘的液力大于涡轮叶片外缘。于是,工作液不仅随着工作轮绕其轴线做圆周运动,并且在上述压力差的作用下,沿循环圆依箭头所示方向作循环流动。液体质点的流线形成一个首尾相连的环形螺旋线。 液力耦合器的传动过程是:泵轮接受发动机传动来的机械能,传给工作液,使其提高动能,然后再由工作液将动能传给涡轮。因此,液力耦合器实现传动的必要条件是工作液在泵轮和涡轮之间有循环流动。而循环流动的产生,是由两个工作轮转速不等,使两轮叶片的外缘产生液力差所致。因此,液力耦合器在正常工作时,泵轮转速总是大于涡轮转速。如果二者转速相等,液力耦合器则不起传动作用。 汽车起步前,可将变速器挂上一挡位,启动发动机驱动泵轮旋转,而与整车驱动轮相连的涡轮暂时仍处于静止状态,工作液便立即产生绕工作轮轴线的圆周运动和循环流动。当液流冲到涡轮叶片上时,其圆周速度降低到零而对涡轮叶片造

三路威尔金森功分器设计 3 way wilkinson

Three-way planar Wilkinsons Updated November 13, 2011 Click here to go to our main page on Wilkinson splitters Click here to go to our page on N-way splitters Click here to go to our page on the Kouzoujian splitter, a great alternative to the conventional N-way Wilkinson New for June 2010! This page will provide a basic analysis of planar, three-way Wilkinson splitters in 50 ohm system impedance. This is splitter is imperfect, because it is missing an isolation resistor between the two outer ports, however, this is what makes it easy to lay out. We divided the analysis into three "types" which are described below, and ranked according to bandwidth potential. Type 1 splitter The Type 1 splitter is the simplest network possible. The three arms each employ a single quarter-wave impedance transformer. If you were to impedance match port 1 at center frequency, the transformers would all be 86.6 ohms (transforms each 50 ohm leg to 150 ohms, and three 150 ohms in parallel is 50 ohms). Sorry about the crummy schematic, you'd think by now Agilent would provide a means for graphic capture beyond the usual copy-and-past into Powerpoint, then shrink image with PaintShop...

液力耦合器工作原理介绍

用途 液力偶合器作为节能设备,可以无级变速运转,工作可靠,操作简便,调节灵活,维修方便。 采用液力偶合器便于实现工作机全程自动调节,以适应载荷的变化,可节约大量电能,广泛适用于电力、冶金、石化、工程机械、矿山、市政供水供气和纺织、轻工等行业,适用于各种需要变负荷运转的给水泵、风机、粉碎机等旋转式工作机。 工作原理 液力偶合器是以液体为介质传递功率的一种动力传递装置,主要由两个带有径向叶片的碗状工作轮组成。由主动轴传动的轮称为泵轮,带动从动轴转动的轮称为涡轮,泵轮和涡轮中间有间隙,形成一个循环圆状腔室结构。 工作时,原动机带动液力偶合器主动轴——泵轮转动,泵轮内的液体介质在离心力作用下由机械能转换为动能,形成高压、高速液流冲向涡轮叶片;在涡轮内,液流沿外缘被压向内侧,经减压减速后动能转换为机械能,带动涡轮——从动轴旋转,实现能量的柔性传递。作功后的液体介质返回泵轮,形成液流循环。 液力偶合器工作原理示意图 液力偶合器内液体的循环是由于泵轮——涡轮流道间不同的离心力产生压差而形成,因此泵

轮、涡轮必须有转速差,这是液力偶合器的工作特性所决定的。泵轮、涡轮的转速差称为滑差,在额定工况下,滑差为输入转速的2%~3%。 调速型液力偶合器可以在主动轴转速恒定的情况下,通过调节液力偶合器内液体的充满程度实现从动轴的无级调速(调速范围为0到输入轴转速的97%~98%),调节机构称为勺管调速机构,它通过调节勺管的工作位置来改变偶合器流道中循环液体的充满程度,实现对被驱动机械的无级调速,使工作机按负载工作范围曲线运行。 特点 ?节省能源。输入转速不变的情况可获得无级变化的输出转速,对离心机械(如泵)在部分负荷的工作情况下,与节流式相比节省了相当大的功率损失。 ?空载启动。电动机启动后工作油系统开始工作,按需要加载控制、无级变速,电动机启动电流小,延长了使用寿命,并可选用较小电动机,节省投资。 ?离合方便。充油即行接合,传递扭矩、平稳升速;排油即行脱离。 ?振动阻尼与冲击吸收。工作轮之间无机械联系,通过液体传递扭矩,柔性连接,具有良好的隔振效果;并能大大减缓两端设备的冲击负荷。 ?过载保护。当从动轴阻力矩突然增加时,滑差增大直至制动,而原动机仍能继续运转而不致损坏,同时保护了从动机不致进一步损坏。 ?无磨损,坚固耐用,安全可靠。 ?润滑油系统可供工作机和电动机所用润滑油。 ?结构紧凑。增速齿轮和工作轮安装在同一箱体中,只需很小空间。 ?可根据用户需要安装不同的执行器。 调速范围: 被驱动的机械具有抛物线负载力矩时,如离心泵和通风机,调速范围为4:1,特殊情况下可以达到5:1。 被驱动的机械具有近乎恒定负载力矩时,调速范围为3:1以下。 工作时排空液力偶合器内的工作液,可以使被驱动的机械停止运转。

RO水处理器原理

反渗透纯净水设备用途: 反渗透可以有效的去除水中的溶解盐、胶体,细菌、病毒、细菌内毒素和大部分有机物等杂质。反渗透膜的主要分离对象是溶液中的离子范围,无需化学品及可有效脱除水中盐份,系统除盐率一般为98%以上。 反渗透纯净水设备概述: 反渗透简称RO是膜法水处理设备的一种,反渗透技术简是当前制备纯水及高纯水时应用最广的一种设备。在膜设备当中,反渗透膜可去除离子级杂质,使出水达到纯水及高纯水的标准。反渗透膜的膜孔径非常小(仅为10A左右),因此能够有效地去除水中的溶解盐类、胶体、微生物、有机物等(去除率高达97-98%)。系统具有水质好、耗能低、无污染、工艺简单、操作简便等优点。一般自来水经一级反渗透系统处理后,产水电导率<10μS/cm,经二级反渗透系统后产水电导率<5μS/cm甚至更低,在反渗透系统后辅以离子交换设备或EDI设备可以制备超纯水,使电阻率达到18兆欧姆(电导率=1/电阻率)是反渗透是用足够的压力使溶液中的溶剂(一般常指水)通过反渗透膜(一种半透膜)而分离出来与渗透方向相反,可使用大于渗透压的反渗透法进行分离、提纯和浓缩溶液。反渗透膜的主要分离对象是溶液中的离子范围。 反渗透纯净水设备原理: 反渗透是与渗透相对应的概念,即在浓液一侧加上比自然渗透压更高的压力,使浓液中的溶剂(水)压到半透膜的另一边稀溶液中,这一过程和与自然界正常渗透过程是相反的。因此,它能够将水中的杂质拦截在膜的一侧,而让水到膜的另一侧,从而制得纯水及高纯水。 反渗透设施生产纯水的关键有两个,一是一个有选择性的膜,我们称之为半透膜,二是一定的压力。简单地说,反渗透半透膜上有众多的孔,这些孔的大小与水分子的大小相当,由于细菌、病毒、大部分有机污染物及水合离子均比水分子大得多,因此不能透过反渗透半透膜而与透过反渗透膜的水相分离。 反渗透纯净设备工艺流程 原水→ 原水箱→ 原水泵→多介质过滤器(石英砂过滤器)→活性炭过滤器→软水处理器→ 精密过滤器→ 高压泵→ 一级反渗透(RO)装置→ 纯净水箱→ 高压泵→二级反渗透→紫外线杀菌装置→ 用水点

相关文档
最新文档