GPS概述

GPS概述
GPS概述

GPS概述

公众常称的GPS,通常是指GPS系统的接收设备,如手持式GPS、汽车导航仪等。

即全球定位系统(Global Positioning System)。简单地说,这是一个由覆盖全球的24颗卫星组成的卫星系统。这个系统可以保证在任意时刻,地球上任意一点都可以同时观测到4颗卫星,以保证卫星可以采集到该观测点的经纬度和高度,以便实现导航、定位、授时等功能。这项技术可以用来引导飞机、船舶、车辆以及个人,安全、准确地沿着选定的路线,准时到达目的地。

全球定位系统(GPS)是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。

GPS全球卫星定位系统由三部分组成:空间部分———GPS星座;地面控制部分———地面监控系统;用户设备部分———GPS 信号接收机。

GPS定位技术具有高精度、高效率和低成本的优点,使其在各类大地测量控制网的加强改造和建立以及在公路工程测量和大型构造物的变形测量中得到了较为广泛的应用。

简单地说,GPS导航仪就是能够帮助用户准确定位当前位置,并且根据既定的目的地计算行程,通过地图显示和语音提示两种方式引导用户行至目的地的汽车驾驶辅助设备。

它包括两个重要的组成部分:一是全球定位系统(Global Positioning System)简称GPS。它是由空间卫星、地面监控和用户接收等三大部分组成。在太空中有24颗卫星组成一个分布网络,分别分布在6条离地面2万公里、倾斜角为55°的地球准同步轨道上,每条轨道上有4颗卫星。GPS卫星每隔12小时绕地球一周,使地球上任一地点能够同时接收7~9颗卫星的信号。地面共有1个主控站和5个监控站负责对卫星的监视、遥测、跟踪和控制。它们负责对每颗卫星进行观测,并向主控站提供观测数据。主控站收到数据后,计算出每颗卫星在每一时刻的精确位置,并通过3个注入站将它传送到卫星上去,卫星再将这些数据通过无线电波向地面发射至用户接收端设备。

注:这个系统最初是由美国陆海空三军于20世纪70年代联合研制的,它的主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要部署。GPS系统历经20余年的研究实验,耗资300亿美元,直到1994年3月全球覆盖率高达98%的24颗GPS卫星星座才正式布设完成。现在GPS系统的应用不仅局限在军事领域内了,而是发展到汽车导航、大气观测、地理勘测、海洋救援、载人航天器防护探测等各个领域。

二是汽车导航系统。光有GPS系统还不够,它只能够接收GPS卫星发送的数据,计算出用户的三维位置、方向以及运动速度和时间方面的信息,没有路径计算能力。用户手中的GPS接收设备要想实现路线导航功能还需要一套完善的包含硬件设备、电子地图、导航

软件在内的汽车导航系统。

GPS导航仪硬件包括芯片、天线、处理器、内存、屏幕、按键、扬声器等组成部分。但就目前情况看来,市场中的GPS汽车导航仪在硬件上的差距并不大,主要区别还是集中在内置的软件和地图上。在这里需要提醒大家注意一点,人们习惯上总是关心导航仪内预装何种地图,实际上这是混淆了地图和软件两者的区别。所谓地图其实只是数据,而软件是搜索引擎。地图中各种地理信息综合在一起的庞大数据如何被用户所应用?如何才能反应到导航界面中?这就要借助于软件来实现了。因此导航地图离不开软件的支持,反过来再优秀的软件系统如果没有详细的地图数据也是白搭。畅通导航仪采用的是图吧地图。算是比较适合城区使用的类型。一般来说合格的GPS导航仪如果没有存星历信息到成功定位需要5-8分钟的时间,而一些天气如雨、雪、雾等也会影响搜星定位时间。总之一句话,搜星快慢和导航仪的硬件也就是GPS芯片的质量以及运算速度有很直接的关系,而且即使是同品牌的导航仪也会有在相同状况下搜星速度不一样的情况。采用图吧地图的永盛杰导航仪可以做到0.2秒超快搜星定位,前提是周边没有高大建筑物阻挡信号。经过的冷启动之后当你下次在启动GPS导航仪之后,基本上开机或者等待20-30秒就已经完成了定位,所以真的长期遇到搜星非常缓慢的情况,您就可以带着机器去找客服进行维修或者更换了。

总结一下,一部完整的GPS汽车导航仪是由芯片、天线、处理器、内存、显示屏、扬声器、按键、扩展功能插槽、电子地图、导航软件10个主要部分组成。

判断GPS导航仪的优劣,导航仪所能接收到的GPS卫星数量和路径规划能力是关键。导航仪所能接收到的有效卫星数量越多,说明它当前的信号越强,导航工作的状态也就越稳定。如果一台导航仪经常搜索不到卫星或者在导航过程中频繁地中断信号影响了正常的导航工作,那它首先质量就不过关更谈不上优劣了。

GPS概述

GPS概述 公众常称的GPS,通常是指GPS系统的接收设备,如手持式GPS、汽车导航仪等。 即全球定位系统(Global Positioning System)。简单地说,这是一个由覆盖全球的24颗卫星组成的卫星系统。这个系统可以保证在任意时刻,地球上任意一点都可以同时观测到4颗卫星,以保证卫星可以采集到该观测点的经纬度和高度,以便实现导航、定位、授时等功能。这项技术可以用来引导飞机、船舶、车辆以及个人,安全、准确地沿着选定的路线,准时到达目的地。 全球定位系统(GPS)是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。 GPS全球卫星定位系统由三部分组成:空间部分———GPS星座;地面控制部分———地面监控系统;用户设备部分———GPS 信号接收机。 GPS定位技术具有高精度、高效率和低成本的优点,使其在各类大地测量控制网的加强改造和建立以及在公路工程测量和大型构造物的变形测量中得到了较为广泛的应用。 简单地说,GPS导航仪就是能够帮助用户准确定位当前位置,并且根据既定的目的地计算行程,通过地图显示和语音提示两种方式引导用户行至目的地的汽车驾驶辅助设备。 它包括两个重要的组成部分:一是全球定位系统(Global Positioning System)简称GPS。它是由空间卫星、地面监控和用户接收等三大部分组成。在太空中有24颗卫星组成一个分布网络,分别分布在6条离地面2万公里、倾斜角为55°的地球准同步轨道上,每条轨道上有4颗卫星。GPS卫星每隔12小时绕地球一周,使地球上任一地点能够同时接收7~9颗卫星的信号。地面共有1个主控站和5个监控站负责对卫星的监视、遥测、跟踪和控制。它们负责对每颗卫星进行观测,并向主控站提供观测数据。主控站收到数据后,计算出每颗卫星在每一时刻的精确位置,并通过3个注入站将它传送到卫星上去,卫星再将这些数据通过无线电波向地面发射至用户接收端设备。 注:这个系统最初是由美国陆海空三军于20世纪70年代联合研制的,它的主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要部署。GPS系统历经20余年的研究实验,耗资300亿美元,直到1994年3月全球覆盖率高达98%的24颗GPS卫星星座才正式布设完成。现在GPS系统的应用不仅局限在军事领域内了,而是发展到汽车导航、大气观测、地理勘测、海洋救援、载人航天器防护探测等各个领域。 二是汽车导航系统。光有GPS系统还不够,它只能够接收GPS卫星发送的数据,计算出用户的三维位置、方向以及运动速度和时间方面的信息,没有路径计算能力。用户手中的GPS接收设备要想实现路线导航功能还需要一套完善的包含硬件设备、电子地图、导航

GPS定位原理概述

GPS定位原理概述 GPS的组成GPS(Global Positioning System)即全球定位系统,是由美国建立的一个卫星导航定位系统,利用该系统,用户可以在全球范围内实现全天候、连续、实时的三维导航定位和测速;另外,利用该系统,用户还能够进行高精度的时间传递和高精度的精密定位。GPS计划始于1973年,已于1994年进入完全运行状态。GPS的整个系统由空间部分、地面控制部分和用户部分所组成:空间部分 GPS的空间部分是由24颗GPS工作卫星所组成,这些GPS工作卫星共同组成了GPS卫星星座,其中21颗为可用于导航的卫星,3颗为活动的备用卫星。这24颗卫星分布在6个倾角为55°的轨道上绕地球运行。卫星的运行周期约为12恒星时。每颗GPS工作卫星都发出用于导航定位的信号。GPS用户正是利用这些信号来进行工作的。控制部分 GPS的控制部分由分布在全球的由若干个跟踪站所组成的监控系统所构成,根据其作用的不同,这些跟踪站又被分为主控站、监控站和注入站。主控站有一个,位于美国克罗拉多(Colorado)的法尔孔(Falcon)空军基地,它的作用是根据各监控站对GPS的观测数据,计算出卫星的星历和卫星钟的改正参数等,并将这些数据通过注入站注入到卫星中去;同时,它还对卫星进行控制,向卫星发布指令,当工作卫星出现故障时,调度备用卫星,替代失效的工作卫星工作;另外,主控站也具有监控站的功能。监控站有五个,除了主控站外,其它四个分别位于夏威夷(Hawaii)、阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),监控站的作用是接收卫星信号,监测卫星的工作状态;注入站有三个,它们分别位于阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),注入站的作用是将主控站计算出的卫星星历和卫星钟的改正数等注入到卫星中去。用户部分 GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机气象仪器等所组成。它的作用是接收GPS卫星所发出的信号,利用这些信号进行导航定位等工作。以上这三个部分共同组成了一个完整的GPS系统。 GPS定位原理概述(2): GPS的信号 GPS卫星发射两种频率的载波信号,即频率为1575.42MHz的L1载波和频率为1227.60HMz的L2载波,它们的频率分别是基本频率10.23MHz的154倍和120倍,它们的波长分别为19.03cm和24.42cm。在L1和L2上又分别调制着多种信号,这些信号主要有:C/A码 C/A码又被称为粗捕获码,它被调制在L1载波上,是1MHz的伪随机噪声码(PRN码),其码长为1023位(周期为1ms)。由于每颗卫星的C/A码都不一样,因此,我们经常用它们的PRN号来区分它们。C/A码是普通用户用以测定测站到卫星间的距离的一种主要的信号。P码 P码又被称为精码,它被调制在L1和L2载波上,是10MHz的伪随机噪声码,其周期为七天。在实施AS时,P码与W码进行模二相加生成保密的Y码,此时,一般用户无法利用P 码来进行导航定位。 Y码见P码。导航信息导航信息被调制在L1载波上,其信号频率为50Hz,包含有GPS卫星的轨道参数、卫星钟改正数和其它一些系统参数。用户一般需要利用此导航信息来计算某一时刻GPS卫星在地球轨道上的位置,导航信息也被称为广播星历。

北斗卫星导航系统概述

北斗卫星导航系统概述 00钟恩彬 引言 自从 1960 年美国发射第一颗导航卫星并于1964年组成美国海军导航卫星系 统(NNSS)以来,导航卫星经过了从多普勒定位技术到伪码扩频测距定位,从间断、部分覆盖导航到全天候、全天时、全覆盖导航,从单纯广播式导航到通信导航融合 技术的发展,其中运行了近二十年的美国 GPS 系统是卫星导航技术发展 的结晶。随着卫星导航系统应用价值的不断扩展, GPS 也暴露了一些不足,比如,GPS 能够解决单一用户的精确定位导航问题,但由于它是广播式的导航,用户不能与导航卫星建立通信,定位信息不能传输给用户中心,这一缺点使得它若在战场上运用时虽然能给导弹导航,但不能向指挥中心回传打击效果。我国充分吸收 GPS 的经验,于上世纪 80 年代开始研究设计自己的卫星导航系统—北斗卫星导 航系统。截至目前,我国已经发射了 16 颗组网卫星,基本实现了亚太区域覆盖,我们很快就将用上国产的北斗终端设备了。在此背景下,本文将主要从北斗卫星导航系统的基本原理、与其它系统的比较两个方面简要介绍北斗卫星导航系统。 一、北斗卫星导航系统的基本原理 卫星定位说白了就是测出几颗卫星到定位点的距离,然后在建立的三维空间坐标系中以这些距离为半径画几个球,球的交点即为定位点的坐标,至于导航就是选定一个参考点,测算出它的坐标,引导用户到该参考坐标点就是导航。 关键的问题是如何测量出实时的距离,这就需要利用电磁波在卫星与用户之间的来回传播来测算。不过实际的系统远不止这么简单,例如必须保证发射和接受同步,这就好比要使卫星和用户接收机同时开始播放同一首歌,这时站在接收机旁的人会停到两个版本的歌声,滞后的就是来自卫星的歌声,这个时延乘上光速 c 即为卫星到定位点的距离,当然,这个时延的测量也必须用精准的时钟。为了保证这些,电磁波上必须加载复杂的导航电文。导航电文不是由卫星单独产生的,而要有地面主控站来控制完成,所以为了不受制于人,我国决定开发自己的卫星导航系统。 北斗卫星导航系统由空间端、地面端和用户端组成,空间端包括 35 颗组网卫星,其中 5 颗为静止轨道 (GEO)卫星,地面端主要有主控站、注入站

卫星导航定位与车辆监控综述

卫星导航定位与车辆监控综述 1.概述 随着社会的发展和科学技术的进步,整个社会都希望利用新的技术来为生产、生活服务,提高生活质量。在卫星定位、通信等技术快速发展的促进下,车辆监控应运而生了。车辆监控系统是把全球卫星定位技术(GNSS)、地理信息系统(GIS)和现代通讯技术综合在一起的高科技系统。其主要功能是将任何装有GNSS接收机的移动载体的动态位置(经度、纬度和高度)、时间、状态等信息,实时地通过无线通信网传至主控基地中心,而后在具有强大地理信息处理和查询功能的电子地图上进行载体运动轨迹的显示,并能对载体的准确位置、速度、运动方向、车辆状态等用户感兴趣的参数进行监控和查询。 2.车辆监控产业发展状况 2.1国外发展情况 早在20世纪20年代,汽车行驶记录仪便伴随着汽车里程表而诞生。随着汽车工业的快速发展,记录仪开始在汽车运营中得到自发性的广泛应用。1953年,德国开始对客车和载重超过7吨的货车强制推广使用行驶记录仪,随后欧共体道路安全管理部门进行总结评估后,也实施了相关条例。而车载GPS导航系统则最早出现在德国宝马汽车公司在1994年生产的“7”系高级汽车上。 随着电子技术及互联网技术飞速发展,欧盟近年来逐渐发展了TACHONET(处理卡车转速计资料信息交换的通信设施)的概念,通过建立TACHONET通信网络,促进智能卡和数字式tachograph的信息在欧盟个成员国之间的及时交换和共享,进而促进对于长途运输及tachograph相关执法信息管理的便捷、高效。最终通过控制疲劳驾驶和超速,提高道路安全性,并确保驾驶员、货物承运人及其他交通方式的公平竞争。 在北美地区,美国、加拿大等国同样车辆监控在道路交通管理中的作用,但理解和做法有所不同。他们更注重汽车行驶记录仪在交通事故发生前后的数据记录功能,以及他在事故分析处理中的作用。 日本也在有关机动车的法律法规中规定了具体内容,明确了管理运营规则。 由此可以看出,国外在导航定位和车辆监控方面有着比较丰富的经验和成果,值得我们借鉴。 2.2国内发展情况 我国测量监控的历史可以追溯到20世纪80年代末,当时我国自主研发的数字式记录仪产品开发成功,我国开始在少数地区使用国内一些科研机构及企业自主研制的数字式记录仪。进入21世纪以来,随着我国的科技水平的进一步提升,国内生产的数字式记录仪在技术上已经比较成熟,并在以配套产品的使用上取得了成功的经验。

全球卫星导航系统概述

全球卫星导航系统概述 介绍: 全球导航卫星系统(GNSS),也称为全球导航卫星系统,是一种空间无线电导航和定位系统,为用户提供地球上任何位置或近地空间的全天候3D坐标,速度和时间信息。它是一个虚拟概念,通常代表在太空轨道上运行的所有卫星导航系统的总称,并且没有统一的规划标准。 全球卫星导航系统目前包括GPS全球卫星导航,北斗卫星导航,GLONASS卫星导航和伽利略卫星导航系统以及其他导航系统。其中,美国GPS系统(Global Positioning System)是全世界最早部署实施的卫星导航系统,也是目前世界领先的卫星导航系统。现在,日本的QZSS准天顶卫星系统,印度的IRNSS区域导航卫星系统和其他区域导航系统也已经开始建立。北斗卫星导航系统和GLONASS现在在亚洲开放民用的使用权,尤其是北斗卫星系统,在民用领域的应用发展速度越发加快。卫星导航系统广泛用于航空,导航,通信,人员跟踪,消费娱乐,测绘,定时,车辆监控和管理,车辆导航和信息

服务。其发展趋势是为用户的实时应用提供高精度的服务。 卫星导航定位已成为衡量综合国力和世界科技发展水平的重要指标之一。借助卫星导航技术,人类可以进一步了解和改造世界。只有大力发展北斗卫星导航系统,才可以完成中国大国崛起的目的,确保实现中华民族的伟大复兴。 GPS导航系统: GPS导航系统是美国陆军,海军和空军在20世纪70年代联合开发的卫星导航系统。经过20多年的研究和实验,花费了300亿美元。早在1994年3月就已经基本形成了以24颗GPS卫星,全球覆盖率达98%的标准。该空间由18颗卫星和3颗主动备用卫星组成,均匀分布在距离地面20200km的6个轨道平面上。它可以在世界任何地方实现,可以随时同时观察4颗以上的卫星。 其地面控制系统由监测站,主站和地面天线组成。主控制站位于美国科罗拉多州的斯普林菲尔德。它收集卫星传输信息并计算卫星日历,相对距离和大气校正数据。 用户设备包括捕获和跟踪卫星的操作,测量伪距的变化率和接收

全球四大卫星导航系统概述与比较

全球四大卫星导航系统概述与比较 【摘要】美国全球定位系统、俄罗斯格洛纳斯系统、欧盟伽利略定位系统和中国北斗卫星导航系统为联合国卫星导航委员会认定的全球卫星导航系统四大核心供应商。本文主要介绍了全球四大卫星导航系统的概况以及与目前应用最广泛的GPS系统的比较。 【关键词】卫星导航系统;功能;区别 0.前言 卫星导航系统是覆盖全球的自主地利空间定位的卫星系统,允许小巧的电子接收器确定它的所在位置(经度、纬度和高度),并且经由卫星广播沿着视线方向传送的时间信号精确到10米的范围内。卫星导航系统是重要的空间基础设施,为人类带来了巨大的社会和经济效益,对民生和国防产生深远的影响。 1.全球卫星导航系统概述 (1)全球定位系统(英语:Global Positioning System,通常简称GPS),又称全球卫星定位系统,是美国国防部研制和维护的中距离圆型轨道卫星导航系统。它可以为地球表面绝大部分地区(98%)提供准确的定位、测速和高精度的时间标准。全球定位系统可满足位于全球任何地方或近地空间的军事用户连续精确的确定三维位置、三维运动和时间的需要。该系统包括太空中的24颗GPS卫星;地面上1个主控站、3个数据注入站和5个监测站及作为用户端的GPS接收机。最少只需其中3颗卫星,就能迅速确定用户端在地球上所处的位置及海拔高度;所能收联接到的卫星数越多,解码出来的位置就越精确。 该系统由美国政府于1970年代开始进行研制并于1994年全面建成。使用者只需拥有GPS接收机即可使用该服务,无需另外付费。GPS信号分为民用的标准定位服务和军规的精确定位服务两类。由于SPS无须任何授权即可任意使用,原本美国因为担心敌对国家或组织会利用SPS对美国发动攻击,故在民用讯号中人为地加入选择性误差(即SA政策)以降低其精确度,使其最终定位精确度大概在100米左右;军规的精度在十米以下。2000年以后,克林顿政府决定取消对民用讯号的干扰。因此,现在民用GPS也可以达到十米左右的定位精度。 GPS系统拥有如下多种优点:使用低频讯号,纵使天候不佳仍能保持相当的讯号穿透性;全球覆盖(高达98%);三维定速定时高精度;快速、省时、高效率;应用广泛、多功能;可移动定位;不同于双星定位系统,使用过程中接收机不需要发出任何信号增加了隐蔽性,提高了其军事应用效能。 (2)GLONASS系统由苏联在1976年组建,现在由俄罗斯政府负责运营。该系统由卫星、地面测控站和用户设备三部分组成,目前的系统由21颗工作星和3颗备份星组成,分布于3个轨道平面上,每个轨道面有8颗卫星,轨道高度

全球定位系统概述

1.什么是全球定位系统(GPS) 全球定位系统(Global Positioning System - GPS)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。经近10年我国测绘等部门的使用表明,GPS以全天候、高精度、自动化、高效益等显著特点,赢得广大测绘工作者的信赖,并成功地应用于大地测量、工程测量、航空摄影测量、运载工具导航和管制、地壳运动监测、工程变形监测、资源勘察、地球动力学等多种学科,从而给测绘领域带来一场深刻的技术革命。 全球定位系统(Global Positioning System,缩写GPS)是美国第二代卫星导航系统。是在子午仪卫星导航系统的基础上发展起来的,它采纳了子午仪系统的成功经验。和子午仪系统一样,全球定位系统由空间部分、地面监控部分和用户接收机三大部分组成。 按目前的方案,全球定位系统的空间部分使用24颗高度约2.02万千米的卫星组成卫星星座。21+3颗卫星均为近圆形轨道,运行周期约为11小时58分,分布在六个轨道面上(每轨道面四颗),轨道倾角为55度。卫星的分布使得在全球的任何地方,任何时间都可观测到四颗以上的卫星,并能保持良好定位解算精度的几何图形(DOP)。这就提供了在时间上连续的全球导航能力。 地面监控部分包括四个监控间、一个上行注入站和一个主控站。监控站设有GPS用户接收机、原子钟、收集当地气象数据的传感器和进行数据初步处理的计算机。监控站的主要任务是取得卫星观测数据并将这些数据传送至主控站。主控站设在范登堡空军基地。它对地面监控部实行全面控制。主控站主要任务是收集各监控站对GPS卫星的全部观测数据,利用这些数据计算每颗GPS卫星的轨道和卫星钟改正值。上行注入站也设在范登堡空军基地。它的任务主要是在每颗卫星运行至上空时把这类导航数据及主控站的指令注入到卫星。这种注入对每颗GPS卫星每天进行一次,并在卫星离开注入站作用范围之前进行最后的注入。 全球定位系统具有性能好、精度高、应用广的特点,是迄今最好的导航定位系统。随着全球定位系统的不断改进,硬、软件的不断完善,应用领域正在不断地开拓,目前已遍及国民经济各种部门,并开始逐步深入人们的日常生活。 2.GPS如何定位 GPS接收机可接收到可用于授时的准确至纳秒级的时间信息;用于预报未来几个月内卫星所处概略位置的预报星历;用于计算定位时所需卫星坐标的广播星历,精度为几米至几十米(各个卫星不同,随时变化);以及GPS系统信息,如卫星状况等。 GPS接收机对码的量测就可得到卫星到接收机的距离,由于含有接收机卫星钟的误差及大气传播误差,故称为伪距。对0A码测得的伪距称为UA码伪距,精度约为20米左右,对P码测得的伪距称为P码伪距,精度约为2米左右。 GPS接收机对收到的卫星信号,进行解码或采用其它技术,将调制在载波上的信息去掉后,就可以恢复载波。严格而言,载波相位应被称为载波拍频相位,它是收到的受多普勒

北斗卫星导航系统简介

资料来源:http: 北斗卫星导航系统简介 (一)概述 北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端。 (二)发展历程 卫星导航系统是重要的空间信息基础设施。中国高度重视卫星导航系统的建设,一直在努力探索和发展拥有自主知识产权的卫星导航系统。2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显著的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。为更好地服务于国家建设与发展,满足全球应用需求,我国启动实施了北斗卫星导航系统建设。 (三)建设原则 北斗卫星导航系统的建设与发展,以应用推广和产业发展为根本目标,不仅要建成系统,更要用好系统,强调质量、安全、应用、效益,遵循以下建设原则:

1、开放性。北斗卫星导航系统的建设、发展和应用将对全世界开放,为全球用户提供高质量的免费服务,积极与世界各国开展广泛而深入的交流与合作,促进各卫星导航系统间的兼容与互操作,推动卫星导航技术与产业的发展。 2、自主性。中国将自主建设和运行北斗卫星导航系统,北斗卫星导航系统可独立为全球用户提供服务。 3、兼容性。在全球卫星导航系统国际委员会(ICG)和国际电联(ITU)框架下,使北斗卫星导航系统与世界各卫星导航系统实现兼容与互操作,使所有用户都能享受到卫星导航发展的成果。 4、渐进性。中国将积极稳妥地推进北斗卫星导航系统的建设与发展,不断完善服务质量,并实现各阶段的无缝衔接。 (四)发展计划 目前,我国正在实施北斗卫星导航系统建设。根据系统建设总体规划,2012年左右,系统将首先具备覆盖亚太地区的定位、导航和授时以及短报文通信服务能力;2020年左右,建成覆盖全球的北斗卫星导航系统。 (五)服务 北斗卫星导航系统致力于向全球用户提供高质量的定位、导航和授时服务,包括开放服务和授权服务两种方式。开放服务是向全球免费提供定位、测速和授时服务,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。授权服务是为有高精度、高可靠卫星导航需求的用户,提供定位、测速、授时和通信服务以及系统完好性信息。

《卫星导航定位技术》课程教学大纲

《卫星导航定位技术》课程教学大纲 一、基本信息 二、教学目的与任务 通过本课程的理论学习及实践教学,达到如下教学目标:使学生了解卫星导航定位技术的科技前沿及发展趋势,掌握相关专业基础知识和基本理论,具有一定的GPS工程实践经验;能够设计及实施GPS相关的工程实验,并能分析其结果;了解卫星导航定位相关的国家及行业工程规范,并具备运用规范解决工程施工中遇到问题的能力;具备一定的组织管理能力,能够综合运用相关理论与技术,组织实施卫星导航定位相关的工程。 主要教学任务包括:了解卫星导航定位技术的产生和发展的过程;掌握GPS系统的组成和卫星信号结构;掌握GPS定位中的主要误差源以及消除削弱各种误差影响的方法和措施;掌握测定卫星到接收机间的距离的方法,掌握GPS定位的原理和各种定位模式及其工作原理等内容。重点掌握GPS静态定位的基本理论和方法,能够正确运用GPS仪器完成相关数据采集,能够使用GPS处理软件完成相关的数据处理;重点掌握RTK相关的理论及方法,能够应用GPS仪器完成相关的数据采集与处理。 三、教学内容与要求 (一) 绪论学时:4 主要内容:GPS的历史及其发展,GPS的特点和用GPS的限制与相应措施,GPS的组成,GPS测量的应用范围及GPS在我国的应用现状。 1、GPS定位技术的历史与发展、特点 2、GPS的组成及限制 3、GPS定位技术的应用 基本要求:掌握GPS的发展历史、GPS组成、特点、应用范围等,了解我国的GPS应用现状。 教学方式:课堂教学。

(二) GPS的坐标系统与时间系统学时:4 主要内容:坐标系统的类型,协议天球坐标,协议地球坐标系,地球坐标系的其他表达形式,大地测量基准及其转换,时间系统。 1、坐标系统 2、坐标系统及转换 3、时间系统 基本要求:掌握GPS坐标参考框架及时间参考框架等基本概念。 教学方式:课堂教学。 (三) 卫星运动的基础知识学时:4 主要内容:基础知识概述,卫星的无摄运动,GPS卫星的导航电文,GPS卫星的星历,GPS卫星的信号及其构成。 1、卫星的无摄运动 2、卫星的受摄运动及坐标计算 基本要求:掌握卫星无摄运动、受摄运动等基本概念,以及GPS位置坐标计算方法。 教学方式:课堂教学。 (四)GPS卫星的信号与导航电文学时:4 主要内容:GPS定位的基本观测量,是观测站(用户接收天线)至GPS卫星(信号发射天线)的距离(或称信号传播路径),它是通过测定卫星在该路径上的传播时间(时间延迟),或测定卫星载波相位在该路径上变化的周数(相位延迟)来导出的。这跟通常的电磁波测距原理相似,只要已知卫星信号的传播时间和传播速度,就可得到卫星至观测站的距离。 为了便于理解GPS定位的原理,这里将首先简要地介绍一下有关电磁波传播的基本知识及大气层折射的影响,然后,进一步说明有关GPS卫星的信号问题。 1、电磁波的传播 2、 GPS卫星的测距码信号 3、 GPS卫星的导航电文 4、 GPS卫星信号的构成 基本要求:了解GPS卫星导航电文的基本构成,信号编码、解码原理等内容。 教学方式:课堂教学。 (五) GPS定位基本原理学时:8 主要内容:GPS的观测量,是用户利用GPS进行定位的重要依据之一。主要介绍,利用GPS进行定位的基本方法和观测量的类型,并着重阐述与测码伪距和载波相位观测量相应的,观测方程及其线性化形式;GPS定位方法与观测量,伪距法定位,载波相位测量,整周跳变的探测及修复,整周未知数No的确定,载波相位测量的线形组合,静态相对定位测量。 1、 GPS定位的观测量 2、 GPS定位的观测方程 3、伪距法定位 4、载波相位法测量 5、整周跳变的探测与修复 基本要求:掌握GPS测量的基本方法、观测量、观测方程及其线性化表达等内容,了解整周模糊度概念及探测修复方法。 教学方式:课堂教学。 (六) GPS卫星导航学时:4 1、GPS卫星导航的概况; 2、GPS卫星导航原理

《导航定位技术概论》大作业

导航定位技术 (程青青 912110190104) 1. 引言 早在远古时代,人类便知道利用星历导航,然后又出现用鱼骨充当六分仪,确定航线,接着指南针的发明,标志着导航仪的诞生,再后来英国发明了航海表,人们综合利用星历知识、指南针、航海表进行导航。随着科技的发展,导航定位技术也逐渐成熟,出现了无线电导航、量子导航等,导航定位技术已经渗透到人类文明的各个角落里,发挥着它无可替代的作用。导航定位系统的目的简单来说就是“在哪里、到哪去、怎么去”这九个字,也就是以某种手段或方式引导航行体安全、准确、便捷、经济地在规定时间内按一定的路线到达目的地。导航过程中系统要实时连续的给出载体的位置、速度、加速度、航向等参数。导航定位技术是涉及自动控制、计算机、微电子学、光学、力学、数学等领域的高科技,现在不仅已经广泛应用于海、空、天等高科技武器和武器研究平台中,还以各种形式成为我们日常生活不可或缺的重要部分。 2.导航定位系统 2.1 导航定位系统的分类 根据原理的不同,可以将现有的导航定位系统分为地磁导航系统、声学导航系统、推位导航系统,惯性导航系统、无线电导航系统、卫星导航系统、天文导航系统七大类。 (1)、地磁导航系统 原理:通过地磁传感器测得的实时地磁数据与存储在计算机中的地磁基准图进行匹配来定位(由于地磁场为矢量场,所以在近地空间任意一点的地磁矢量都不同于其他的点,且与该点的经纬度是一一对应的) 优点:无源、无辐射、全天候、全地域、能耗低。 (2)、声学导航系统 由于电磁波在水中能量消耗太快,而声波能传播几百公里而几乎没有能量损失,因此可以采用声发射器作为信标在水中引导载体的航行。 分类:长基线导航(LBL)、短基线导航(SBL)、超短基线导航(USBL) 原理:事先在海域摆放换能器或者换能器阵,以此实现声学导航。换能器发出的脉冲被一个或者多个设置在母船上的声学传感器接收,收到的脉冲经过处理并按照预定的数学模型进行计算就可以得到声源的位置。 (3)推位导航 基本原理:起始时刻的位置已知,速度的大小和方向可以通过测量得到,则

导航与定位概述

导航与定位概述 导航与定位已经深入到人们的曰常生活,但是导航与定位的含义经常被混淆,而且绝大多数教科书和文献也没有刻意区分这两个既有联系又有区别的概念。本文试图分别给出导航与定位的定义与内涵,讨论导航与定位的联系与区别,描述导航定位分类,简述导航与定位的交叉发展史。试图从学科发展、应用领域的发展讨论导航定位涉及的研究内容,侧重讨论导航与定位未来的重要研究方向。需要强调的是,本文只讨论一般意义的导航与定位,尽管卫星导航定位是重点描述内容,但不特指目前快速发展的卫星导航定位。 一、引言 定位是人类社会活动、经济活动、军事活动的重要支撑。高精度定位是地球科学研究的基础,内部地球物理、地壳运动、海洋活动、地震等都需要毫米级精度的定位;边界划分、土地测量、工程建设等需要厘米甚至毫米级精度的定位。日常生活中人们更需要连续实时导航定位。行人在陌生的城市、森林和无垠的沙漠戈壁需要导航、定位和定向,车辆行进在陌生的道路和城市需要参照、需要导航,舰船航行在浩瀚的海洋需要标志和定向指引,飞行器遨游太空也需要导航定位。 国防建设更离不开导航定位。军事行动、指挥平台、武器平台等都需要导航定位的支持。

导航定位是信息技术(information technology,IT)和数据技术(data technology,DT)开发与应用的基础。信息化社会中(无论是数字地球还是智慧城市),约80%的信息都与空间和时间有关。于是,导航定位所提供的三维位置、三维速度和时间信息是信息化建设的重要内容,也是数字地球、智慧城市建设十分重要的基础。 涉及导航与定位的著作、文献十分丰富,但是专门讨论定位与导航的区别、联系、发展历程的文献并不多。而且导航与定位概念经常混淆。此外,在全球卫星导航定位系统发展之前,导航与定位分别附属于不同学科。“定位”属于大地测量学科;“导航”尽管在航海、航空得到广泛研究和应用,但是它一般属于自动控制学科。卫星导航定位系统出现后,导航与定位的界限越来越模糊。从学科发展角度,严格的导航与定位的定义也需要加以规范化论述,尤其需要理清导航与定位的区别与联系,讨论其发展的关联性。 二、导航定位定义及其分类 “定位”指的是测定地面、海洋或空中一点相对于指定坐标系统的坐标。简言之,测定点的位置就叫定位。定位分为绝对定位(相对于指定坐标系统的位置)和相对定位(相对于其他点的位置);定位可按单点进行位置测定,也可按整网的一部分进行测定。定位也分静态定位和动态定位,静态定位指的是载体在静止状态进行的定位,动态定位指的是载

卫星导航定位技术概述

卫星导航定位技术概述 ?卫星:围绕行星运转的物体,这里指人造地球卫星。 ?卫星通信:地球上包括地面、水面和低层大气中的无线电通信站之间利用人造地球卫星作中继站而进行的通信。 ?导航:通过实时测定运载体在行进途中的位置和速度,引导运载体沿一定航线经济而安全地到达目的地的技术。 ?要实现导航,必须首先实现定位,即精确确定当前所在的位 置。只有先定位,才能确定目的地的方向,即实现定向。 ?导航定位的发展: 推算定位-天文导航-惯性导航-无线电导航

导航系统 ?推算定位系统(Dead Reckoning Systems) ?通过航行的方向和距离来推算其所在位置。 ?惯性导航系统(Inertial Navigation System) ?根据牛顿提出的相对惯性空间的力学定律,利用陀螺、加速度 计等惯性元件感受运动载体在运动过程中的加速度。然后通过 计算机积分运算,从而得到运动载体的位置和速度等信息。 ?优点是不依赖外界导航台和电磁波的传播,因此应用不受环境 限制,包括海陆空及水下。隐蔽性好,不可能被干扰,生存能 力强。此外,还可以产生包括载体三维位置、三维速度与航向 姿态的多种信息。然而,它的垂直定位信息不好。

无线电导航系统 ?基本原理 ?根据电磁波在理想均匀媒介中按直线传播,且速度为常数, 并在任两种媒质介面上一定产生反射,入射波和反射波同在 一铅垂面内的特性,进行导航定位。 ?优点: ?电磁波的传播基本上不受昼夜、气候、距离的影响; ?可对空中、海上与地面的各种运动载体进行定位、导航。 ?测量快、准确度高、可靠性高。 ?缺点: ?电磁波难免受外界干扰

北斗卫星导航系统简介与概述

北斗卫星导航系统简介与概述 2013年08月17日?北斗导航资讯?共1511字?字号小中大?暂无评论 一、概述 北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的 自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容 二、发展历程 卫星导航系统是重要的空间信息基础设施。中国高度重视卫星导航系统的建设,一直在努力探索和发展拥有自主知识产权的卫星导航系统。2000年,首先建成北斗导航试验系统,使我 国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显著的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。 为更好地服务于国家建设与发展,满足全球应用需求,我国启动实施了北斗卫星导航系统建设 (一)北斗双星定位系统: 2003年5月建成;三颗地球同步轨道卫星36,000km;卫星寿命5年;主动式定位,有源定位 下行S波段,上行L波段;二维定位、授时、短报文服务、广域增强军民两用系统;被动式定位,无源定位。 特点: 具有定位、授时、短报文通信多种功能;可用于发布广域差分信息;军民两用系统。

卫星导航定位算法_常用参数和公式概要

《卫星导航定位算法与程序设计》课程 常用参数和常用公式一览 编制人:刘晖 更新时间:2010年10月29日 1、常用参考框架的几何和物理参数 1.1 ITRFyy 主要的大地测量常数 长半轴a=6.3781366×106m; 地球引力常数(含大气层)GM=3.986004418×1014 m3/s2; 地球动力因子J2=1.0826359×10-3; 地球自转角速度ω=7.292115×10-5 rad/s。 扁率1/f =298.25642; 椭球正常重力位U0=6.26368560×107 m2/s2; 赤道正常重力 e γ=9.7803278 m/s2; 光速c=2.99792458×108 m/s。 1.2 GTRF主要的大地测量常数 长半轴a=6.37813655×106 m; 地球引力常数GM=3.986004415×1014 m3/s2; 地球动力因子J2=1.0826267×10-3; 扁率1/f =298.25769。 1.3 WGS84(Gwwww)主要的大地测量常数 长半轴a=6.3781370×106 m; 地球引力常数(含大气层)GM=3.986004418×1014 m3/s2; 地球自转角速度ω=7.292115×10-5 rad/s。 扁率1/f =298.257223563; 椭球正常重力位U0=62636860.8497 m2/s2; 赤道正常重力 e γ=9.7803267714m/s2; 短半轴b=6356752.3142m; 引力位二阶谐系数 2,0 C=-484.16685×10-6; 第一偏心率平方2e=0.00669437999013; 第二偏心率平方 2 e'=0.006739496742227。 1.4 PZ90 主要的大地测量常数 长半轴a=6.378136×106m; 地球引力常数GM=3.9860044×1014 m3/s2; 地球大气引力常数 a fM=3.5×108 m3/s2;

GPS定位系统概述及定位原理

作者:鼎然工作室更新时间:2004-06-02 【IT168 技巧】本文将阐述GPS系统的相关基本概念以及定位原理。 定位系统概述 全球定位系统(Global Positioning System - GPS)是美国从本世纪70年代开始研制,历时20年,耗资300亿美元,于1994年全面建成,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统,还提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略重要组成。截止1994年3月,全球覆盖率高达98%的24颗GPS卫星星座已经布设完成。 全球定位系统共由三部分构成: 1.地面控制部分,由主控站(负责管理、协调整个地面控制系统的工作)、地面天线(在主控站的控制下,向卫星注入导航电文)、监测站(数据自动收集中心)和通讯辅助系统(数据传输)组成; 2.空间部分,由24颗卫星组成,分布在6个轨道平面上; 3.用户装置部分,主要由GPS接收机和卫星天线组成。 全球定位系统的空间部分使用24颗高度约2.02万千米的卫星组成卫星星座。21+3颗卫星均为近圆形轨道,运行周期约为11小时58分,分布在六个轨道面上(每轨道面四颗),轨道倾角为55度。卫星的分布使得在全球的任何地方,任何时间都可观测到四颗以上的卫星,并能保持良好定位解算精度的几何图形(DOP)。这就提供了在时间上连续的全球导航能力。 经过20余年的实践证明,GPS系统是一个高精度、全天候和全球性的无线电导航、定位和定时的多功能系统。GPS技术已经发展成为多领域、多模式、多用途、多机型的高新技术国际性产业。目前已遍及国民经济各种部门,并开始逐步深入人们的日常生活。

导航定位技术概论论文

导航定位技术概论论文 一、引言 卫星导航系统已成为当今发达国家国防及经济基础的重要组成部分,是国家综合国力及科学技术发展水平的重要标志之一。自20世纪50年代人造地球卫星上天以来,最具经济实力和空间技术水平的美国和苏联先后建成了两代卫星导航系统。今天,GPS和GLONASS不但是导航史上的重大贡献,成为国防和和国家兴旺最具影响力的因素,而且已步入人们的生活,成为交通方便、繁荣物流、丰富生活的工具。导航定位的需求,可以说不是历来就有的,在人类早期物质生产活动中以牧猎为主,日出而作,日落而息。当时人们离不开森林和水草,或是随着水草的兴衰而漂泊不定,根本不需要什么明确的定位。但是,随设社会的发展,到了农业时代,在人们开发农田,兴修水利等相应活动中就逐渐产生了测绘定位的需求,可以说在这时,导航定位就在慢慢酝酿之中。等到了工业时代,人类的活动遍及全球,而一些工程比如航海、航空、洲际交通工程,通信工程,矿产资源勘探工程,地球生态及环境变迁的研究,就需要精确地定位。这些需求促使导航定位技术的发展,并把这项技术带到一个前所未有的发展时期,它的手段也从光学机械过渡到光电子精密机械仪器的时代。社会是不断发展的,科技是不断进步的,20世纪末,出现了电子计算器技术、半导体技术、激光技术、航天科学技术,它们的出现,把人类带到了电子信息时代和航天探索时代。当1957年前苏联发射了人类第一颗人造地球卫星,人类跟踪无线电信号中发现了卫星无线电信号的多普勒频移现象,这预示着一种全新的天空定位技术的可行性,由此,人类进入了卫星定位和导航的时代。主要代表有美国的GPS ,俄罗斯的GLONASS,中国的北斗卫星导航系统等。 正文 导航的定义 将运载体从起始点引导到目的地的技术或方法称为导航。导航一种广义的动态定位,所需的最基本导航参数为运载体的航向、航速和航迹。它的基本作用是引导飞机、船舰、车辆等(总的称作运载体),还有个人,安全准确的沿着所选定的路线,准时地到达目的地。能够提供运载体运动状态,完成引导任务的设备则称为导航定位系统。导航由导航系统完成。任何导航系统中都包括有装在运载体上的导航设备。

相关文档
最新文档