第四章+聚焦离子束的应用-2016

第四章聚焦离子束的应用聚焦离子束是一种用途广泛的微纳米加工工具。

主要内容

1.简介

2.液态金属离子源

3.聚焦离子束系统

4.离子束在固体材料中的散射

5.离子束加工

6.聚焦离子束曝光

(一)简介

聚焦离子束(focused ion beam, FIB)与聚焦电子束的本质是一样的,但是两者又有很大的不同。主要差别在于它们的质量,最轻的离子(如氢离子)也比电子重1000多倍。

离子束当然用来曝光,但不仅只用来曝光,还可以对材料进行溅射和沉积,因此聚焦离子束是一种更广泛的加工工具。

自1910年Thomson发明了气体放电型离子源后,离子束技术主要应用于物质分析、同位素分离和材料改性。

早期的离子源是等离子体放电式的,属大面积离子源。真正的聚焦离子源始于液态金属离子源的出现。

液态金属离子源产生的离子具有高亮度、小尺寸的特点,是目前所有聚焦离子束系统的离子源。液态金属离子源加上先进的离子光学系统,可以获得只有5nm的最细离子束。一方面,离子束本身可以对材料表面剥离加工;另一方面,以不同的液态金属作为源材料可以将不同的元素注入材料之中,起到对衬底材料掺杂的作用。

聚焦离子束与化学气体配合可以直接将原子沉积到衬底材料表面。这些应用与聚焦离子束的高分辨能力相结合,使它们都具有微小尺度的特点。

因此,聚焦离子束是一种用途广泛的微纳米加工工具。

(二)液态金属离子源

又名:熔融金属场发射离子源

电流体动力离子源

(1)电子轰击型离子源:通过热阴极发射的电子,加速后轰击气体分子,使气体分子电离。这类离子源多用于质谱分析仪。特点是束流不高,但能量分散小。

(2)气体放电型离子源:由气体等离子体放电产生电子。如:辉光放电、弧光放电、火花放电离子源等。这类离子源的特点是产生离子束流大,因此广泛应用于核物理研究,如高能加速器的离子源和离子注入机的离子源。

离子源分类

(3)场致电离型离子源

(4)液态金属离子源都是在大范围内(如电离室)产生离子,通过小孔将离子流引出。因此离子流密度大,离子源面积大,不适合于聚焦成微小束。

一般的场离子发射器,均利用一尖端作为

发射体。尖端曲率半径为微米级。对尖端

加高电压以产生强大的电场,使附近的气

体原子产生电离,离子以束状发射。利用

适当的后续透镜系统,即可获得高亮度、

细聚焦的离子束输出。场致电离型离子源?利用针尖电极附近强电场使吸附在针尖表面的气体原子电离?主要用于场致离子显微镜,研究针尖表面材料的原子结构

利用强电场使气体原子或分子电离的现象称为场电离。对自由原子,电子处于原子势阱中,需要克服电离能才可能逸出。在强场中,电子较易穿过原子位垒而逸出。

液态金属离子源

利用液态金属在强电场作用下产生场致离子发射所形

成的离子源。

在源制造过程中,将直径0.5mm左右的钨丝经过电化

学腐蚀成尖端直径只有5-10μm的钨针,然后将熔融的

液态金属粘附在针尖上。

在外加强电场后,液态金属在电场力作用下形成一个

极小的尖端(泰勒锥)。液态尖端的电场强度可高达

1010V/m。在如此高的电场下,液态表面的金属离子

以场蒸发的形式逸出表面,产生离子束流。

由于液态金属离子源的发射面积极小,尽管只有几微

安的离子电流,但电流密度约可达106A/cm2,亮度约

为20μA/sr,是场致气体电离源的20倍左右。

液态金属离子源的基本结构

液态金属离子源液态金属离子源的离子发射是一个非常复杂的动态过程。发射液尖的形状随电场和发射电流的变化而变化。金属液体还必须保证源源不断地补充因离子发射而造成的物质流失。因此,整个发射过程是一个电流体力学与场离子发射相互依赖、相互作用的过程。

液态金属离子源发射必须满足以下条件(三个维持)

(1)发射表面必须维持一定的形状,从而保持一定的表面电场;

(2)表面电场足以维持一定的发射电流与一定的液态流速;

(3)表面流速足以维持与发射电流相应的物质流量损失,从而使发射表面能够维持一定的形状。反映了表面形状、表面电场、发射电流和液体流速相互依赖与相互制约的关系。

在实际应用上,保持稳定、持续离子发射的一个最关键条件是

保证液态金属和针尖的良好浸润。

(三)聚焦离子束系统

本质上与电子束曝光系统一样。都是由电子或离子发射源、电子或离子光柱、工作台、真空与控制系统组成。

将离子聚焦成细束的核心部件是离子光学系统。

离子光学与电子光学的最基本不同点是:离子具有不同的质量和电荷。不同荷质比的离子在电磁场中受力情况不一样。

聚焦离子束系统

典型的聚焦离子束系统为两级透镜系统

对聚焦离子束电流的进一步控制通过限制膜孔来实现

目前有多家公司可以提供聚焦离子束系统,其中以美国FEI公司的产品占主导

(四)离子束在固体材料中的散射

作为带电粒子,离子和电子一样在固体材料中会发生一系列散射。

离子在固体材料中的能量损失由两方面原因造成:

一)原子核损失:离子与固体材料中原子的原子核碰撞将部分能量传递给原子,使原子移位或完全脱离固体材料表面,这一现象称为溅射。

二)电子损失:离子将能量传递给原子核周围的电子,使这些电子被激发产生二次电子,或剥离固体材料中原子的部分电子,使原子电离为离子,产生二次离子发射。

由于离子比较重,离子在固体材料中的穿透深度(又称为离子射程)很小。

衬底材料:硅离子离子电子

能量50keV100keV50keV

穿透深度50nm100nm10微米

随着能量增加或离子质量降低,离子的穿透深度也会增加。与电子不同的是,离子损失能量后会留在衬底材料中成为材料的一部分,这就是离子注入,是掺杂的一种方法。

程序SRIM(stopping

and range of ions in

matters),可以免费

下载,用蒙特卡洛

方法模拟离子散射

和溅射过程。

假定衬底材料为非晶

沟道效应(channeling effect)

如果衬底材料是晶体,在低指数晶向,即原子排列稀疏的方向,离子有可能长驱直入,穿透深度可能是非晶材料的数倍,这种现象称为沟道效应。

在这种情况下,离子能量损失主要是电子损失。由于与材料原子碰撞的概率减小,材料原子被溅射出表面的产额也降低。沟道效应会降低离子溅射率。

如果衬底材料是多晶,在同一表面

会有不同的晶向。离子溅射速率在

表面各点不同,造成表面不平整。

这时可以通过表面原子掺杂人为地

破坏晶格取向,消除离子长驱直入

的沟道,使表面溅射均匀化。

(五)离子束加工

离子束加工被认为是最有前途的超精密加工和微细加工技术,是一种原子级的加工方法,具有极高的分辨率,广泛应用于航空航天制造等领域。

离子束溅射

离子束刻蚀

离子注入

离子束辅助沉积

审查与修改集成电路芯片

修复光刻掩模缺陷

制作透射电镜样品

多用途微切割工具

离子束加工可用作

聚焦离子束

离子束溅射

利用离子源产生一定能量的离子束轰击置于高真空中的靶材,使其原子溅射出来,沉积在基底成膜的过程。

在比较低的气压下,从离子源射出的氩离子以一定

角度对靶材进行轰击。由于轰击离子的能量大约为

1keV,对靶材的穿透深度可忽略不计。级联碰撞只

发生在靶材几个原子厚度的表面层中,大量的原子

逃离靶材表面,成为溅射粒子,其具有的能量大约

为10eV 的数量级。由于真空室内具有比较少的背景

气体分子,溅射粒子的自由程很大。这些粒子以直

线轨迹到达基板并沉积在上面形成薄膜。

离子束溅射镀膜的特点

◆可方便地镀制各种金属( 包括难熔金属) 、合金、氧化物、氮化物及碳化物

等化合物镀层,此外还可镀制多层复合镀层。

◆对绝缘材料基本也能稳定地镀膜

◆镀层纯度高致密, 对环境无污染

◆能方便地控制膜厚和膜层质量。

◆膜层与基体的结合力好

◆在大面积基片上, 能获得均匀的薄膜

离子束刻蚀(也称离子铣)

随着半导体器件的发展,芯片图形精度越来越高,常规的湿法腐蚀由于难以

避免的横向钻蚀,已不能满足高精度细线条图形刻蚀的要求,于是逐步发展

了一系列干法刻蚀技术。应用较普遍的有等离子刻蚀、反应离子刻蚀、二极

溅射刻蚀、离子束刻蚀。

离子束刻蚀是利用具有一定能量的离子轰击材料表面,使材料原子发生溅射,从而达到刻蚀目的。

对材料无选择性, 几乎所有的材料均可刻蚀。只是不同材料的刻蚀速率不一样。刻蚀速率与

离子束能量、束流大小、离子束轰击表面的入射角以及被加工材料的原子结构、晶向等许多

因素有关。

影响刻蚀速率的因素:1)刻蚀速率直接与轰击基片的离子能量有关。随着电压的增加, 离子能量增加, 刻蚀速率增加。2)为了避免或尽可能减少对离子轰击基片造成的损伤,要选择适当的速率

并尽量减低电压。

刻蚀能量

束流大小

刻蚀速率随束流增加而增加

离子束刻蚀特点及应用

离子束刻蚀的特点:

?方向性好,各向异性,陡直度高

?分辨率高,可达到10nm

?不受刻蚀材料限制(金属和化合物,无机物和有机物,绝缘体和半导体均可)

?刻蚀过程中可改变离子束入射角θ来控制图形轮廓

离子束刻蚀应用:

(1)由于离子束刻蚀对材料无选择性,特别适合对一些化学研

磨、电介研磨难以减薄的材料进行减薄

(2)由于离子束逐层剥离原子层所以具有微分分析样品的能力

(3)适应于精密加工

上图为利用离子束刻蚀技术得

到的沟槽,下图为利用离子束

刻蚀技术得到的全系闪耀光栅

医用重离子加速器

第三章医用重离子加速器 医用重离子加速器提供的重离子束主要应用于重离子束治癌,而提供的放射性核素以在核医学方面的应用为主。重离子束治癌在美,日,德等发达国家已进入到临床试验阶段,而放射性核素在核医学方面的应用大都处于试验研究阶段。由中国科学院近代物理研究所、甘肃省医学科学研究院、甘肃省肿瘤医院合作、兰州军区兰州总医院参与的甘肃省科技重大项目——“重离子束辐射治疗癌症的关系就是开发研究”,于2006年12月开始临床研究。到目前,已应用重离子束放射治疗浅表肿瘤受试者127名,效果显著,绝大部分病人无明显不良反应,治

疗后病人的随访率达96%以上,使我国成为国际上第4个有能力进行重离子治癌临床研究的国家。 第一节重离子治癌原理 一、概述 重离子束与物质相互作用的特殊机理使得它在肿瘤治疗方面具有一系列明显的优点:重离子束治疗精度高达(毫米量级);剂量相对集中,照射治疗时间短,疗效高;对肿瘤周围健康组织损伤小;重离子束治疗能做到实时监测,便于控制辐照位置和剂量。 以上优点使得重离子束的治疗作用可

以与手术刀媲美,达到普通电离辐照(此处普通电离辐照指x、r及电子束)治疗难以实现的疗效,因而重离子束被称为是21世纪最理想的放射治疗用射线。也正是由于重离子束在放射治疗中的上述优点,世界上许多国家都倾注了大量的人力和物力进行医用重离子束加速器的研制,或利用已有的重离子加速器进行治癌装置的建造和治癌基础及临床应用研究,这使得重离子治癌成为放射治疗领域的前沿性研究课题。 二、重离子治癌的科学依据和优势 放射治疗的主要原则就是给予肿瘤尽

可能大的辐射剂量,将癌细胞杀死,同时又尽可能地保护肿瘤周围和辐射通道上的正常组织使其少受损伤。由于普通电离辐照对剂量深度分布均呈指数衰减或略微上升而后衰减的特征,使治疗受到很大限制;而重离子束以其独特的放射物理学和放射生物学性质,在放射治疗上独具优势。 (一)重离子束的物理特性 1.特殊的深度剂量分布 荷电重离子贯穿靶物质时主要是通过与靶原子核外电子的碰撞损失其能量,随离子能量的降低,这种碰撞的概率增大。因此,离子在接近其射程末端时损失其大部分初始动能,形成一个高剂量的能量损

聚焦离子束技术

第四章 聚焦离子束技术(FIB)

本章主要内容 4.1 FIB系统介绍 41FIB 4.2 FIB-SEM构造及工作原理 4.3 离子束与材料的相互作用 4.4 FIB主要功能及应用 参考书:顾文琪等,聚焦离子束微纳加工技术,北京工业大学出版社,2006。参考书:顾文琪等聚焦离子束微纳加工技术北京工业大学出版社2006。

41FIB 4.1 FIB 系统介绍 (Focused Ion beam FIB)聚焦离子束(Focused Ion beam, FIB)的 系统是利用电透镜将离子束聚焦成非常小尺寸的显微加工仪器。通过荷能离子轰击材料表面实现材料的剥离沉积轰击材料表面,实现材料的剥离、沉积、注入和改性。 目前商用系统的离子束为液相金属离子源(Liquid Metal Ion Source,LMIS) 金属材质为镓(Gallium, Ga),因为镓元素具有低熔点、低蒸气压、及良好的抗氧化力。 即离子束+Zeiss Auriga FIB Zeiss Auriga FIB--SEM system 现代先进FIB 系统为双束,即离子束+ 电子束(FIB+SEM )的系统。在SEM 微观成像实时观察下,用离子束进行微加工g y 加工。

FIB技术发展史 FIB加工系统的发展与点离子源的开发密切相关 系展 1950s:Mueller发明气体场发射离子源(GFIS); 1970s:GFIS应用到聚焦离子显微镜(FIM); 1974-75:J. Orloff 和L.W.Swanson分别将GFIS应用于FIB。此时的(p) GFIS束流低(10pA),分辨率约50纳米; 1974:美国Argonne国家实验室的V.E.Krohn 和G.R.Ringo发现在电场作用下毛细管管口的液态镓变形为锥形,并发射出Ga+离子束; 1978:美国加州休斯研究所的R.L.Seliger等人建立了第一台Ga+液态金属离子源的FIB系统,束斑直径100nm,束流密度1.5A/cm2,亮度达62 3.3x10A/(cm.sr),束能量57keV; 1980s:商品型FIB投入市场,成为新器件研制、微区分析、MEMS制作的重要手段; 1980s-90s:开发出SEM-FIB双束、FIB多束、全真空FIB联机系统。

重核离子束成分的加速器质谱分析

第33卷第2期原子能科学技术V o l.33,N o.2  1999年3月A tom ic Energy Science and T echno logy M ar.1999重核离子束成分的加速器质谱分析3 何 明 姜 山 蒋崧生 武绍勇 (中国原子能科学研究院核物理研究所,北京,102413) 为拓展加速器质谱技术(AM S)测量范围及测量放射性核束成分,建立了利用入射离子发射特征X射线鉴别同量异位素的方法,开展了利用AM S测量重核离子束成分的工作。用此方法可将测 量79Se时的同量异位素干扰79B r压低2个数量级。对将用于64Cu放射性束实验的铜靶离子束成分 进行了分析。 关键词 离子束分析 入射离子X射线 加速器质谱 中图法分类号 TL52 TH84 加速器质谱技术(AM S)由于其高灵敏度而广泛应用于各个学科。AM S在测量重核,如79Se、126Sn等会遇到同量异位素的严重干扰。为拓展AM S测量范围,需建立重核的AM S分析新方法。另外,放射性核束物理实验的束流是混合束(受到一些稳定核素的干扰),需要对其成分进行鉴别而对离子束成分分析提出了要求。当离子经过加速器加速再经过分析磁铁选定所测核素后,离子束中一般只有所测核素的同位素和同量异位素。因此,离子束成分分析主要是分析离子束中的同位素和同量异位素含量。 1 同位素的分析方法 111 电刚度分析法 待分析样品在离子源被电离、经加速器加速后由分析磁铁选择出某一核素,只有相同磁刚度2〔(E q)?(m q)〕1 2的离子才能通过分析磁铁(E、m、q分别为离子能量、质量和电荷态)。离子在加速过程中由于电荷交换等原因使一些同位素的磁刚度满足选定的磁刚度而通过分析磁铁,因这些同位素离子质量不同,能量比选择的离子能量要高或低。静电分析器是能量分析器,即只有电刚度(E q)相同的离子才会通过静电分析器,因此可对离子的同位素进行分析。中国原子能科学研究院的高灵敏静电分析器[1]可对离子束中的同位素进行分析:通过改变静电分析器的电压让能量不同的离子(相应于质量不同的离子)通过静电分析器,对通过的离子进行测量来对离子束中的同位素进行鉴别。静电分析器在分析模拟传输64Cu时离子束中同位 3国家自然科学基金和核工业基金资助项目 何 明:男,29岁,加速器质谱学专业,助理研究员 收稿日期:1998205218 收到修改稿日期:1998208202

聚焦离子束加工技术及其应用

聚焦离子束加工技术及其应用 摘要:。聚焦离子束(FIB)技术是把离子束斑聚焦到亚微米甚至纳米级尺寸,通过偏转系统实现微细束 加工的新技术。文章简述了聚焦离子束工作原理和应用前景等。 关键词:聚焦离子束、刻蚀 1.聚焦离子束简介 聚焦离子束(focused ion beam,FIB)与聚焦电子束从本质上讲是一样的,都是带电粒子经过电磁场聚焦形成细束。但聚焦电子束不同于聚焦离子束。区别在于它们的质量,最轻的离子为氢离子也是电子质量的1 840倍。离子束不但可以像电子束那样用来曝光,而且重质量的离子也可以直接将固体表面的原子溅射剥离,因此聚焦离子束更广泛地作为一种直接微纳米加工工具。 离子束的应用已经有近百年的历史。自1910年Thomson建立了气体放电型离子源后,离子束技术 主要应用于物质分析、同位素分离与材料改性。由于早期的等离子体放电式离子源均属于大面积离子源,很难获得微细离子束。真正的聚焦离子束始于液态金属离子源的出现。1975年美国阿贡国家实验室开发出液态金属离子源(LMIS),1978年美国加州休斯研究所的R.L.Seliger等人建立了第一台装有Ga LMIS的FIB系统,其束斑直径仅为100nm(目前已可获得只有5nm的束斑直径)。电流密度为1.5A/cm ,亮度达3.3×10。A/(cm2.sr)。这给进行亚微米JJnq-器件的研究极大的鼓舞。 聚焦离子束(FIB)技术就是在电场及磁场的作用下,将离子束聚焦列亚微米甚至纳米量级,通过偏转系统和加速系统控制离子束,实现微细图形的检测分析和纳米结构的无掩模加工。FIB技术经过不断发展,离子束已可以在几个平方微米到近lmm 的区域内进行数字光栅扫描,可以实现:①通过微通道极或通道电子倍增器收集二次带电粒子来采集图像。②通过高能或化学增强溅射来去除不想要的材料。③淀积金属、碳或类电介质薄膜的亚微米图形。 FIB技术已在掩膜修复、电路修正、失效分析、透射电子显微镜(TEM)试样制作及三维结构直写等多方面获得应用。 2.聚焦离子束的工作原理 离子束系统的“心脏”是离子源。目前技术较成熟,应用较广泛的离子源是LMIS,其源尺寸小、亮度高、发射稳定,可以进行微纳米加工。同时其要求工作条件低(气压小于10 Pa,可在常温下工作),能提供A1、As、Au、B、Be、Bi、Cu、Ga、Fe、In、P、Pb、Pd、Si、Sn及Zn等多种离子。由于Ga(镓)具有低熔点、低蒸气压及良好的抗氧化力,成为目前商用系统采用的离子源。 液态金属离子源(LMIS)结构有多种形式,但大多数由发射尖钨丝、液态金属贮存池组成,典型的LMIS 结构示意图如图所示。 FIB系统由离子束柱、工作腔体、真空系统、气体注入系统及用户界面等组成,图2是聚焦离子束工作原理示意图。其工作原理为:在离子柱顶端的液态离子源上加上较强的电场,来抽取出带正电荷的离子,通过同样位于柱中的静电透镜,一套可控的上、下偏转装置,将离子束聚焦在样品上扫描,离子束轰击样品后产生的二次电子和二次离子被收集并成像。 典型的聚焦离子束系统的工作电流在lpA到30nA之间。在最小工作电流时,分辨率均可达5nm。 目前已有多家公司可以提供商品聚焦离子束系统,其中以美国FEI公司的产品占主导地位。该公司可提供一系列通用或专用聚焦离子束机,包括结构分析系列与掩模缺陷修补系列的电子离子双束系统与集成电路片修正系统。 双束系统的优点是兼有扫描镜高分辨率成像的功能及聚焦离子束加工的功能。用扫描电镜可以对样品精确定位并能实时观察聚焦离子束的加工过程。聚焦离子束切割后的样品可以立即通过扫描电镜观察。工业用机的自动化程度高,可装载硅片的尺寸为(6~8)in。 3.聚焦离子束加工的特点

基于聚焦离子束注入的微纳加工技术研究

第28卷第1期2009年2月 电 子 显 微 学 报 Journal of Chinese Electron Microscopy Society Vol 28,No 12009 2 文章编号:1000 6281(2009)01 0062 06 基于聚焦离子束注入的微纳加工技术研究 徐宗伟1,2 ,房丰洲 1,2* ,张少婧1,陈耘辉 1 (1.天津大学精密测试技术及仪器国家重点实验室天津市微纳制造技术工程中心,天津300072; 2.天津微纳制造技术有限公司,天津300457) 摘 要:提出了聚焦离子束注入(focused ion beam implantati on,FIBI)和聚焦离子束XeF 2气体辅助刻蚀(gas assisted etching,GAE)相结合的微纳加工技术。通过扫描电镜观察FIBI 横截面研究了聚焦离子束加工参数与离子注入深度的关系。当镓离子剂量大于1 4 1017i on cm 2时,聚焦离子束注入层中观察到均匀分布、直径10~15nm 的纳米颗粒层。以此作为XeF 2气体反应的掩膜,利用聚焦离子束XeF 2气体辅助刻蚀(FIB GAE)技术实现了多种微纳米级结构和器件加工,如纳米光栅、纳米电极和微正弦结构等。结果表明该方法灵活高效,很有发展前途。关键词:聚焦离子束(FIB);离子注入;气体辅助刻蚀(GAE);微结构中图分类号:TH73;TH74;O59 文献标识码:A 收稿日期:2008 11 19;修订日期:2008 12 16 基金项目:高等学校学科创新引资计划资助(B07014). 作者简介:徐宗伟(1978-),男(满族),辽宁人,博士后.E mail:zongwei xu@163.c om.*通讯作者:房丰洲(1963-),男(汉族),黑龙江人,教授.E mail:fzfang@https://www.360docs.net/doc/2a6737749.html,. 聚焦离子束(focused ion beam,FIB)加工技术在 微纳米结构的加工中得到广泛的应用[1,2] 。聚焦离子束系统不仅能够去除材料(铣削加工),还具有添加材料(离子注入和沉积)加工的能力。离子注入是采用高能离子轰击样品表面,使高能离子射入样品,入射离子通过与工件中的原子碰撞,逐渐失去能量,最后停留在样品表层。对聚焦离子束注入损伤的显微研究目前普遍使用的是透射电子显微镜[3] 。透射电子显微镜具有分辨率高的优点,但透射电镜样品的制备难度较大。 与传统的掩模注入法相比,运用聚焦离子束系统进行定点离子注入,不仅大大节省成本,还可节约加工时间[4] 。聚焦离子束离子注入已被尝试应用于纳米结构和器件的加工研究,主要方法是利用FIBI 层作为掩膜,结合湿法刻蚀[5] 或反应离子深刻蚀 [6] 。 利用FIBI 和KOH 溶液湿法刻蚀的加工方法,可在硅基底上加工纳米悬臂梁。FIBI 还可以用来增强聚合物材料的抗刻蚀性 [1] 。目前FIBI 结合后续的湿 法刻蚀及反应离子刻蚀的方法将刻蚀除离子注入区域外基底所有其它位置,无法实现在局部位置的刻蚀加工,限制了离子注入技术的应用。 本文首先研究了聚焦离子束加工参数对离子注入深度的影响规律,以及聚焦离子束离子注入层作为蚀刻掩膜时离子束照射剂量的临界值。提出了聚焦离子束离子注入结合聚焦离子束XeF 2气体辅助刻蚀加工微纳结构的方法,实现了纳米光栅、纳米电 极和准三维复杂结构的微纳结构和器件的加工。 1 实验 使用FIB SE M 双束系统(FEI Nova Nanolab 200)对Si(100)基底进行离子注入。FE SE M 的图像分辨率为1 1nm,而聚焦离子束束斑直径可小至5nm 。系统使用镓离子作为离子源,加速电压为5~30kV,工作电流为1pA~20nA 。 2 FIBI 的显微组织研究 2 1 离子注入深度研究 利用聚焦离子束对FIBI 层进行切截面加工,然后用场发射扫描电镜对离子束注入截面进行观测,如图1a 所示。图1b 所示是对聚焦离子束注入层的横截面高分辨率观察结果。聚焦离子束工作参数为30kV 30pA,加工区域为2 m 2 m 。如果离子束照射剂量大于7 0 1016 ion cm 2 ,在离子注入层的横截面上会出现直径10~15nm 的纳米颗粒。当离子束照射剂量较小时,离子注入层厚度随加工时间的增加而增大;当离子束照射剂量增加到一定程度,离子铣削和离子注入达到动态平衡,离子注入层的厚度趋于稳定。 图1b 反映了离子注入层深度可通过离子注入层横截面测量得到。为避免聚焦离子束加工再沉积对测量结果的影响,以注入层最上面到最下面的纳米级颗粒间的距离作为离子注入深度,对加速电压

加速器类型

粒子加速器: particleaccelerator 一种用人工方法产生快速带电粒子束的装置。粒子加速器有三个基本组成部分:粒子源;真空加速系统和导引、聚焦系统。粒子加速器的效能通常以粒子所能达到的能量来表征。 粒子能量在100MeV 以下的称为低能加速器,能量在 0.1?1GeV间的称为中能加速器,能量在1GeV以上的称为高能加速器 按照被加速粒子的种类,加速器可分为电子加速器、质子加速器和重粒子加速器等。 按照加速电场和粒子轨道的形态,又可分为四大类:直流高压式加速器、电磁感应式加速器、直线谐振式加速器和回旋谐振式 加速器。 它们各自都有适于工作的粒子品种、能量范围以及性能特色。近年来,大中型的粒子加速器(如重离子加速器和高能加速器等)往往采用多种加速器的串接组合:例如由直流高压型加速器作预加速器,注入直线谐振式加速器加速至中间能量,再注入回旋谐振式加速器加速至终能量。 这样的系统有利于发挥每一类加速器的效率和特色。 (撰写: 陈佳滠审订: 关遐令)串列加速器: tandem accelerator 利用一个高压使带电粒子获得两次加速的静电型加速 KB 器。 串列加速器的直流高压通常由输电系统将电荷从低电位输送到高压电极上而形成。 它的工作原理是将由负离子源产生负离子注入到加速器主体中,在高压电极的正电

场的作用下,经低能段加速管被第一次加速。 当负离子到达高压电极后,通过电子剥离器并被剥掉2 个或多个电子,变为正离子。 在高压电极作用下,正离子经高能段加速管再次被加速。 图为中国原子能科学研究院的HI-13 串列加速器主体外貌。 (撰写: 秦久昌审订: 关遐令)高压倍加器: Cockcroft-Waltonaccelerator 利用倍压整流方法产生直流高压,对离子或电子加速。 其倍压整流工作原理如图所示,主要由高压变压器,高压整流器和高压电容器等组成。 在无负载时,倍压整流线路输出的高压V随倍压级数n增加而线性增加, 可表达为V-2nVa,式中Va为高压变压器T的次级绕组交流电压峰值。 当有负载时,随着级数n 的增加,线路的电压降和电压波动会严重增加,因此级数n 不能太高。 一般倍压整流器可输出直流高压从几百千伏(大气中)到兆伏级(高气压下)。 高压倍加器由高压倍压整流电源,离子源(或电子枪),加速管、聚焦和传输系统,真空和控制系统组成。 高压倍加器的输出功率较大,可以用作较理想的中子源,X 光源少离子注入机。 (撰写: 秦久昌审订: 关遐令)静电加速器: electrostatic accelerator; Van de Graff accelerator 一种利用直流高压静电场对带

3.离子束分析技术

Zhang Xiaodong
参考书目
离子束分析
Ion Beam Analysis (IBA)
? 《离子束分析》 杨福家
1985版 1985版
? 《原子核物理实验方法》(下) 1985版 1985版 ? 《粒子同固体物质相互作用》(上)王广厚 ? 《质子X荧光分析和质子显微镜》任炽刚 1981版 《质子X 1981版
课程安排
综述 卢瑟福背散射分析(RBS)、弹性反冲分 卢瑟福背散射分析(RBS)、弹性反冲分 析(ERD)和沟道技术 析(ERD) 粒子诱发X射线荧光分析(PIXE) 粒子诱发X 射线荧光分析(PIXE) 核反应分析(NRA) 核反应分析(NRA) 如有时间,适当补充课外知识
1.1 绪言
? 粒子与离子的概念差异
– 在微观领域,粒子是离子、电子、光子和亚核粒子等的总称
? 离子束分析的概念
– 总的来说:以离子束作为工具,通过它与物质相互作用来判 断物质中元素组成及结构的一门学科 – 具体来说:利用具有一定能量的离子(如:质子、α离子及 其它重离子)束去轰击样品,使样品中的元素发生电离、激 发、发射和核反应以及自身的散射等过程,通过测量这些过 程中所产生的射线的能量和强度来确定样品中元素的种类和 含量的一门学科 – 为了对其概念有一深入的理解,大家来看离子束作用机制图
次级离子质谱
次级粒子
俄歇电子 X射线
Secondary Ion Mass Spectrometry(SIMS)
离 子
-原 子 作 用 范 畴 离 子
俄歇电子谱
Auger Electron Spectrometry(AES)
粒子诱发X射线荧光分析
Particle Induced X-ray Emission(PIXE)
离子束(E,q) 发射粒子 背散射粒子 样品 γ射线
弹性反冲分析
Elastic Recoil Detection(ERD)
-原 子 核作 用 范 畴
核反应分析
Nuclear Reaction Analysis(NRA)
卢瑟福背散射分析
Rutherford Backscattering Spectrometry(RBS)
离子束作用机制图
离子束分析作用机制图
质子X射线荧光分析
1

离子束加工技术

离子束加工技术 1 离子束溅射技术的发展 离子束溅射沉积干涉反射膜的进展可总结为[2]: * 1976 年之前,一般干涉反射膜反射率R>99%; * 1976 年离子束溅射干涉膜(淀积技术突破),反射率R=99.9%; * 1979 年离子束溅射干涉膜(测量技术突破),反射率R=99.99%; * 1983 年离子束溅射干涉膜损耗降到60ppm, 反射率R=99.994%; * 1988 年离子束溅射干涉膜损耗降到10ppm 以下, 反射率R=99.999%; * 1992 年离子束溅射干涉膜损耗降到1.6ppm, 反射率R=99.99984%; * 1997 年离子束溅射干涉膜用于ICF 三倍频激光反射镜实验,351nm 波长激光(脉冲)损伤阈值达20J/cm2; * 1998 年离子束溅射干涉膜用于ICF 基频激光反射镜实验,得到了1060nm 波长激光(脉冲)损伤阈值 达50J/cm2,吸收损耗小于6ppm 的实验结果。 在国内,对离子束溅射技术的研究非常少,在很多领域几乎接近于空白,根据国家和时代的需要,这项技 术的研究在国内变得尤为迫切。 2 离子束溅射技术的原理和特征 2.1 离子束溅射技术 在比较低的气压下,从离子源取出的氩离子以一定角度对靶材进行轰击,由于轰击离子的能量大约为 1keV,对靶材的穿透深度可忽略不计,级联碰撞只发生在靶材几个原子厚度的表面层中,大量的原子逃离 靶材表面,成为溅射粒子,其具有的能量大约为10eV 的数量级。由于真空室内具有比较少的背景气体分子, 溅射粒子的自由程很大,这些粒子以直线轨迹到达基板并沉积在上面形成薄膜。由于大多数溅射粒子具有 的能量只能渗入并使薄膜致密,而没有足够的能量使其他粒子移位,造成薄膜的破坏;并且由于低的背景 气压,薄膜的污染也很低;而且,冷的基板也阻止了由热激发导致晶粒的生长在薄膜内的扩散。因此,在 基板上可以获得致密的无定形膜层。在成膜的过程中,特别是那些能量高于10eV 的溅射粒子,能够渗入 几个原子量级的膜层从而提高了薄膜的附着力,并且在高低折射率层之间形成了很小梯度的过度层。有的 轰击离子从靶材获得了电子而成为中性粒子或多或少的被弹性反射,然后,它们以几百电子伏的能量撞击 薄膜,高能中性粒子的微量喷射可以进一步使薄膜致密而且也增强了薄膜的内应力

聚焦离子束(Focused Ion beam, FIB)

聚焦离子束(Focused Ion beam, FIB)的系统是利用电透镜将离子束聚焦成非常小尺寸的显微切割仪器,目前商用系统的离子束为液相金属离子源(Liquid Metal Ion Source,LMIS),金属材质为镓(Gallium, Ga),因为镓元素具有低熔点、低蒸气压、及良好的抗氧化力;典型的离子束显微镜包括液相金属离子源、电透镜、扫描电极、二次粒子侦测器、5-6轴向移动的试片基座、真空系统、抗振动和磁场的装置、电子控制面板、和计算机等硬设备,外加电场(Suppressor)于液相金属离子源可使液态镓形成细小尖端,再加上负电场(Extractor) 牵引尖端的镓,而导出镓离子束,在一般工作电压下,尖端电流密度约为1埃10-8 Amp/cm2,以电透镜聚焦,经过一连串变化孔径 (Automatic Variable Aperture, AVA)可决定离子束的大小,再经过二次聚焦至试片表面,利用物理碰撞来达到切割之目的。以下为其切割(蚀刻)和沉积原理图: 在成像方面,聚焦离子束显微镜和扫描电子显微镜的原理比较相近,其中离子束显微镜的试片表面受镓离子扫描撞击而激发出的二次电子和二次离子是影像的来源,影像的分辨率决定于离子束的大小、带电离子的加速电压、二次离子讯号的强度、试片接地的状况、与仪器抗振动和磁场的状况,目前商用机型的影像分辨率最高已达 4nm,虽然其分辨率不及扫描式电子显微镜和穿透式电子显微镜,但是对于定点结构的分析,它没有试片制备的问题,在工作时间上较为经济。 1工作原理编辑液态金属离子源 离子源是聚焦离子束系统的心脏,真正的聚焦离子束始于液态金属离子源的出现,液态金属离子源产生的离子具有高亮度、极小的源尺寸等一系列优点,使之成为目前所有聚焦离子束系统的离子源。液态金属离子源是利用液态金属在强电场作用下产生场致离子发射所形成的离子源[1、2]。液态金属离子源的基本结构如图1所示 在源制造过程中,将直径0.5mm左右的钨丝经过电化学腐蚀成尖端直径只有5-10μm的钨针,然后将熔融的液态金属粘附在钨针尖上,在外加强电场后,液态金属在电场力作用下形成一个极小的尖端(泰勒锥),液态尖端的电场强度可高达1010V/m。在如此高的电场下,液态表面的金属离子以场蒸发的形式逸出表面,产生离子束流。由于液态金属离子源的发射面积极小,尽管只有几微安的离子电流,但电流密度约可达106A/cm2,亮度约为20μA/s r。 聚焦离子束系统 聚焦式离子束技术是利用静电透镜将离子束聚焦成非常小尺寸的显微切割技术,目前商用FIB系统的粒子束是从液态金属离子源中引出。由于镓元素具有低熔点、低蒸汽压以及良好的抗氧化力,因而液态金属离子源中的金属材料多为镓(Gallium,Ga)[3、4]。图2给出了聚焦离子束系统结构示意图。 在离子柱顶端外加电场(Suppressor)于液态金属离子源,可使液态金属或合金形成细小尖端,再加上负电场(Extractor)牵引尖端的金属或合金,从而导出离子束,然后通过静电透镜聚焦,经过一连串可变化孔径(Automatic Variable Aperture,AVA)可决定离子束的大小,而后用E×B质量分析器筛选出所需要的离子种类,最后通过八极偏转装置及物镜将离子束聚焦在样品上并扫描,离子束轰击样品,产生的二次电子和离子被收集并成像或利用物理碰撞来实现切割或研磨。 2基本功能编辑聚焦离子束显微镜的基本功能可概分为四种: 1. 定点切割(Precisional Cutting)-利用离子的物理碰撞来达到切割之目的。广泛应用于集成电路(IC)和LCD的Cross Section加工和分析。 2. 选择性的材料蒸镀(Selective Deposition)-以离子束的能量分解有机金属蒸气或气相绝缘材料,在局部区域作导体或非导体的沉积,可提供金属和氧化层的沉积(Metal and TEOS Deposition),常见的金属沉积有铂(Platinum,Pt)和钨(Tungstun,W)二种。 3. 强化性蚀刻或选择性蚀刻(Enhanced Etching-Iodine/Selective Etching-XeF2)-辅以腐蚀性气体,加速切割的效率或作选择性的材料去除。 4. 蚀刻终点侦测(End Point Detection)-侦测二次离子的讯号,藉以了解切割或蚀刻的进行状况。在实际的应用上,为了有效的搜寻故障的区域或外来掉落的材料碎屑、尘埃、污染粒子(Particles)等位置,离子束显微镜在外围的控制系统上,可配备自动定位导航系统或影像重叠定位装置,当生产线的缺陷检视系统(Defect Inspection System),例如:KLA或Tencor,发现制程异常时,可将芯片上缺陷的计算机档案传送到自动定位导航系统,离子束显微镜即可迅速找寻缺陷的位置,并进行切割动作,确认缺陷发生的层次,如此可避免芯片送出无尘室后与外界的灰尘混淆,达到 "Off-line 找到的就是In-line 看到的" 精准度,这种功能免除了工程师在试片制备上极大的困扰,同时节省

聚焦离子束系统方法通则编制说明

教育行业标准《聚焦离子束系统方法通则》(征求意见稿) 编制说明 受全国教学仪器标准化技术委员会委托,本标准编写建议稿由北京科技大学作为主持修订单位,国家纳米科学中心、哈尔滨工业大学作为辅助修订单位,南京大学、西安交通大学、天津大学、重庆大学作为参加单位一起完成。在修订稿编写的过程中,积极参加编制组各次工作会议,提供编制组需要的相关参考资料,对标准的各版进行认真的讨论和审议,提出大量有益的意见和建议,并严格按照GB/T1.1《标准化工作导则第一部分:标准的结构和编写规则》和其它有关规定执行。在标准修订过程中,还得到了Zeiss公司、FEI 公司、Tescan公司的专家们的大力支持。 1 采用或参考国外标准情况 标准建议稿中没有参考国外标准。 2 参考国内标准情况 本标准为新制定的标准,在原《JY/T010-1996分析型扫描电子显微镜方法通则》的基础上,参考了国内相关的标准,主要标准如下: [1] GBT 16594-2008 微米级长度的扫描电镜测量方法通则 [2] GBT 20307-2006 纳米级长度的扫描电镜测量方法通则 [3] GB/T 15861-2012 离子束蚀刻机通用规范 3 主要制定过程 2015年6月24日,由全国教学仪器标准化技术委员会主持在江苏省扬州市进行了标准编写培训,并召开了本标准的任务落实会及第一次工作会。会上成立了标准编制组,编制组成员单位有:北京科技大学、国家纳米科学中心、哈尔滨工业大学、作为等7家单位,并布置了各单位的编制任务。 2015年6月28日,按照任务落实会及第一次工作会的精神,各编制单位如期完成第一期编制任务,由北京科技大学主持进行了第二次工作会议,会议以电话沟通会的形式对编制计划和方案初稿进行了修改。 2015年7月1日,完成了编制计划和方案的制订,并确定了工作组的名单。 2015年7月12日 - 7月24日,众编制单位多次组织网上讨论和发邮件进行先期的沟通和交流,并查阅相关标准和书籍、文献资料,提出通则提纲和框架结构。 2015年8月5日,工作组严格按照GB/T1.1《标准化工作导则第一部分:标准的结构和编写规则》,在调查研究和组内意见与分工的基础上,对通则进行仔细编制,形成编制初稿第一稿,并对《聚焦离子束系统方法通则》初稿第一稿进行了讨论与修改。 2015年8月6日-8月30号,工作组完成《聚焦离子束系统方法通则》初稿第二稿。

聚焦离子束技术

讲习班总结 7月11日(周二) 1.聚焦离子束技术(FIB) 定义:将离子束聚焦到亚微米甚至纳米量级,通过偏转系统和加速系统控制离子束扫描运动,实现微纳米图形的检测分析和微纳米结构的无掩模加工。 离子源:液态金属镓 应用:掩模板修复、电路修正、失效分析、透射电子显微镜样品制备、三维结构直写等方面。 基本组成:离子源、电子透镜、扫描电极、二次粒子探测器、多轴多向移动的样品台、真空系统。

聚焦离子束与SEM一样,通过偏转系统控制离子束在样品表面进行光栅式扫描,同时由信号探测器接受被激发出来的二次电子或二次离子等信号,从而得到样品表面的形貌图像。FIB激发的二次电子信号强度除了与表面形貌有关外,还因样品的晶体取向、原子质量有明显的不同。 FIB获得的图像SEM获得的表面形貌包含的信息更为丰富。 FIB可以分析薄膜材料每层厚度,也可以用作成分分析。 FIB+EDS 可以做三维成分分析。

刻蚀和切割是聚焦离子束技术最主要的功能。FIB通过偏转系统控制离子束的扫描路径与扫描区域,从而按照设定的图案刻蚀出设计的结构。 在刻蚀过程中,溅射溢出的颗粒大部分被真空泵抽走,但有部分会掉落在被刻蚀区域附近,这一过程成为再沉积。再沉积会对临近的结构形成填埋,因此在刻蚀多个相邻的结构时,通常采用并行的模式,以减小再沉积的影响。 在实际应用聚焦离子束加工制作微纳米结构时,由于FIB本身的特征及被加工材料的原因,最终加工制作出的结构有时会产生缺陷,这些缺陷主要包括:倾斜侧壁 在聚焦的束斑内,离子呈现出高斯分布特征,越靠近束斑中心,离子的相对数量越大。如果离子束按单个像素点刻蚀轰击样品,将形成锥形截面轮廓的孔洞。随着刻蚀深度的增加,截面的锥度将逐渐减小直至饱和。因材料及其晶体取向不同,截面通常会有~4°的锥度。 要想得到与样品表面完全垂直的截面,通常采用将样品人为倾斜特定的角度,以弥补截面与离子束入射角度之间的偏差。另外,还可以采用侧向入射的方式进行切割,通过定义刻蚀图案来控制截面与表面的角度,灵活地加工出形状更加复杂的三维微纳米结构。 窗帘结构 聚焦离子束加工样品截面时,另外一个需要关注的问题是截面的平整度,有时会在截面上出现竖直条纹,被称为窗帘结构。窗帘结构的形成与聚焦离子束切割固有的倾斜侧壁密切相关,当样品表面有形貌起伏或成分差异时,会产生刻蚀速率的差异,就会形成窗帘结构。 对于表面形貌起伏引起的窗帘结构,解决办法通常是在样品表面用FIB辅助化学气相沉积生长一层保护层,使表面变得平坦;也可以通过改变离子束的入射方向,从没有起伏的面开始切割,从而避开其影响。对于成分差异引起的窗帘结构,可以通过摇摆切割的方式,使离子束在多个角度入射进行消除。 非均匀刻蚀 聚焦离子束可以直接快速地加工制作微纳米平面图形结构,对于非晶体材料或单质单晶材料,FIB刻蚀通常可以得到非常平整的轮过形状和底面,但对于多晶材料和多元化合物材料,由于各个晶粒的取向不同,刻蚀速率在不同晶粒区域也会不同,经常会呈现非均匀刻蚀,底面并不平整。 对于多晶材料刻蚀出现的非均匀性加工缺陷,可以通过增大离子束扫描每点的停留时间来加以改善。聚焦离子束轰击固体材料时,固体材料的原子被溅射逸出的过程中,部分原子会落回样品表面,该过程称为再沉积。增大离子束在每点的停留时间,再沉积的影响就会增强,再沉积的原子落入凹陷处的几率更高,可以起到平坦化的作用,从而改善刻蚀底面的平整性。 气体辅助刻蚀可以大大提高刻蚀速率,减少再沉积,提高深宽比极限。(离子束辅助沉积)

电子束和离子束加工

第六章电子束和离子束加工 电子束加工(Electron Beam Machining简称EBM)和离子束加工(Ion Beam Machining简称IBM)是近年来得到较大发展的新兴特种加工。它们在精密微细加工方面,尤其是在微电子学领域中得到较多的应用。电子束加工主要用于打孔、焊接等热加工和电子束光刻化学加工。离子束加工则主要用于离子刻蚀、离子镀膜和离子注入等加工。近期发展起来的亚微米加工和毫微米(纳米)加工技术,主要是用电子束加工和离子束加工。 第一节电子束加工 一、电子束加工的原理和特点 (一)电子束加工的原理 如图6-1所示,电子束加工是在真空条件下,利用聚焦后能量密度极高(106~109W/cm2)的电子束,以极高的速度冲击到工件表面极小面积上,在极短的时间(几分之一微秒)内,其能量的大部分转变为热能,使被冲击部分的工件材料达到几千摄氏度以上的高温,从而引起材料的局部熔化和气化,被真空系统抽走。 控制电子束能量密度的大小和能量注入时间,就可以达到不同的加工目的。如只使材料局部加热就可进行电子束热处理;使材料局部熔化就可进行电子束焊接;提高电子束能量密度,使材料熔化和气化,就可进行打孔、切割等加工;利用较低能量密度的电子束轰击高分子材料时产生化学变化的原理,即可进行电子束光刻加工。 (二)电子束加工的特点 1)由于电子束能够极其微细地聚焦,甚至能聚焦到0.1μm。所以加工面积可以很小,是一种精密微细的加工方法。 2)电子束能量密度很高,使照射部分的温度超过材料的熔化和气化温度,去除材料主要靠瞬时蒸发,是一种非接触式加工。工件不受机械力作用,不产生宏观应力和变形,加工材料范围很广,对脆性、韧性、导体、非导体及半导体材料都可加工。 3)电子束的能量密度高,因而加工生产率很高,例如,每秒 钟可以在2。5mm厚的钢板上钻50个直径为0.4mm的孔。 4)可以通过磁场或电场对电子束的强度、位置、聚焦等进行 直接控制,所以整个加工过程便于实现自动化。特别是在电子束 曝光中,从加工位置找准到加工图形的扫描,都可实现自动化。 在电子束打孔和切割时,可以通过电气控制加工异形孔,实现曲 面弧形切割等。 5)由于电子束加工是在真空中进行,因而污染少,加工表面 不会氧化,特别适用于加工易氧化的金属及合金材料,以及纯度 要求极高的半导体材料。 6)电子束加工需要一整套专用设备和真空系统,价格较贵, 生产应用有一定局限性。 二、电子束加工装置 电子束加工装置的基本结构如图6—2所示,它主要由电子 枪、真空系统、控制系统和电源等部分组成。 (一)电子枪 电子枪是获得电子束的装置。它包括电子发射阴极、控制栅 极和加速阳极等,如图6-2所示。阴极经电流加热发射电子,带 负电荷的电子高速飞向带高电位的阳极,在飞向阳极的过程中, 经过加速极加速,又通过电磁透镜把电子束聚焦成很小的束斑。

离子源及加速器的国内外发展简介

离子源及加速器的国内外发展 2.1离子源及其主要类型 离子源是加速器的重要部件,它的目的是将样品物质电离成带电地原子离子或分子离子。其工作原理为:热发射或者场致发射产生电子后在放电室内部被加速,得到能量,然后电子开始撞击气体分子使气体分子发生离解、电离,然后形成等离子体(等离子体离子源),最后用引出系统在等离子体中引出离子束。离子源应该具有电离效率高,聚焦性能好,离子初始能量发散小,传输效率高,离子流稳定等特点。根据不同使用条件以及用途,目前已研制出多种类型的离子源。使用比较广泛的就有弧放电离子源、PIG离子源、双等离子体离子源和双彭源。这些离子源都是以气体放电为基础的,因此常被统称为弧源。高频离子源却是利用稀薄气体进行高频放电来令气体电离,一般都用来生产低电荷态的正离子,有时也生产负离子,用作负离子源来使用。而新型的重离子源的出现,使得重离子的电荷态得到显著提高,其中比较稳定的有电子回旋共振离子源(ECR)以及电子束离子源(EBIS)。负离子源性能较好就有转荷型以及溅射型两种。在一定条件下,以气体放电作为基础的各类离子源,都可以提供一部分的负离子束流。 图2.1离子源

①高频离子源 图2.2高频离子源 利用稀薄气体中高频放电使气体发生电离,主要产生低电荷的正离子,不过有时候也生产负离子。 在高频电场之中,自由电子与气体中地原子发生(或分子)碰撞,最后发生电离。从而带电粒子倍增,最后形成无极放电,生产了大量的等离子体。高频离子源的放电管通常使用派勒克斯玻璃或者石英管来制造。高频场则可以由管外螺线管线圈来产生,也可以使用套在管外的圆形电极产生。前者通常称为电感耦合,后者则称之为电容耦合。高频振荡器的频率通常为10 ~10 Hz,输出功率则可以达到数百瓦或以上。 从高频离子源中引出离子的方法主要有两种,其一是在放电管顶端插入一根钨丝来作为正极,而在放电管的尾端则安装一个带孔地负电极,并将该孔做成管形,方便从中引出离子流。其二则是可以把正极做成帽形,然后装它在引出电极地附近,并且放电区就在它的另外一边。但无论采用那一种引出的方式,金属电极都使要用石英或玻璃包裹起来,这可减少离子会在金属表面的复合。

聚焦离子束技术修订稿

聚焦离子束技术 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

讲习班总结 7月11日(周二) 1.聚焦离子束技术(FIB) 定义:将离子束聚焦到亚微米甚至纳米量级,通过偏转系统和加速系统控制离子束扫描运动,实现微纳米图形的检测分析和微纳米结构的无掩模加工。 离子源:液态金属镓 应用:掩模板修复、电路修正、失效分析、透射电子显微镜样品制备、三维结构直写等方面。 基本组成:离子源、电子透镜、扫描电极、二次粒子探测器、多轴多向移动的样品台、真空系统。

聚焦离子束与SEM一样,通过偏转系统控制离子束在样品表面进行光栅式扫描,同时由信号探测器接受被激发出来的二次电子或二次离子等信号,从而得到样品表面的形貌图像。FIB激发的二次电子信号强度除了与表面形貌有关外,还因样品的晶体取向、原子质量有明显的不同。 FIB获得的图像SEM获得的表面形貌包含的信息更为丰富。 FIB可以分析薄膜材料每层厚度,也可以用作成分分析。 FIB+EDS 可以做三维成分分析。

刻蚀和切割是聚焦离子束技术最主要的功能。FIB通过偏转系统控制离子束的扫描路径与扫描区域,从而按照设定的图案刻蚀出设计的结构。 在刻蚀过程中,溅射溢出的颗粒大部分被真空泵抽走,但有部分会掉落在被刻蚀区域附近,这一过程成为再沉积。再沉积会对临近的结构形成填埋,因此在刻蚀多个相邻的结构时,通常采用并行的模式,以减小再沉积的影响。 在实际应用聚焦离子束加工制作微纳米结构时,由于FIB本身的特征及被加工材料的原因,最终加工制作出的结构有时会产生缺陷,这些缺陷主要包括: 倾斜侧壁 在聚焦的束斑内,离子呈现出高斯分布特征,越靠近束斑中心,离子的相对数量越大。如果离子束按单个像素点刻蚀轰击样品,将形成锥形截面轮廓的孔洞。随着刻蚀深度的增加,截面的锥度将逐渐减小直至饱和。因材料及其晶体取向不同,截面通常会有~4°的锥度。 要想得到与样品表面完全垂直的截面,通常采用将样品人为倾斜特定的角度,以弥补截面与离子束入射角度之间的偏差。另外,还可以采用侧向入射的方式进行切割,通过定义刻蚀图案来控制截面与表面的角度,灵活地加工出形状更加复杂的三维微纳米结构。 窗帘结构 聚焦离子束加工样品截面时,另外一个需要关注的问题是截面的平整度,有时会在截面上出现竖直条纹,被称为窗帘结构。窗帘结构的形成与聚焦离子束切割固有的倾斜侧壁密切相关,当样品表面有形貌起伏或成分差异时,会产生刻蚀速率的差异,就会形成窗帘结构。 对于表面形貌起伏引起的窗帘结构,解决办法通常是在样品表面用FIB辅助化学气相沉积生长一层保护层,使表面变得平坦;也可以通过改变离子束的入射方向,从没有起伏的面开始切割,从而避开其影响。对于成分差异引起的窗帘结构,可以通过摇摆切割的方式,使离子束在多个角度入射进行消除。 非均匀刻蚀 聚焦离子束可以直接快速地加工制作微纳米平面图形结构,对于非晶体材料或单质单晶材料,FIB刻蚀通常可以得到非常平整的轮过形状和底面,但对于多晶材料和多元化合物材料,由于各个晶粒的取向不同,刻蚀速率在不同晶粒区域也会不同,经常会呈现非均匀刻蚀,底面并不平整。 对于多晶材料刻蚀出现的非均匀性加工缺陷,可以通过增大离子束扫描每点的停留时间来加以改善。聚焦离子束轰击固体材料时,固体材料的原子被溅射逸出的过程中,部分原子会落回样品表面,该过程称为再沉积。增大离子束在每点的停留时间,再沉积的影响就会增强,再沉积的原子落入凹陷处的几率更高,可以起到平坦化的作用,从而改善刻蚀底面的平整性。 气体辅助刻蚀可以大大提高刻蚀速率,减少再沉积,提高深宽比极限。(离子束辅助沉积)

电子束与离子束的区别

电子束与离子束的原理及其异同 模具三班 一、1.电子束与离子束的加工原理比较 电子束加工是在真空条件下,利用聚焦后能量密度极高的电子束,以极高的速度冲击到工件表面极小面积上,在极短的时间(几分之一微秒)内,其能量的大部分转变为热能,使被冲击部分的工件材料达到几千摄氏度以上的高温,从而引起材料的局部熔化和气化,被真空系统抽走。控制电子束能量密度的大小和能量注入时间,就可以达到不同的加工目的。如只使材料局部加热就可进行电子束热处理;使材料局部熔化就可以进行电子束焊接;提高电子束能量密度,使材料熔化和气化,就可以进行打孔、切割等加工;利用较低能量密度的电子束轰击高分子光敏材料时产生化学变化的原理,即可以进行电子束光刻加工。 离子束加工的原理和电子束加工基本类似,也是在真空条件下,将离子源产生的离子束经过加速聚焦,使之撞击到工件表面。不同的是离子带正电荷,其质量比电子大数千、数万倍,如氩离子的质量是电子的7.2万倍,所以一旦离子加速到较高速度时,离子束比电子束具有更大的撞击动能,它是靠微观的机械撞击能量,而不是靠动能转化为热能来加工的。离子束加工的物理基础是离子束射到材料表面时所发生的撞击效应、溅射效应和注入效应。具有一定动能的离子斜射到工件材料表面时,可以将表面的原子撞击出来,这就是离子的撞击效应和溅射效应

二、聚焦离子束 聚焦式离子束技术是利用静电透镜将离子束聚焦成非常小尺寸的显微切割技术。由于镓元素具有低熔点、低蒸汽压以及良好的抗氧化力,因而液态金属离子源中的金属材料多为镓。 在离子柱顶端外加电场于液态金属离子源,可使液态金属或合金形成细小尖端,再加上负电场牵引尖端的金属或合金,从而导出离子束,然后通过静电透镜聚焦,经过一连串可变化孔径可决定离子束的大小,而后用E ×B质量分析器筛选出所需要的离子种类,最后通过八极偏转装置及物镜将离子束聚焦在样品上并扫描,离子束轰击样品,产生的二次电子和离子被收集并成像或利用物理碰撞来实现切割或研磨。 三、如何控制其方向 磁偏转与电偏转分别是利用磁场和电场对运动电荷施加作用,控制其运动方向。这两种偏转有如下差别: 在磁偏转中,变化的使粒子做匀速曲线运动——匀速圆周运动,其运动规律分别从时(周期)、空(半径)两个方面给出在电偏转中,恒定的使粒子做匀变速曲线运动——类平抛运动,其运动规律分别从垂直于电场方向和平行于电场方向给出 磁偏转中,粒子的运动方向所能偏转的角度不受限制,且在相等时间内偏转的角度总是相等。在电偏转中,在相等的时间内偏转的角度是不相等的。

相关文档
最新文档