手势识别智能小车创意书

手势识别智能小车创意书
手势识别智能小车创意书

2014年重庆大学生

“合泰杯”单片机应用设计竞赛参赛

作品创意书

作品名称:手势智能小车

参赛学校:重庆工商职业学院

系名称:电子信息工程学院

指导老师:刘旭飞老师

参赛学生1:易虹羊

参赛学生2:胡照华

参赛学生3:姚正兰

2014年12月26日

作品创意书

一、摘要

智能小车作为现代的新发明,是以后的发展方向,他可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等等的用途。智能小车能够实时显示时间、速度、里程,具有自动寻迹、寻光、避障功能,可程控行驶速度、准确定位停车,远程传输图像等功能。手势控制智能小车的移动,小车具有自动循迹、避障等功能。提供一种更有趣、更方便的服务。

二、作品介绍

基于目前的普遍情况来看,多数智能小车遥控方式包括无线电遥控、红外线遥控和超声波遥控等。随着计算机的广泛应用,人机交互(Human Computer Interaction,HCI)已成为人们日常生活中的重要部分。人机交互的最终目标是实现人与机器自然的交流,因此手势识别研究顺应了发展需求。

1、国外手势识别研究状况

目前,手势识别已被广泛研究,尤其是基于视觉的手势识别。韩国Inda大学和Korea Polytechnic大学的JongShill Lee、YouongJoo Lee 等人用熵分析法从背景复杂的视频流中分割出手势区域并进行手势识别。使用链码的方法检测手势区域的轮廓,最后计算出从手势区域的质心到轮廓边界的距离。该系统课识别6种手势,平均识别率超过95%;6个人分别做每个手势的识别率平均达到90%—100%。印度研究者Meenaskshi Panwar在视觉手势识别的基础上提出了一种基于结

构特征的手势识别算法,通过背景去除、方向检测、拇指检测和手指数量检测,来最终识别手势。Chenglong Yu等人采用基于视觉的组合特征进行手势识别,将手的面积、周长、重心、面积比和长宽比等特征结合,使得识别率得以提高。上海大学DING Youndong、PANG Haibo等人运用改进的LBP算法,利用AdaBoost分类器进行手势识别,建立了多种手势数据集,其中包括一些大角度变化的手势图像。实验表明该方法可较好的对手势进行分割和分类。

此外,许多大型电子企业也将手势识别研究列入其开发项目中,并且成果显著。2012年,三星推出智能电视新品ES8000,该款电视机将面部识别,手势识别和语言识别结合,无论是语言还是简单的手势,用户不仅可完成开关机、调节音量、换台等基本操作,还可以实现上网浏览或关键字搜索等复杂功能。微软研发机构的微软研究院(Microsoft Research,MSR)与华盛顿大学合作,开发出可利用笔记本电脑内置麦克风和扬声器进行手势识别的技术;该项技术被称为Sound Wave,利用了多普勒效应识别接近计算机的任何动作和手势。

2、国内手势识别研究状况

国内的手势识别研究主要集中在各大高校和研究院等。清华大学计算机科学与技术系祝远新等人提出了一种新的基于表观的手势识别技术。提出一种基于运动分割的帧间图像运动估计方法,并指出了一条如何将运动、形状、颜色和纹理等信息统一起来进行手势识别的途径;且实现了对12种手势进行在线识别的实验系统,识别率超过90%。王凯等人提出了基于AdaBoost算法和光流匹配的实是手势方

案:只需连接计算机摄像头读取二维手势视频段便可对手势作出较为准确的识别。其中,采用AdaBoost算法遍历图像,完成静态手势的识别工作。而在动态手势的识别过程中,运用了光流法结合模板匹配的方法。中国科学技术大学和哈尔滨工业大学的腾达,刘岩等人研究了基于“大小手”的徒手手势识别,将双手分划成大手和小手,双手重叠按照一只手处理。应用背景差分法将背景去除,利用文中的大小手特征提取算法检测出手势,最终利用动态时间进行手势识别,该系统对17个常用手势实验识别率可达94.1%。

3、智能小车发展

智能小车可以分为三部分——传感器部分、控制器部分、执行器部分。

控制器部分:接收传感器部分传递过来的信号,并根据事前写入的决策系统(软件程序),来决定机器人对外部信号的反应,将控制信号发给执行器部分。好比人的大脑。

执行器部分:驱动机器人做出各种行为,包括发出各种信号(点亮发光二极管、发出声音)的部分,并且可以根据控制器部分的信号调整自己的状态。对机器人小车来说,最基本的就是轮子。这部分就好比人的四肢一样。

传感器部分:机器人用来读取各种外部信号的传感器,以及控制机器人行动的各种开关。好比人的眼睛、耳朵等感觉器官。

二、应用价值

二十一世纪电子行业发展迅猛,人们对电子产品的依赖越来越

强,科技给我们带来了高效率的工作与学习环境。随着生活质量的提高,我们对工具的使用趋于制动化和智能化,并使人们从直接控制到远程控制,远程控制又从有线控制到无线控制。对于无线控制来说,现在市场上主流的方式是以wifi、bluebooth和IR,这次要介绍的是手势控制。

1、手势控制运用

手势控制早在1982年就有科学家开始研究,其目的是实现简单的人机交互,如控制汽车、控制天气预报的进程以及后来的基于视频的手势识别技术。但是都有一定的缺陷,比如手势识别精的准度。

2、市场前景

2012年《horizon report》指出:“基于手势控制的计算机利用鼠标和键盘来控制电脑,转变到通过新输入设备利用身体运动、面部表情和语音识别来控制电脑,是的交互更加灵活。”

前不久,苹果公司开发了一款手势控制设备,该设备只有口香糖的大小,能感应设备有效感应距离为一个半径为一米的半球,并支持双手同时控制,无论是惊险刺激的3D游戏,还是网页浏览都能完美控制,其用户体验远超于传统的鼠标控制。

Google在2013年10月10日表发了一个专利,《用手势控制汽车》:比如在车速感应装置上用手示意改变车速到时速多少公里,或者在车窗边把手抬高示意升上玻璃。Google在智能汽车的研究上可谓是领头者,现目前的无人驾驶汽车在实验以来,还没出现过一次事故。

在一些沼泽地带,人是很难在此作业的,可以是用一部的智能小车进行现场勘察,人的双手可以完全释放出来控制小车,不再受限按钮开关与滑动开关。比起体积过大的遥控器来讲,手势控制器只有很小的体积,不仅美观,可谓是一件艺术品。

来看看智能家具方面。2012年出现了一个新的名词,那就是物联网。物联网其实说的就是物物相联,比如汽车、衣服、书籍、家具、电视等等一系列的物品都与网络联在一起,我们有手机可以控制周围几乎所有的物品。智能家具就是物联网的一个产物。用手机控制家里面的所有物品固然很好,但这里有个缺点就是我们的手指长时间在手机屏幕上滑动,会是我们的手指被磨平,甚至变形和手指处的皮肤加速衰老。很多爱玩切水果之类的手游时,就一根手指在屏幕上不停地滑动,而且一滑就是一个小时甚至更久,这对我们的手指很不好。为什么我们的手不能从狭小的手机屏幕上解放出来呢?将手机利用由器把手机屏幕投射到电视上,然后将手势控制器连接到路由器,这样就可以在客厅享受体感操作的乐趣,不仅可以用手操作,而且你身体的各个部位都可以控制,就像古装剧里的武林高人一样。再来看看对家具的控制。比方说家里的窗帘,直接用手势控制窗帘也就以可制动拉上。如果窗户的玻璃是可以变色的,那个更好,想变暗就暗。

家里面的任何东西只要能连上网,只需挥一挥手,一切尽在掌控中。

3、安全控制

越开放的东西,安全性必然越差。当然也没有绝对的安全行,只

要是放在网上的东西都没有绝对的安全行可言,只有不停的跟新漏洞。对于手势控制来将,既然自己能使用控制,那么别人也可以控制,甚至跳过手势控制器直接通过网络来控制我们身边的所有设备,甚至毁掉一个设备也是可能的。

在2014年中国互联网安全大会上,暴露出很多物联网安全问题,说得最多的就是汽车方面的问题。很多知名品牌的汽车遥控锁一旦被他人用射频卡接收后,就能控制车主的车,并且可以更该控制频率,这时真正的车主就不能打开车锁了。这种事情在我们的生活中是真实存在的。盗贼并没有用车主的钥匙就打开了车门,并更改了锁控的频率。现在的著名品牌奥迪、特斯拉等都被人做过实验,可以很轻松的破解控制车锁,这些安全性问题还有很多需要改进的。现在又一个解决方法就是利用类似CDMA无限扩频技术,对指令加密。(随便也看一下海蒂拉玛的杰出成就)。

四.工作原理

1.本智能玩具小车采用MCU ht32f1765作为主控制CPU,系统可以划分为几个基本模块:

一、直流电机驱动模块

二、电源模块

三、寻迹模块

四、红外对接模块

五、超声波测距模块

六.摄像头手势采集模块

七、信息显示模块

该智能小车能够实时显示时间、速度、里程,具有自动寻迹、寻

光、避障功能,可程控行驶速度、准确定位停车,远程传输图像等功能。并且造价低廉,相信在如今这社会,大多数家庭都能够买得起。2,主要硬件部分

(1).电机部分

采用普通直流电机。直流电动机具有优良的调速特性,调速平滑、方便,调整范围广;过载能力强,能承受频繁的冲击负载,可实现频繁的无级快速启动、制动和反转;能满足各种不同的特殊运行要求。如下图所示采用四个大功率晶体管组成H桥电路,四个大功率晶体管分为两组,交替导通和截止,用单片机控制使之工作在开关状态,进而控制电动机的运行。该控制电路由于四个大功率晶体管只工作在饱和与截止状态下,效率非常高,并且大功率晶体管开关的速度很快,稳定性也极强,是一种广泛采用的电路

我们通过单片机进行周期信号控制,对控制电压的占空比进行设定,我们采用频率为30Hz的周期信号对个控制端进行控制,实现对

电动机转速的调节,并通过对输入电压高低电平的切换来控制电动机的正转与反转。

(2)路面黑线的检测

当检测到黑线时,红外光管接收到反射回来的红外光,其输出立即发生高低电平跳变,该信号经放大整形后送单片机分析处理。为保证小车延黑线行驶,采用了两个检测器并行排列。在小车行走过程中,若向左方向偏离黑线,则右侧的探头就会检测到黑线,把信号传给单片机。,单片机控制车头向右转。路面黑线检测电路如下图所示

(3)障碍物探测方案

脉冲调制的反射式红外发射接收器。由于采用该有交流分量的调制信号,则可大幅度减少外界干扰;另外红外发射接受管的最大工作电流取决与平均电流,如果采用占空比小的调制信号,在平均电流不变的情况下,瞬时电流很大(50~100mA),则大大提高了信噪比。并

且其反映灵敏,外围电路也很简单。

(4).红外避障电路

红外避障传感器基本原理,和循迹传感器工作原理基本相同,利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调小车两轮工作,完成一个漂亮的躲避障碍物动作,红外避障电路如下:

(5)路程检测方案的选择

采用光电码盘进行检测。旋轴转动,带动码盘转动,码盘上刻有许多狭缝,码盘转动时发射光透过狭缝被接受元件接受。用计数器对接受到的信号进行计数。用这种方案能很精确的算出小车已经走过的距离。将光栅安装在电机轴上,当电机转动时,光栅也随之转动,同时安装在光栅一侧的红外发光二极管点亮,在光栅的另一侧设有红外三极管,用于接收红外发光二极管发出的红外线信号。由于光栅随电机高速转动,则红外线三极管接收到的就是一系列脉冲信号。将该信号传输到ht单片机的内部计数器计数,根据预先实测的数据换算关系即可计算出电动车的行车距离。路程检测电路如下:

(6)手势控制方案的选择

手势识别技术在近些年发展迅速,从微软的Kinect,到后来的LeapMotion,虽然采用的是不同的技术,但目的都是为了给用户提供良好的操作体验。就目前的技术而言,大都采用计算机视觉技术,比如Kinect采用的是结构光的原理,通过设备发出红外光斑,对三维空间进行标记,进而通过摄像头采集图案与现有图案进行匹配,得到深度图像。而LeapMotion采用的是双目匹配成像的原理得到三维深度。前者对设备要求高;后者对技术要求高,要达到一定的用户操作体验,必须要很高的处理速度,这不仅增加了算法的复杂程度,也对PC的资源有较高的占用。(文档分享来自华瑞凯琳

https://www.360docs.net/doc/2a8762595.html,/

https://www.360docs.net/doc/2a8762595.html,/hyzx/jyqj/20150212/3981523.html 我们采用的基本原理也是双目原理,但对摄像机采集的数据进行了预处理,只留下感兴趣的信息。

前景处理,通过和预先得到的背景进行对比,取出和背景差别差别超过一定阀值的像素作为前景。

预处理,预处理的核心是对手掌进行分割,得到手掌部分和手指部分。

分割采用的是图像的腐蚀和膨胀:

1.图像的腐蚀,采用一个腐蚀核,如5x5的矩阵,和图像卷积,处于腐蚀核中心的像素取矩阵中的最小值。

2.图像的膨胀,采用一个膨胀核,和图像卷积,处于膨胀核中心的像素取矩阵中的最大值。

分割处理的步骤:

1.首先对图像进行开操作,即先进行一次腐蚀,再进行一次膨胀操作。这样可以去除图像中的噪点;

2.再进行一定次数的腐蚀操作,腐蚀掉手指部分,留下手掌部分,由于腐蚀操作会把原区域变小,所以要再进行同样次数的膨胀操作。经试验,使用5x5的核,操作10次,效果最好。

3.用第2步骤得到的图像与前景图像进行异或操作,得到前景图像的手指部分。

4.对得到手指图像进行腐蚀操作一次,使得到的图像平滑,避免边缘的不平滑像素对指尖定位造成波动。手指信息提取:手指提取的信息包括手指的指尖和手指的根部。为了得到手指信息具有稳定性,我们取每个手指图像的前1/4的重心为指尖,后1/4的重心为手指的根部。手指信息的匹配:

为简化匹配过程,提高运算速度,我们根据手指在图像的x轴坐标值得大小排序,进行匹配。由于两摄像机的视角不同,会出现图像中得到的手指数量不同的现象,若出现此现象,可根据前一次匹配的数据,得出此次新出现的手指并将其列为待定手指并在此次匹配忽略此次手指。匹配过程:

1.摄像机的标定,采用张正友标定方法,得到摄像机的内参和外参。

2.深度信息的获取,采用三角计算法,Z=fT/(x1-x2);三维显示:

在OpenGL开源库,绘制指尖,指根及之间的连线,可以看出手指的位置及朝向。控制系统:

采用单手控制,由于我们控制的对象是前端安有机械臂的小车,小车驱动由双向马达组成,控制简单,我们采用单指的深度表示前后,单指的左右表示左右。而机械臂的机动系统采用360度/180度舵机,需要控制舵机的转向和转速,我们采用指尖位置在视图中心的方位表示正反转,离中心的距离表示转速。

(7)路程显示

我们采用数码管静态串行显示,显示小车路程。

3,软件设计思想

在进行微机控制系统设计时,除了系统硬件设计外,大量的工作就是如何根据每个生产对象的实际需要设计应用程序。因此,软件设计在微机控制系统设计中占重要地位。对于本系统,软件更为重要。

在单片机控制系统中,大体上可分为数据处理、过程控制两个基本类型。数据处理包括:数据的采集、数字滤波、标度变换等。过程控制程序主要是使单片机按一定的方法进行计算,然后再输出,以便控制生产。

为了完成上述任务,在进行软件设计时,通常把整个过程分成若干个部分,每一部分叫做一个模块。所谓“模块”,实质上就是所完成一定功能,相对独立的程序段,这种程序设计方法叫模块程序设计法。

模块程序设计法的主要优点是:

1、单个模块比起一个完整的程序易编写及调试;

2、模块可以共存,一个模块可以被多个任务在不同条件下调用;

3、模块程序允许设计者分割任务和利用已有程序,为设计者提供方便。

本系统软件采用模块化结构,由主程序﹑定时子程序、避障子程序﹑中断子程序显示子程序﹑调速子程序﹑摄像头控制程序、算法子程序构成。

智能小车的路径识别问题

智能小车的路径识别问题 摘要:智能小车路径识别技术是系统进行控制的前提,介绍了路径识别技术的几种分类及相应的优缺点,通过分析得出面阵CCD摄像更适合作为采集信息的工具。 关键词:智能小车;路径识别;面阵CCD摄像器件 Abstract: Smart car’s path recognition technology is the premise of the control system, this paper introduces the path of several classification and recognition technology, through the analysis of the advantages and disadvantages of the corresponding to array CCD camera is more suitable for gathering information as the tool. Key words:smart car; Path recognition; Surface array CCD camera device 0 引言:为培养大学生的自主创新设计的能力,各大高校都设置了智能车比赛,智能小车 行驶在给定的白色路面,由中间的黑色轨迹线引导,实现自主循迹功能。实现该 功能的小车主要由电源模块、循迹模块、单片机模块、舵机模块、后轮电机驱动 模块组成。路径模块一般由ATD模块,外围芯片和电路,与路面信息获取模块 组成,要能够快速准确得进行路径识别检测及相关循迹算法研究,本文就这两个 方面进行相应的分析和介绍。 1 光电传感器 1.1 反射式红外发射接收器 半导体受到光照时会产生电子-空穴对,是导电性能增强,光线愈强,阻值愈低。这种光照后电阻率变化的现象称为光电导效应[1],用于路径检测的反射式红外光电传感器基于此原理设计。该传感器一般由一个红外线发射二极管和一个光电二极管组成,可以发射并检测到反射目的光线。不同颜色的物体对光的反射率不同,当发射出的红外光对准黑色物体时,反射的红外线很少,光电二极管不能导通,反之,当对准白色物体时,光电二极管导通[2]。系统的单片机接收到光电二极管的信息根据相应的算法分析出小车此时的位置及位置偏离度,进而控制小车的方向和速度。 光电式传感器是通过对光的测量通过光电元件转化为电信号,并输出有效的输出量,由于外界光电因素的原因导致空间分辨率低是每个红外传感器存在的缺点,因此必须对原始传感器信息进行预处理,取相对值是一种有效解决外界干扰的方法,即将传感器未发射红外线时的A/D转换值进行提取,再与红外线时的转换值取相对值。文献[2]同时也提出了如何根据每个传感器的相对值与传感器位置推断出车模相对于黑色引导线的横向偏移位置。而文献[3]中所描述的方法与文献[2]有异曲同工之妙,文献[4][5]也对光电传感器的路径算法有详细科学的介绍。 1.2光敏电阻阵列传感器 假设光敏电阻阵列布置如图1所示,在智能小车的正前方布置n个光敏电阻( n=1,2,…, 11 ) ,在其质心位置依次紧密排列m个光敏电阻(m=1,2…7),首先测出路径黑色区域和白色区域的光敏电阻值,以通过d点的中心线的交点为原点建立坐标系,两排光敏之间的距离为K,光敏n和n+1且n>6或者(n和n-1且n<6)所测的值分别为黑色区域值和白色区域值,光敏6中心为智能小车的中心线通过点,而光敏d也为其通过点,连接这两点即为智能小车的中心线,则通过小车中心线并与黑色区域光敏值对应的光敏n与光敏m的连线即为所求路径信息。理论上讲,只要有两点就可以确定唯一的直线。

浅析人工智能中的图像识别技术

浅析人工智能中的图像识别技术 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。文章简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1 图像识别技术的引入 图像识别是人工智能科技的一个重要领域。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对图像做出各种处理、分析,最终识别我们所要研究的

目标。今天所指的图像识别并不仅仅是用人类的肉眼,而是借助计算机技术进行识别。虽然人类的识别能力很强大,但是对于高速发展的社会,人类自身识别能力已经满足不了我们的需求,于是就产生了基于计算机的图像识别技术。这就像人类研究生物细胞,完全靠肉眼观察细胞是不现实的,这样自然就产生了显微镜等用于精确观测的仪器。通常一个领域有固有技术无法解决的需求时,就会产生相应的新技术。图像识别技术也是如此,此技术的产生就是为了让计算机代替人类去处理大量的物理信息,解决人类无法识别或者识别率特别低的信息。 图像识别技术原理 其实,图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中的记忆来识别的,我们识别图像都是依靠图像所具有

智能小车课程设计

智能循迹小车 【摘要】 本课题是基于低功耗单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以单片机为系统控制处器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 一、实验目的 这次设计智能小车的目的是为了掌握电路设计的方法和技巧。如何将学习到的理论知识运用到实际当中去,怎样能够活学活用,深入的了解电子元器件的使用方法,了解各种元器件的基本用途和方法,能够灵活敏捷的判断电路中出现的故障,学会独立设计电路,积累更多的设计经验,加强焊接能力和技巧,完成基本的要求。并能完美的完成这次实训。 根据老师给的控制要求,和自己的发挥扩充能力,独立的,大胆的去实践,开拓创新,能够将自己的想法体现到实际电路当中去。 二、设计方案 该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片发出控制命令,控制电机的工作状态以实现对小车姿态的控制。 三、各芯片说明 W981216BH-6 一种髙速度同步动态随机存取存储器(SDRAM),具有1M 字(words) *4 层(banks)*16 位(bits)的存储结构组织.传输数据带宽最高达166M 字/秒(-6)。

对SDRAM是否访问是突发导向。在一个页面连续的内存位置可在一个1, 2, 4, 8或整页突发访问时长和行选择组由活动命令。列地址自动生成的SDRAM 的内部计数器在突发运作。随机栏也可以通过阅读在每个时钟周期提供其地址。该多组特性使交织在内部银行隐藏预充电时间。通过让一个可编程的模式寄存器,该系统可以改变突发长度,延时周期,交错或连续突发最大限度地发挥其性能。 W981216BH是在理想的主内存高性能应用。 特征: 1、.3V±0.3V电源 2、截至143 MHz时钟频率 3、2,097,152字×4层×16 位组织 4、自动刷新和自刷新 5、CAS 延时:2和3 6、突发长度:1, 2, 4, 8,和整页 7、突发读,写单人模式 8、自动预充电和预充电控制 9、4K刷新周期/ 64 ms TE28F160C3BD70(快闪记忆体)

基于3D 体感技术的动态手势识别

第27卷第4期2012年8月 光电技术应用 ELECTRO-OPTIC TECHNOLOGY APPLICATION Vol.27,No.4August ,2012 随着机器智能领域的迅猛发展,手作为人身体上最灵活的一个部位及人机交互的一个媒介,得到越来越多的应用。因此基于手势识别的各种应用也是层出不穷。手势是一种自然而直观的人际交流模式。手势识别也理所当然地成为了实现新一代人机交互不可缺少的一项关键技术。然而,由于手势本身具有的多样性(包括肤色、形态的差异性)、多义性(不同手势具有不同的意义)、以及时间和空间上的差异性(会受到光照等因素的影响)等特点,加之人手是复杂变形体及视觉本身的不适定性,因此基于视觉的手势识别是一个极富挑战性并具有很大应用空间的研究方向[1] 。 1手势识别技术的发展 手势识别分为两种,一种是静态的手势识别,即在 摄像头下检测到某个手势时就给出命令。另一种是动态手势识别,即能够识别手做的一些动作。随着3D 体感技术的出现,手势识别进入一个全新的领域。1.1静态手势识别 静态手势识别的常用方法主要有:基于模版匹配的,用边缘特征像素点作为识别特征,并利用Hausdorff 距离模板匹配完成静态手势识别[2];基于SVM 支持向量机,通过皮肤颜色模型进行手势分割, 并用傅里叶描述子描述轮廓,采用针对小样本特别有效且范化误差有界的最小二乘支持向量机(LS -SVM )作为分类器进行手势识别[3]以及集合模版匹配和机器学习理论的手势识别方法[4]等。但由于静态手势识别技术应用的局限性较大,不够灵活,使用人数在减少。 收稿日期:2012-06-24 作者简介:淦创(1990-),男,辽宁锦州人,大学本科,研究方向为计算机图像处理. ·信号与信息处理· 基于3D 体感技术的动态手势识别 淦 创 (北京航空航天大学,北京100191) 摘要:提出了一种基于3D 体感机Kinect 的图像处理手势识别算法,通过深度图像和骨骼图像的方法实现动态手势识别。首先在Kinect 提供的骨骼图像中20个骨点中,选取2个离手部最近的骨骼点,通过追踪这两个骨骼点的位置来实现对手部的追踪,再通过判断手部的深度(即其相对于摄像头的距离)的变化来实现动态手势识别。 关键词:深度图像;骨骼图像;手部追踪;动态手势识别中图分类号:TN94 文献标识码:A 文章编号:1673-1255(2012)04-0055-04 Dynamic Gesture Recognition Based on 3D Kinect GAN Chuang (Beijing University of aeronautics and astronautics,Beijing 100191,China ) Abstract :A kind of gesture recognition algorithm of image processing based on 3D Kinect is proposed.The dynamic gesture recognition algorithm is performed by skeleton images and depth images.At first,two skeleton points which are nearest to hands are choosen from 20skeleton points in a skeleton image.The process of tracking hands is performed by tracking the positions of the two skeleton points.Then the dynamic gesture recognition pro?cess is realized by the change of depths of hands (the distance between a hand and a camera). Key words :depth image;skeleton image;hands tracking;dynamic gesture recognition

2018年TI杯手势识别

2018年TI杯大学生电子设计竞赛手势识别装置(D题) 2018年7月23日

手势识别装置(D题) 【本科组】 摘要 手势识别作为人机交互的重要组成部分,其研究发展影响着人机交互的自然性和灵活性。 为了满足手势识别的设计要求,本次设计使用以测量电路为核心的系统。主要由五个模块组成,包括测量电路模块、传感器模块、显示模块、控制模块、电源模块组成。控制模块采用的是独立按键和MSP430F5529单片机,用以控制工作模式(训练和判决);测量电路模块采用的是MSP430F5529单片机;传感器模块采用的是FDC2214电容传感器;显示模块采用12864LCD液晶显示屏;电源模块采用220V转5V的USB接口输出模块。本装置通过FDC2214电容传感器和MSP430F5529单片机测量频率值,再通过频率值判断手势,并显示在LCD液晶显示屏上。 关键词:手势识别MSP430F5529FDC2214 12864LCD

目录 一、系统方案 (1) 1.测量电路模块的选择 (1) 2.显示模块的选择 (1) 3.传感器模块 (1) 4.电源模块 (2) 5.方案确定 (2) 二、理论分析与计算 (2) 1.理论分析 (2) 2.计算 (2) 三、电路与程序设计 (3) 1.电路设计 (3) (1)系统总体框图 (3) (2)控制模块系统框图 (4) 2.程序设计 (4) (1)程序流程图 (4) (2)判决的流程图 (4) 四、测试方案与测试结果 (5) 1.测试方案 (5) (1)硬件测试 (5) (2)软件仿真测试 (5) (3)硬件软件联调 (5) 2.测试条件与仪器 (5) 五、测试结果 (6) 1.测试结果 (6) 2.误差分析 (6) 六、心得 (6) 七、参考文献 (7) 附录:电路原理图 (8) 一、

三种简单手势识别

简单手势识别

一、背景 随着计算机的发展,人机交互技术由传统的鼠标键盘时代发展到了以语音输入、动作识别等技术为代表的自然交互时代n1。特别是视觉计算技术的发展,使计算机获得了初步视觉感知的能力,能“看懂”用户的动作。手势识别作为一种直观自然的输入方式,把人们从传统接触性的输入装置中解放出来,可以以一种更自然的方式与计算机交互,使计算机界面变得更加易‘引。 手势主要分为静态手势和动态手势两种,动态手势可以看作是连续的静态手势序列。动态手势具有丰富和直观的表达能力,与静态手势结合在一起,能创造出更丰富的语义。利用动态手势识别构建新型的交互界面,是新一代的人机交互界面对输入方式自然性的要求,可以弥补传统交互方式的不足。基于视觉和手势识别研究正处于蓬勃发展的阶段,仍存着的许多值得研究的问题。研究基于视觉的动态手势识别对于构建更加好友的人机交互界面很有意义。

二、手势识别概述 2.1、手势识别的概念 手势是姿势的一个子集,姿势这个概念没有精确的定义。一般认为,手势概念经过人的手转化为的手势动作,观察者看到的是手势动作的图像。手势的产生过程如图2-1所示。 图2-1 手势的产生过程 手势识别的过程则找一个从图像V到概念动作G的变换而,如图2-2所示。

2.2、手势识别流程 随着计算机的发展,人机交互技术由传统的鼠标键盘时代发展到了以语音输入、动作识别等技术为代表的自然交互时代n1。特别是视觉计算技术的发展,使计算机获得了初步视觉感知的能力,能“看懂”用户的动作。手势识别作为一种直观自然的输入方式,把人们从传统接触性的输入装置中解放出来,可以以一种更自然的方式与计算机交互,使计算机界面变得更加容易。 手势主要分为静态手势和动态手势两种,动态手势可以看作是连续的静态手势序列。动态手势具有丰富和直观的表达能力,与静态手势结合在一起,能创造出更丰富的语义。利用动态手势识别构建新型的交互界面,是新一代的人机交互界面对输入方式自然性的要求,可以弥补传统交互方式的不足。基于视觉和手势识别研究正处于蓬勃发展的阶段,仍存着的许多值得研究的问题。研究基于视觉的动态手势识别对于构建更加好友的人机交互界面很有意义。

基于STM32的手势识别控制器的设计

0 引言 操作控制器作为一种人机交互设备有着广泛的应用,比如在日常生活中,各种家电玩具的遥控器、触摸屏等,在工业生产领域各种仪器仪表设备的操作、设置和校验等。传统的操作控制器主要是通过人机接触的方式进行操作,比如按键,触摸屏等,这种操作方式容易产生静电,对于敏感的精密仪器设备影响较大,产生干扰[1]。有些设备会安置在高温高压或者有辐射的环境中,人机接触会给人体带来伤害,安全性低。市面上有些仪器仪表配有手持操作设备可以通过无线通信的方式进行操作,这种方式成本高,手持操作设备携带不方便。本文基于ARM 处理器芯片和光学数组式传感器设计了一种非接触的手势识别操作器,可将手势动作转化为控制信号,对于目标设备进行操作,安全便捷,可靠性高,具有广泛的应用场景[2]。 1 系统总体设计 本文设计的手势识别操作控制器系统总体分为三大模块,如图1所示,分别是手势检测模块,系统控制模块,和信号传输模块。 手势检测模块的主要任务是实时感应监测范围内的手 势活动,将感应到的手势活动信息转化为电信号并传输给控制系统模块。控制系统模块的功能是根据接收到的手势检测模块的电信号,经过处理识别具体的手势动作并转化为数字信号生成控制信息,通过信号传输模块对于目标设备进行操作[3]。 2 系统硬件设计 2.1 手势检测模块 手势识别传感器模块采用了采用原相科技(Pixart)公司的PAJ7620U2芯片,芯片结构如图2所示,该芯片内部集成了光学数组式传感器,以使复杂的手势和光标模式输出,可以检测出九种手势动作,支持上、下、左、右、前、后、顺时针旋转、逆时针旋转和挥动的手势动作识别,以及支持物体接近检测等功能。芯片结构功能如图所示,该芯片具体积小、灵敏度高、支持中断输出、兼容3.3V/5V 系统、使用方便等特点。 手势检测模块电路设计如图3所示,通过两个3.3V 超低压差稳压芯片,给PAJ7620芯片供电,外部分供电电源使用5V。IIC 通信时钟线IIC_SCL、IIC 通信数据线IIC_SDA 和中断输出引脚配有4.7引上拉电阻用于稳定信号输出。PAJ7620内部自带LED 驱动器,传感器感应阵列、目标信息提取阵列和手势识别阵列。PAJ7620工作时通过内部LED 驱动 器,驱动红外LED 向外发射红外线信号,当传感器阵列在有效的距离中探测到物体时,目标信息提取阵列会对探测目标进行特征原始数据的 获取,获取的数据会存在寄存器中,同时手势识 are operated by recognizing gesture movements. The application shows that the design is easy to operate, small size, high security, and can be widely used in scenarios.Key words : gesture recognition; sensor; STM32; operator 图1 系统结构图

智能小车单片机课程设计报告

题目: 智能小车设计 打开命令行终端的快捷方式: ctr+al+t:默认的路径在家目录 ctr+shift+n:默认的路径为上一次终端所处在的路径. linux@ubuntu:~$ linux:当前登录用户名. ubuntu:主机名 :和$之间:当前用户所处在的工作路径. windows下的工作路径如C:\Intel\Logs linux下的工作路径是:/.../..../ ~:代表的是/home/linux这个路径.(家目录). ls(list):列出当前路径下的文件名和目录名. ls -a(all):列出当前路径下的所有文件和目录名,包括了隐藏文件. .:当前路径 ..:上一级路径 ls -l:以横排的方式列出文件的详细信息 total 269464(当前这个路径总计所占空间的大小,单位是K) drwxr-xr-x 3 linux linux 4096 Dec 4 19:16 Desktop 第一个位置:代表的是文件的类型. linux系统下的文件类型有以下几种. b:块设备文件 c:字符设备文件 d:directory,目录 -:普通文件. l:连接文件. s:套接字文件. p:管道文件. rwxr-xr-x:权限 r:读权限-:没有相对应的权限 w:写权限

x:可执行权限 修改权限: chmod u-或者+r/w/x 文件名 chmod g-或者+r/w/x 文件名 chmod o-或者+r/w/x 文件名 第一组:用户权限 第二组:用户组的权限 第三组:其他用户的权限. chmod 三个数(权限) 文件名 首先根据你想要的权限生成二进制数,再根据二进制数转换成十进制的三位数 rwxr-x-wx 111101011 7 5 3 chmod 753 文件名 rwx--xr-x 第二个位置上的数字:对应目录下的子文件个数,如果是非目录,则数字是1 第三个位置:用户名(文件创造者). 第四个位置:用户组的名字(前边的用户所处在的用户组的名字). 第五个位置:对应文件所占的空间大小(单位为b) 第六~八个位置:Dec 4 19:16时间戳(最后一次修改文件的时间) 最后一个位置:文件名 操作文件: 1.创建一个普通文件:touch 文件名 2.删除一个文件:rm(remove) 文件名 3.新建一个目录:mkdir(make directory) 目录名 递归创建目录:mkdir -p 目录1/目录2/目录3 4.删除一个目录:rmdir 目录名.//仅删除一个空目录 rm -rf 目录名//删除一个非空目录 5.切换目录(change directory):cd 路径 linux下的路径分两种 相对路径:以.(当前路径)为起点. 绝对路径:以/(根目录)为起点, 用相对路径的方式进入Music:cd ./Music 用绝对路径的方式进入Desktop:cd /home/linux/Desktop 返回上一级:cd ..

基于FDC2214的手势识别系统设计与实现

? 159 ? ELECTRONICS WORLD ? 技术交流 系统采用了STM32作为核心控制芯片,使用FDC2214芯片获取电容值,通过滤波后,与样本数据对比,找到最短的k 个样本,判断其类型数量,达到识别手势的目的。 1.总体设计 系统总体设计框架如图1所示,采用了STM32F103ZET6作为核心控制芯片,而核心检测芯片则采用的是TI 公司的FDC2214来处理极板与手之间的容值。得到的数据通过卡尔曼滤波和knn 算法来判断出不同手势之间的区别。 以独立按键来调节菜单和录入手势模板,通过oled 显示屏做出反馈并显示结果。 将手势录入一边,系统会自动处理好数据,再进入判决模式就 可以识别手势。 图1 系统总体设计框架 2.系统硬件设计 2.1 控制部分 本系统的控制核心采用了STM32单片机,它具有72M 主频,64K RAM 和512K ROM ,拥有多达14个定时器,自带PWM ,ADC ,DA,实时时钟等功能。非常满足作为嵌入式系统的控制需求。2.2 检测部分 电容检测部分是整个系统中最为重要的一部分,它决定了系统的识别率高低与否,整个系统的数据采样与检测都是建立在电容检测芯片的准确性上,因此选取TI 公司的FDC2214芯片来做为电容检测芯片,这是一种非接触式电容传感器,还有一个重要特性就是采用了EMI (抗电磁干扰)架构,因此它可以屏蔽高噪声环境干扰,在复杂环境确保传感器数据的准确性(周孟强,刘会衡,基于FDC2214手势识别装置的设计与实现:电子制作,2019)。2.3 极板部分 极板采用的是三层结构,最下面一层使用亚克力板,主要用作 的oled 显示屏,它小巧精致,分辨率高,相比液晶屏幕它更加节能,非常适合作为系统的显示模块。 输入部分由4个独立按键组成。4个独立按键分别作为切换键,确认键,返回键和系统复位键。 2.5 供电部分 电源部分采用了两块锂电池作为电源,使用稳压模块将电压降为5v 并后接入整个系统。 3.系统软件设计 软件系统流程图如图3所示。3.1 数据滤波算法设计数据滤波是去除噪音干扰的有 基于FDC2214的手势识别系统设计与实现 杨凌职业技术学院 陈 阳 图2 极板实物图支撑。中间一层使用铝箔胶带作为极板的金属层。最上面一层采用硬质透明塑料膜,有防止手直接和铝箔接触和保护极板的作用(郭霞,谭亚丽,申淼,基于FDC2214的手势识别系统:传感器与微系统,2018)。这样的设计好处在于可以很方便的自行调整和更换极板上的铝箔来达到不同的检测要求。2.4 人机交互部分 人机交互部分由显示部分和按键输入组成,分别采用oled 显示屏和独立按键组成。 显示部分采用了0.96 英寸 图3 系统软件流程图 效方法,本系统采用卡尔曼滤波算法,这是一种当下使用非常广泛的滤波算法,它有计算量小,易于计算机实现等特点(张辉,卜雯意,施豪,基于FDC2214电容传感器的手势识别装置的设计与实现:巢湖学院学报,2018 )。将极板上采集的数据进行实时的处理,将数据中 图4 系统整机实物图的噪音清除,把误差降到最小。3.2 数据分类算法 kNN (k 最近邻算法)是一种数据分类方法,在学习模式下,将多次手势进行采样并滤波后,获取其特征向量作为样本数据,之后进入判定模式,系统会实时采样当数据稳定后,得到其特征向量,计算其特征向量与样 本数据之间的欧氏距离,找到相 距最短的k 个样本,判断其类型,即可识别手势(张硕,基于KNN 算法的空间手势识别研究与应用:吉林大学,2017)。 表1 石头,剪刀,布手势测试结果 手势实测结果石头石头正确石头石头正确石头石头正确石头石头正确石头石头正确剪刀剪刀正确剪刀剪刀正确剪刀剪刀正确剪刀剪刀正确剪刀剪刀正确布布正确布布正确布布正确布布正确布布 正确 正确率:100%

单目视觉智能车路径识别及控制策略

单目视觉智能车路径识别及控制策略研究* 陈启迅 薛 静 (西北工业大学自动化学院 西安710072 )摘 要 研究了基于CMOS摄像头的图像采集方法,以及智能车赛道路径识别。提出了自适应差分边缘检测算法,采用取点求面积的方法提取指引线的相关参数。自适应差分边缘检测算法是在一般的边缘检测算法的基础上提出的,它能根据提取的左右边缘存在情况调整搜索范围、阈值,以及差值的求取方法。使用海伦公式求指引线上所取的三角形的面积, 据此提出了1种基于三角形面积的智能车速度控制方法,此方法以指引线上的三角形面积反映赛道的弯曲程度,并以此作为智能车速度控制的控制变量。 关键词 自适应差分边缘检测;智能车;图像采集;海伦公式 中图分类号:TP301.6 文献标志码:A doi:10.3963/j .issn 1674-4861.2012.05.006收稿日期:2012-07-04 修回日期:2012-09- 07 *西北工业大学研究生创业种子基金项目( 批准号:Z2011047)资助第一作者简介:陈启迅(1984),硕士生.研究方向:控制工程、系统工程.E-mail:cq x062014@126.com0 引 言 智能车辆系统是1个拥有感知环境能力,具备规划决策能力以实现自动行驶,并且可以实现多等 级辅助驾驶等功能于一体的综合系统[ 1 ]。与很多学科有着密切关系,如计算机、控制、通信、图像处 理、人工智能、信号处理等,同时也是多种传感器融 合的载体。因为它一般集中了摄像机、GPS、超声波雷达、激光雷达等多种传感器来感知周围环境, 并根据多传感器融合所获得的道路、车辆状态和障碍物信息进行控制车辆的转向和速度,从而使得车辆安全、可靠、稳定地在道路上行驶,因此智能车辆 是多学科综合于一体的高度智能化的产物[ 2- 3]。文献[4] 中介绍了一般差分边缘检测算法。文献[5 ]中描述了基于序列图像运动分割的车辆边界轮廓提取算法。文献[6]中提到了道路裂纹线检测中的脊波域图像增强算法。选用功耗低、前瞻性好的CMOS摄像头作为路径识别视觉传感器,采用自适应差分边缘检测算法有效地提取道路指引线,此算法具有很高的灵活性和适应能 力, 能够有效地降低干扰。进一步使用取点求面积的方法获取指引线参数。 1 视觉图像采集 1.1 硬件实现 CMOS视觉传感器图像采集电路[7] 见图1 ,LM1881可以实现视频同步信号的分离。2脚为视 频信号输入端;3脚和5脚分别为场同步、行同步信号输出端;7脚为奇偶场同步信号输出端,在此不使用。视频信号同时接入微处理器AD转换口 。 图1 视频同步信号分离电路 Fig.1 The circuit for separation of sy nchronizationsig nal of video1.2 软件实现 视频信号采集流程[8] :首先等待场信号的到 来;然后延时,跳过场消隐,约1.44ms;等待行同步信号;判断采集行数是否满足要求,满足则采集完成,否则延时,跳过行同步信号和消隐信号;对1行视频信号进行连续采集; 延时,跳过若干行视频信号,再跳回到等待行同步信号,直至完成,就能采集到1幅有效而完整的视频图像了。 2 自适应差分边缘检测算法 阈值分割法[9- 10]在结构化道路上是提取指引 4 2交通信息与安全 2012年5期 第30卷 总171期

智能小车课程设计报告书

※※※※※※※※※ 级学生※※2015※※课程设计材料※※※※※※※※※※※ 课程设计报告书 课题名称智能小车蓝牙操控和循迹的实现 名姓 学号 院学 专业 指导教师 2019年2月15日 设计目的1 通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 2功能要求

智能小车作为现代的新发明,是以后的发展方向,他可以按照预先设定的模式在一个环境里自动运作,不需要人为的管理,可应用于科学勘探等等用途;并且能实现显示时间、速度、里程,具有自动寻迹、寻光、避障等功能,可程控行驶速度、准确定位停车,远程传输图像、按键控制加速,减速,刹停,左转和右转、实时显示运行状态等功能。 3 总体设计方案 在现有玩具电动车的基础上,加了四个按键,实现对电动车的运行轨迹的启动,并将按键的状态传送至单片机进行处理,然后由单片机根据所检测的各种按键状态实现对电动车的智能控制。这种方案能实现对电动车的运动状态进行实时控制,控制灵活、可靠,精度高,可满足对系统的各项要求。本设计采用AT89C51单 片机。以AT89C51为控制核心,利用按键的动作,控制电动小汽车的状态。加 装光电、红外线、超声波传感器,实现对电动车的速度、位置、运行状况的实时测量,并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动小车的智能控制,如图1所示。简易智能电动车采用AT89C51单 片机进行智能控制。开始由手动启动小车,并复位初始化,当到达规定的起始黑线,由小车底部的红外光电传感器检测到第一条黑线后,通过单片机控制小车[2]。在白纸所做轨迹道路中,小车通过超声波传感器正前开始记数、显示、调速方检测和光电传感器左右侧检测,由单片机控制实现系统的自动避障功能。在电动车进驶过程中,采用双极式H型PWM脉宽调制技术,以控制小车调速;并采用 动态共阴显示行驶时间和里程。小车通过光电传感装置实现驶向光源并通过循迹保持小车在白纸范围内行驶。当小车到达终点第二次检测到黑线时,单片机控制小车停车。 总体设计框架图图1 4 硬件电路选取与设计

基于.人工智能算法的图像识别及生成

基于人工智能算法的图像识别与生成 摘要:本次报告的工作是利用PCA,SVM以及人工神经网络(ANN)实现对人脸的特征提取、分类和预测。然后利用GAN(生成对抗网络)实现对手写数字的生成,并用SVM 做预测,验证生成效果。 本次报告采用的数据源自剑桥大学的ORL 人脸数据库,其中包含40个人共400张人脸图像。 关键词:人工智能;图像识别;数据 中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2018)13-0173-02 1 PCA降维 PCA(principal components analysis)即主成分分析,又称主分量分析。旨在利用降维的思想,把多指标转化为少数几个综合指标。 首先我们给出了数据库的平均脸的图像,并利用PCA对人脸降维,通过改变降低到的维度研究了保留维度的多少带来的影响。最后给出了每一个维度的特征脸图像,讨论了每一个维度所能够代表的人脸信息。 1.1 平均脸 首先,我们将数据库中400张人脸按行存储到一个矩阵

中,即每一行为一张人脸(10304像素),每张人脸共10304维特征。我们对每一个维度去平均,构成一个新的行向量,这就是平均脸。 平均脸反映了数据库中400张人脸的平均特征,可以看清人脸的轮廓,但无法识别人脸的局部细节。 1.2 降低至不同维度时还原脸的情况 从左到右从上到下依次是同一张脸降低至10,30,50,100,200,250,300,350,400的图像。可以看到,随着保留维数的增多,图像越清晰,与原图的差异越小。 1.3 提取单一维度的特征做还原 为了研究不同维度所代表的人脸的信息,我们把PCA之后的每一个特征向量单独提取出来对人脸做还原,还原的时候不加入平均脸并且做直方图均衡化。 结果如下: 每一张图像下方的数字代表了PCA之后按特征值从大到小排序的顺序,比如第一张图代表PCA之后最大特征值所对应的特征向量还原出的人脸。 特征累积图的纵坐标代表了所保留的特征占总特征的 比例。它是这样计算出来的,假设保留k维信息,则纵坐标值为这k个特征值的和除以总的400(400*10304的矩阵,最多有400个非零特征值)个特征值的和。 从图4可以看出,当保留维数为100维时,即能保留人

智能小车单片机课程设计报告

单片机课程设计 题目: 智能小车设计 专业: 计算机科学与技术 班级: 14级2班 姓名学号组长 成员 成员 成员 成员 2016 年 12 月 23 日

打开命令行终端的快捷方式: ctr+al+t:默认的路径在家目录 ctr+shift+n:默认的路径为上一次终端所处在的路径. linux@ubuntu:~$ linux:当前登录用户名. ubuntu:主机名 :和$之间:当前用户所处在的工作路径. windows下的工作路径如C:\Intel\Logs linux下的工作路径是:/.../..../ ~:代表的是/home/linux这个路径.(家目录). ls(list):列出当前路径下的文件名和目录名. ls -a(all):列出当前路径下的所有文件和目录名,包括了隐藏文件. .:当前路径 ..:上一级路径 ls -l:以横排的方式列出文件的详细信息 total 269464(当前这个路径总计所占空间的大小,单位是K) drwxr-xr-x 3 linux linux 4096 Dec 4 19:16 Desktop 第一个位置:代表的是文件的类型. linux系统下的文件类型有以下几种. b:块设备文件 c:字符设备文件 d:directory,目录 -:普通文件. l:连接文件. s:套接字文件. p:管道文件. rwxr-xr-x:权限 r:读权限 -:没有相对应的权限 w:写权限 x:可执行权限 修改权限:

chmod u-或者+r/w/x 文件名 chmod g-或者+r/w/x 文件名 chmod o-或者+r/w/x 文件名 第一组:用户权限 第二组:用户组的权限 第三组:其他用户的权限. chmod 三个数(权限) 文件名 首先根据你想要的权限生成二进制数,再根据二进制数转换成十进制的三位数 rwxr-x-wx 111101011 7 5 3 chmod 753 文件名 rwx--xr-x 第二个位置上的数字:对应目录下的子文件个数,如果是非目录,则数字是1 第三个位置:用户名(文件创造者). 第四个位置:用户组的名字(前边的用户所处在的用户组的名字). 第五个位置:对应文件所占的空间大小(单位为b) 第六~八个位置:Dec 4 19:16时间戳(最后一次修改文件的时间) 最后一个位置:文件名 操作文件: 1.创建一个普通文件:touch 文件名 2.删除一个文件:rm(remove) 文件名 3.新建一个目录:mkdir(make directory) 目录名 递归创建目录:mkdir -p 目录1/目录2/目录3 4.删除一个目录:rmdir 目录名.//仅删除一个空目录 rm -rf 目录名//删除一个非空目录 5.切换目录(change directory):cd 路径 linux下的路径分两种 相对路径:以.(当前路径)为起点. 绝对路径:以/(根目录)为起点, 用相对路径的方式进入Music:cd ./Music 用绝对路径的方式进入Desktop:cd /home/linux/Desktop 返回上一级:cd .. 返回加家目录的三种方式 (1).cd

智能小车课程设计

精心整理 智能循迹小车 【摘要】 本课题是基于低功耗单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以单片机为系统控制处器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 一、实验目的 ????这次设计智能小车的目的是为了掌握电路设计的方法和技巧。如何将学习到的理论知识运用到实际当中去,怎样能够活学活用,深入的了解电子元器件的使用方法,了解各种元器件的基本用途和方法,能够灵活敏捷的判断电路中出现的故障,学会独立设计电路,积累更多的设计经验,加强焊接能力和技巧,完成基本的要求。并能完美的完成这次实训。 根据老师给的控制要求,和自己的发挥扩充能力,独立的,大胆的去实践,开拓创新,能够将自己的想法体现到实际电路当中去。 二、设计方案 该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片发出控制命令,控制电机的工作状态以实现对小车姿态的控制。三、各芯片说明 W981216BH-6 一种髙速度同步动态随机存取存储器(SDRAM),具有1M字(words)*4层(banks)*16位(bits)的存储结构组织.传输数据带宽最高达166M字/秒(-6)。 对SDRAM是否访问是突发导向。在一个页面连续的内存位置可在一个1,2,4,8或整页突发访问时长和行选择组由活动命令。列地址自动生成的SDRAM的内部计数器在突发运作。随机栏也可以通过阅读在每个时钟周期提供其地址。该多组特性使交织在内部银行隐藏预充电时间。通过让一个可编程的模式寄存器,该系统可以改变突发长度,延时周期,交错或连续突发最大限度地发挥其性能。W981216BH是在理想的主内存高性能应用。 特征: 1、.3V±0.3V电源

(完整word版)手势识别技术综述

手势识别技术综述 作者单位:河北工业大学计算机科学与软件学院 内容摘要: 手势识别是属于计算机科学与语言学的一个将人类手势通过数学算法针对人们所要表达的意思进行分析、判断并整合的交互技术。一般来说,手势识别技术并非针对单纯的手势,还可以对其他肢体动作进行识别,比如头部、胳臂等。

但是这其中手势占大多数。本文通过对手势识别的发展过程、使用工具、目的与市场等进行综述,梳理出手势识别发展的思路,让读者对手势识别有一个总体上的认识,同时也可以让读者在此基础上进行合理想象,对手势识别的未来有一个大体印象。 Abstract: Gesture recognition is an interactive technology using mathematical arithmetic to the analysis,judge and assembly meaning that people want to convey which belongs to computer science and Linguistics.In general, gesture recognition technology is not for simple gestures expressed by hands ,it can also aim to other body movement recognition, such as the head, arm and so on. But the gesture accounted for most of the analysis. In this paper, by describing the development process, tools used , objective and market of gesture recognition , we can sort out the ideas of the development of gesture recognition, and let readers have an overall understanding of gesture recognition. At the same time, it can let the reader imagine that on hand gesture recognition based on reason ,and have a general impression of its future. 1.定义 说到手势识别,首先要对手势识别中的手势有一个清晰的认知。手势在不同的学科中有不同含义,而在交互设计方面,手势与依赖鼠标、键盘等进行操控的区别是显而易见的,那就是手势是人们更乐意接受的、舒适而受交互设备限制小的方式,而且手势可供挖掘的信息远比依赖键盘鼠标的交互模式多。在学术界,人们试图对手势定义一个抽象、明确而简洁的概念以为手势及其应用的研究提供依据。1990年Eric Hulteen和Gord Kurtenbach曾发表的题为“Gestures in Human-Computer Communication”中定义:“手势为身体运动的一部分,它包括一部分信息,而且是一种能被观察到的有意义的运动。挥手道别是一种手势,而敲击键盘不是一种手势,因为手指的运动没有被观察,也不重要,它只表示键盘

186图像识别与人工智能研究所-学科专业名称及代码、研究

图像识别与人工智能研究所 图像识别与人工智能研究所(以下简称图像所)于1978年由教育部和航天部共同批准建立、直属于华中科技大学的一所融研究、教学为一体,以图像识别和人工智能为研究方向的研究机构。建所30年来,图像所始终瞄准航天、航空和信息技术领域的国家目标,进行应用基础和应用技术的研究,在国内的模式识别与智能系统学科具有明显的研究特色和学科优势,在航天航空的智能信息处理领域具有较高的知名度。图像所分别于1984年、1990年获得硕士和博士学位授予权,2003年被批准为湖北省重点学科,2007年被批准为国家重点二级学科“模式识别与智能控制”,是该二级学科全国5个重点学科单位之一。1993年批准为“图像信息处理与智能控制”国家教委开发实验室,1999年升格为教育部重点实验室。1998年3月由中国航天工业总公司和国家教委共同批准命名为“中国航天图像识别技术研究所”,与航天工业总公司共建。2005年12月被批准成立“多谱信息处理技术”国家级重点实验室。 图像所现有科研、教学人员38人,其中教授11名、副教授13名。有一名双聘的中国科学院院士,“长江学者”讲座教授1名,入选“新世纪优秀人才支持计划”1人,73%的教师有博士学位,2007年被批准为国防科工委的科技创新团队。 图像所在“模式识别与智能系统”学科点上现有的研究方向是:计算机视觉与应用、模式识别与图像分析、图像处理系统及应用、医学成像与处理、人工智能与认知科学、集成电路及系统芯片的研究与设计以及微纳光电技术。在“导航制导与控制”学科点上现有的研究方向是:多谱寻的制导、多谱匹配制导、多谱目标探测以及制导信息处理芯片设计。在“信息安全”学科点上现有的研究方向是:混沌密码理论与技术(包括密码算法的IC设计),无线移动网络的安全技术,网络主动防御技术以及城市交通智能管理与安全信息服务技术。2001年以来,图像所培养博士111名、硕士431名,5人获得湖北省优秀博士论文。图像所现有在读硕士研究生185人,博士研究生123人。 图像所在培养研究生的同时,也承担了大量的国家级科研项目,取得了一大批科研成果。2001年至今,图像所已经承担了包含国家自然科学基金、973、863、国家级预研计划等在内的各类研究项目630项,合同经费近1.6亿元。获省部级以上科研奖12项。在IEEE Trans.IP、IEEE Trans.SP、IEEE Trans.NN、IEEE Trans.CS、Pattern Recognition、Opt.Eng、PR Letters等国内外重要学术期刊和国际会议发表学术论文2454篇,其中SCI收录298篇,EI 收录768篇。出版专著1部。 图像所也非常重视科研基地的建设,除了拥有国家级重点实验室和教育部重点实验室外,还获得了国家211工程、985工程的支持,“九五”以来获得的基地建设费用3000余万元,拥有可见光、红外等成像传感器、激光成像雷达、六自由度机械手、三轴跟踪转台、标量网络分析仪、矢量网络分析仪、噪声系数测试仪、逻辑分析仪、频谱分析仪、SGI工作站、

相关文档
最新文档