大厦能源管理系统方案

大厦能源管理系统方案
大厦能源管理系统方案

两江企业总部大厦能源管理系统

目录

前言——管理现状及法规政策 (3)

一、项目概述 (3)

二、两江企业总部大楼能源综合管理系统 (4)

2.1设计原则 (4)

2.2设计依据 (5)

2.3设计目标 (6)

2.4两江企业总部大楼能源管理系统简要说明 (6)

2.5两江企业总部大楼能源管理系统的架构 (11)

2.6两江企业总部大楼能源管理系统的组成 (12)

2.7空调计费管理系统的特点 (12)

2.8能量计量工作原理理论及计费方法 (13)

三、两江企业总部大楼能源管理系统使用的产品配置介绍 (15)

3.1上位机管理软件LMS (15)

3.2 M-BUS接口转换器RPT (15)

3.3区域管理器FMU (16)

3.4信号中继器RPT (16)

3.5超声波冷热量表UHM (17)

四、两江企业总部大楼能源管理系统配置清单 .................... 错误!未定义书签。

4.1计量监测点表............................................ 错误!未定义书签。

4.2系统设备清单............................................ 错误!未定义书签。

4.3两江企业总部大楼能源管理系统系统图....................... 错误!未定义书签。

五、施工安装指南 (18)

5.1 施工前准备 (18)

5.2配线与接线的规范 (19)

5.3线管的敷设 (20)

5.4线材穿线施工 (20)

5.5设备的安装 (20)

5.5.1 区域管理器FMU的安装 (20)

5.5.2 RPT信号中继器的安装 (21)

5.5.3系统设备安装接线工艺要求: (21)

5.5.4 UHM冷/热量表的安装 (21)

(1)冷/热量表安装场所 (22)

(2)热量表安装的要求 (23)

(3)热量表安装注意事项 (25)

前言——管理现状及法规政策

《公共建筑节能设计标准》GB 50189-2005中5.5.12提到“目前我国出租型公共建筑中,集中空调费用多按照用户承租建筑面积的大小,用面积摊分方法收取,这种收费方法的效果是用与不用一个样、用多用少一个样,使用户产生“不用白不用”的心理,使室内过冷或过热,造成能源浪费,不利于用户健康,还会引起用户与管理者之间的矛盾”。

专家研究发现,中央空调负荷约占建筑总用电负荷的40-60%。只要对中央空调加强管理,取消“按面积平摊”收费的“大锅饭”做法。引入科学的计量和合理的收费手段,使用户养成良好的中央空调使用习惯,自觉采取节能措施,就能达到节能效果。有的甚至达到节能15-20%。

《公共建筑节能设计标准》GB 50189-2005中5.5.12提到的“集中空调系统的冷量和热量计量和我国北方地区的采暖热计量一样,是一项重要的建筑节能措施。当实际情况要求并且具备相应的条件时,推荐按不同的楼层、不同室内区域、不同用户或房间设置冷、热计量装置的做法。”

《湖南省居住建筑节能设计标准》DBJ 43/001-2004中6.0.2提到“居住建筑采用集中采暖、空调时,应设计分室(户)温度控制及分户热(冷)量计量设施。”

《深圳市中央空调系统节能运行维护管理暂行规定》深贸工源字〔2005〕36号中第六十二条提到的“应推广中央空调系统能量分户计量收费的技术,改中央空调按用户使用建筑面积平摊收费的传统方法为分户计量,使用户的经济利益与节能要求一致。”

2006年7 月26 日深圳市第四届人民代表大会常务委员会第七次会议通过的《深圳经济特区建筑节能条例》。

第三十二条新建公共建筑和经过节能改造的既有公共建筑,采用集中供冷方式的,应当安设分户用冷计量装置和室内温度调控装置,按照分户实际用冷量收费。

第四十七条建筑物所有人或者物业管理单位违反本条例第三十二条规定,对采用集中供冷方式的新建建筑或者经过节能改造的既有建筑未实行分户用冷计量收费的,由主管部门责令限期改正,并处一万元以上五万元以下罚款。

中央空调系统作为计量和收费的依据和手段,必须符合相关法律的要求。根据《计量法》规定,通过计量仪表进行计量和收费的贸易结算行为,有关的仪表必须具有国家质量技术监督局颁发的《制造计量器具生产许可证》,这样的贸易结算行为才受到相关的法律保护。

空调计费管理系统,从末端设备制造选型到整个方案设计配置理念,都需符合相关法律法规的要求的、合法的、保证公平公正计费的专业方案系统。

一、项目概述

两江企业总部大楼由北楼、主楼及南楼两部分组成,按照图纸设计能源管理系统相应的分成两个系统。

二、两江企业总部大楼能源综合管理系统

2.1设计原则

系统集成设计遵循的原则是:

先进性

系统要与技术发展潮流相吻合的产品,建立一个可扩展的平台,保护前期工程和后继先进技术的衔接,使系统具有先进性。

开放性

集成后的系统应是一个开放系统,系统集成的过程主要是解决不同系统和产品间接口和协议的“标准化”,以使它们之间达到“互操作性”。它应当提供标准数据接口、网络接口、系统和应用软件接口。系统开放性特征主要表现在:

(1)可扩展性、灵活性好;

(2)兼容性和应用软件可移植性强;

可维护性

集成后的系统应是可维护性好、生命周期长。

标准化和结构化

集成总体结构是标准化和结构化的,既可使不同的厂商的设备产品综合和互联在同一个系统中,得到高度的信息共享,又可使系统在日后能进行方便的扩充。

模块化

系统要严格按照模块化结构方式开发,以满足通用性和可替换性。采用模块化设计,分布实施的战略。

安全性

可实现严格的等级操作权限和不同对象的查询范围的控制。

可靠性

要采用各种措施建造一个高可用性系统。主要措施是采用冗余设计,共享数据群集、数据备份等使系统具有高可靠性。

可管理性

集成系统是一个网络,随着网络规模扩大,网络管理十分重要。要对这样的一个网络进行管理,要求:

(1)同时支持网络监视和控制两方面能力,能监视控制到网络主要设备;

(2)尽可能大的管理范围和尽可能小的系统开销;

(3)网络管理标准化。

前瞻性和可扩展性

对未来的系统的集成有预留设计,以便前期工程和后继先进技术的衔接。

互连性

这种互连性体现在传输媒体和结构化综合布线系统;各种网络设备的配置;各种网络互连设备的配置;以及各类机电设备、话音/视频设备和各类控制设备等的配置。子网之间互连采用TCP/IP 等标准化协议。

经济性和适用性

经济成本是系统集成必须考虑的因素之一,系统设计从系统建设目标和用户需求出发,经过充分论证,选择合理的方案和适合的软硬件产品,在满足功能和性能的情况下,不一味追求最先进,达到高的性价比。

高效率

系统效率高低,体现在系统性能中,主要包括以下几个方面:

(1)系统实时响应与控制能力;

(2)通信的传输速率和带宽;

(3)服务器响应数据库请求的能力;

(4)网络的吞吐能力。

2.2设计依据

《国家机关办公建筑和大型公共建筑能耗监测系统分项能耗数据采集技术导则》《国家机关办公建筑和大型公共建筑能耗监测系统分项能耗数据传输技术导则》《国家机关办公建筑和大型公共建筑能耗监测系统分项计量设计安装技术导则》《国家机关办公建筑和大型公共建筑能耗监测系统数据中心建设与维护技术导则》《国家机关办公建筑和大型公共建筑能耗监测系统建设、验收与运行管理规范》《电子计算机机房设计规范》GB50174-93

《民用建筑电气设计规范》SJ/T16-90

《电子设备雷击保护守则》GB7450-87

《商业建筑物电信基础结构管理标准》 TIA/EIA 607

《建筑与建筑群综合布线系统工程设计规范》GB50312-2000

《建筑设计防火规范》 GBJ116-88

《商业建筑物电信布线标准》TIA/EIA 568A

《商业建筑物电信接地和接线要求》 ANSI/TIA/EIA 607

《电力系统中传输电能脉冲计数量配套标准》IEC60870-5-102

《电能计量装置技术管理规程》DL/T448-2000

《电测量仪表装置设计技术规程》SDJ9-87

《数字处理计算机硬件测试》ISARP55.1

《仪表和控制系统功能表示法》SAMA PMS21.1

《计算机软件单元测试》GB/T15532-1995

《电力系统中传输电能脉冲计量配套标准》IEC-870-5-102

《继电保护信息接口标准》IEC-870-5-103

《电子设备雷击导则》GB7450-1997

《微型数字电子计算机通用技术条件》GB9813

《计算机场地技术要求》GB2887-1992

《不间断电源设备》GB7260

《电工电子产品基本环境试验规程》GB2423

《电测量及电能计量装置设计技术规程》SDJ9-1999

《电子测量仪器质量检测规则》GB/T6593-1996

《交流采样远动终端技术条件》DL/T630-1997

2.3设计目标

本系统的设计目标是经济实用,稳定可靠,充分考虑客户的需求,并留有扩展接口,系统的升级极为方便。本系统主要实现以下目标:

◆可实现对租户空调系统冷/热量表、给水系统冷/热水表、及各用户电表进行远程读数、

水电暖费计量、仪表计量故障检测等功能,结果可生成查询报表。对水、电、空调/采暖量的使用数据进行综合的分析、统计、打印和查询等功能,并根据用户需要可选择不同样式报表的打印。

◆运行数据可生成带用户编号的每户用量日报、月报,进行费用结算,并对异常用户给予

警告。各项财务参数、计费方式等设置,水、电、热用量统计,按业主设置统计客户不同表使用量,按业主设置的财务参数、计费方式及根据不同表读数,自动计算客户应缴纳的费用实现收费单的打印,能做到分时、分户采用不同费率标准收费,为物业管理以及费用的收缴提供可靠的依据。每户可实时查询其水、能量及电表的读数。

◆能够与其他专业系统的功能协调配合,保证远传计量计费系统总体功能的完善。

◆计量和计费准确无误,数据保持一致。

2.4两江企业总部大楼能源管理系统简要说明

本项目中的综合计费系统主要是针对该项目中涉及到的中央空调冷热量及电能等进行计量。

本项目中的监测点位见系统图。

软件具有以下功能:

◆快速导航功能:LMS系统管理软件操作界面简洁友好、使用方便。同时提供快速导航功

能,通过快速导航界面简单快捷地创建整个系统的配置信息。

◆监控图编辑器:为强大的图形化监控提供定制工具,可简单快捷编辑出反映现场能耗及

设备的图形化监控图。对象化的设定方式更加易于理解,支持能源采集器、通道、数据、文本、链接多种对象,使之绘制出具有特色的BA图。

◆图形化监控系统:图形化方式形象、实时、准确、快速地反应现场能耗计量设备数据、

状态等各种运行参数。监控界面通过不同颜色简单明了标记设备运行状态、并可远程设置和控制能耗计量设备。列表方式查询所有现场能耗计量设备的状态、实时报警信息。

◆能耗计量设备管理:对能耗计量配套设备(区域管理器、能耗计量采集器、能耗计量仪

表等)进行设定和维护。

◆检测点查询:可设定需要进行监控的能耗计量设备,系统自动按照设定采集并存储所需

监控设备的各种参数。将监控的设备数据生成动态曲线,使管理者很方便地了解到楼宇能源使用情况以及现场设备性能,通过对监控数据进行分析,可发现系统中出现的漏水、卡表、堵塞、短路、断线等诸多故障,大大降低了工程维护成本。当用户与物业之间发生能耗收费分歧的时候,检测点功能可为这种分歧提供可靠的数据依据。

费用管理功能:

1、计费设定

全面的计量方式、定价方式、分摊方式、成本核算综合考虑物业的多种需求,使物业的收费更趋于合理化。

●定价方式:支持普通单价、阶梯单价、分时单价、分摊单价等多种单价方式。

●分摊方式:支持价格分摊、用量分摊、支管分摊、总管分摊等多种分摊方式。

●成本核算:支持对整个系统的运营成本进行核算。为了适应的计费方式日趋变化的需

求,提供的计费公式设定功能使物业可以定制以及调整按需计费策略。

2.计费类型

开放性能耗类型支持,系统支持多种能耗计量类型,实现水、电、气、空调/采暖等多种能耗计量设备计费,同时对同一种能耗计费允许设定多种计费方式和计费单价。

◆用户管理:树形结构以及多种查询方式能够快速、高效的对用户进行管理。

◆报表管理:采用能耗计量设备日表自动生成机制,物业管理可以灵活地对能耗计量设备

进行日表数据统计,系统支持固定月份、分段报表、详细报表等多种能耗收费月报表方式。系统提供了多种报表样式包括简单列表、详细列表、简单组表、详细组表等。功能丰富的报表查询方式,方便物业对用户报表进行按用户名称、用户编号、银行帐号、日期、计费类型、区域等诸多方式进行统计、查询。

◆报表模块:在报表功能上带来了创造性的EXCEL文档模板设计理念,该方式具有易用性

以及重用性的两大特色。

● EXCEL特色:使具有EXCEL排版经验的操作员创建报表模板的时候显得轻车熟驾,轻

轻松松的就能排出极具专业水准的报表版面来。

●模板特色:使操作员可以重用我们公司所提供的模板库资源,从中直接选取符合自己

风格的模板,从而轻易的创建出专业级别报表版面不再是一种梦想。

◆设备故障报警:设备出现故障时,系统除声光报警以外,同时能对报警的时间、

类型和设备号及故障进行记录,使整个系统的故障体系更加完善。

◆日志查询功能:日志查询则提供了一种良好的追溯机制。报警、故障、日志的有机结合,

形成了系统完善的安全机制。

◆多级权限管理:分组多级权限管理方式比传统的仅按级别进行权限设置的方式更灵活。

系统最高可设置5级密码,密码的级别可确定不同的权限。

◆数据备份功能:强调用户数据的安全性,采集器、区域管理器、管理软件的三位一体备

份机制为用户数据安全性提供最强有力的保障。

◆系统集成功能:综合计费系统提供多种集成接口与其他系统进行数据集成,将本地计费

管理软件设备数据通过集成接口方式提供给其他系统作为计费数据来源。LMS计费系统

数据集成方面提供数据表集成方式包括SQL数据库集成、OPC服务器接口和网页查询方

式。

2.5两江企业总部大楼能源管理系统的架构

能源计量管理系统,参考吸收了国内外各种产品的应用,结合中国智能化发展的方向、前景,采用成熟网络拓扑结构,从性能上、投资上、管理上,都能为客户提供一体化的优秀解决方案。

系统架构如下图所示:

2.6两江企业总部大楼能源管理系统的组成

多表综合计费管理系统是指由主站通过M-BUS网络将(冷、热、直饮)水表、燃气表、电表、(空调、采暖)计量表、蒸汽表、氧气表等多个计量仪表的记录值的信息集中抄读后,对数据进行分析处理,并根据不同的需求生成各种报表和收费单据的系统。

多表综合计费管理系统由上位机(PC/LMS)、区域管理器(FMU)、信号采集器(SSU)等主要设备以及中继器(RPT)、接口转换器(RTM)等辅助设备组成。如下图所示:

2.7空调计费管理系统的特点

硬件连接:

1、系统采用二线制,两根线既做网络线,又做电源线,无极性要求,布线方便,工程简单,只需将网络表安装在管道或线路上,将每个表的两根网络线与其它表分别并接即可,工程及施工费用低。

2、网络表的前端仪表和采集器一体化,出厂前以完成信号线的连接和参数的设置。其配套和质量在工厂得以保证,大大降低了施工现场的安装和调试的工作量,减少了不良施工对整个系统带来的影响。

3、设计简单,系统网络采用任意拓扑结构,系统中只有一种网络线,无论每户一表或多表都只需引出一股网络线。

4、调试简单、周期短,只需调试通讯部分,调通即可抄录数据,开通周期短,开通率高,对安装调试维护人员的要求较低,适合大规模推广。

软件功能:

2.8能量计量工作原理理论及计费方法

在热交换设备(风机盘管或空气处理机)中安装整体式热量表或组合式热量表,当水流经系统时,根据流量传感器给出的流量和配对温度传感器给出的供回水温度,以及水流经的时间,通过计算器可计算并显示该系统所释放或吸收的热量。其基本公式为(1)

式中:Q——释放或吸收的热量 (J 或wh);

q m——流经热量表的水的质量流量(kg/h);

q v——流经热量表的水的体积流量(m3 /h);

ρ——流经热量表的水的密度(kg/ m3);

Δh——在热交换系统的入口和出口温度下,水的焓值差(J/kg);

t ——时间(h)。

热量表计量准确度分为三级,采用相对误差限E 表示,相对误差限E 定义如下:

式中 : E—相对误差限%;Δtmin——最小温差℃;Δt——使用范围内的温差℃;

q p——常用流量m3/h;q——使用范围内的流量m3/h。

注:对1 级表q p≥100m3/h。

中央空调计费系统的计费方法:

总费用=中央空调系统总用电量х单位电价+系统耗水量х单位水价+管理费(可选)+人工工资(可选)

冷热量(能量型)单价=总费用/ 中央空调各冷热量表使用量总和(或中央空调冷热量建筑总表使用量总和)

楼层冷热量表(能量型)费用=冷热量单价х楼层冷热量表计得的使用量

三、两江企业总部大楼能源管理系统使用的产品配置介绍

在本方案中,配置的产品主要有以下几个大项,介绍如下:

3.1上位机管理软件

上位机是通过转换接口和M-BUS网络对区域管理器的信息采集,并

进行处理和管理的设备。上位机的表现形式一般为个人计算机,并配有

用于综合计费的专用计费管理软件。计费管理软件LMS安装于物业管理

部门或其它各种专业管理部门的计算机上,通过485网络实现收集用户

水、电、煤气、空调和采暖和各种数据,实现计费数据实时检测、系统

设备状态检测等功能,并将数据保存在本地系统数据库中,可随时进行

数据的统计、分析、处理和报表打印工作。

3.2 M-BUS接口转换器

M-BUS转换接口是指将RS-232串行口转换成M-BUS网络接口的

设备。

网络之间采用光电隔离技术,具有过载指示功能。可以带32个FMU

或RPT。

技术参数

●环境大气压力:86kPa~106kPa

●工作环境湿度:0% ~85% RH无凝结

●工作环境温度:5℃~55℃

●贮存环境温度:-10℃~70℃

●通讯波特率:2400bps

●M-BUS 通信网段最大长度:1200米

●M-BUS通信网段最大负载数量:64

●额定电压:AC220V±10%/50Hz

●防护等级:IP50

3.3区域管理器

FMU-08M区域管理器,是BSH2000建筑能耗计量管理系统的现场管

理单元。通过M-BUS网络与管理中心、前端仪表互连,与LMS7软件配套使用,

监控和记录前端仪表的状态,并对前前端仪表及控制单元实施控制,具有

强大的数据处理及通讯能力。支持唯一编码,带32个网络仪表(冷热量表)或采集器,允许断电数据保存时间≥6个月。

M-BUS通信网段点对点最大长度:1200米。

技术参数

●环境大气压力:86kPa~106kPa

●工作环境湿度:0%~85% RH无凝结

●工作环境温度:5℃~55℃

●贮存环境温度:-25℃~70℃

●M-BUS通信网段点对点最大长度:1200米

●通讯波特率:M-BUS输出2400bps

●M-BUS输入4800bps

●额定电压:AC220V±10%/50Hz

●防护等级:IP50

●容量:管理32台M-BUS网络仪表

3.4信号中继器

M-BUS中继器是指将M-BUS网络的信号进行放大和整形的

设备。因地制宜灵活布线,根据实际情况, RPT具有很强的

互连功能,用于延伸M-BUS工业总线,开辟支线,变换网络的

拓扑结构。网络的连接通过中继器的连接,既起了网络的连接,

又为前端仪表提供了网络电压。

支持网络中继,过载指示,采用光电隔离技术。带32个

网络仪表。

技术参数

●环境大气压力:86~106kPa

●工作环境湿度:0~85% RH无凝结

●工作环境温度:5℃~55℃

●贮存环境温度:-10℃~70℃

●通讯波特率:2400bps

●M-BUS通信网段最大长度:1200米

●额定电压:AC 220V±10%/50Hz

●M-BUS总线电压:DC33V

●输出电流:100mA

●防护等级:IP50

●M-BUS通信网段最大负载数量:32个网络仪表

3.5超声波冷热量表

超声波中央空调热量表是结合建设部《热量表》行业标准和

国家技术监督局《热能表》检定规程而设计的。其原理是通过设

置在流量传感器上游和下游的超声波传感器轮流收发信号,并测

量出水流在顺流和逆流状态下的时间,从而计算出与流经流量传

感器的水流速度相关的时间差。最终根据时间差计算出流经流量

传感器的水流速度和流量。具有以下的特点:

◆采用优质进口超声波换能器和先进的电子测量技术,保证了流

量测量的高准确度和稳定度。

◆无任何机械运动部件,无磨损,不受恶劣水质影响,维护费用

◆低始动流量

◆可水平或垂直安装

◆脉冲、M-BUS总线输出接口可实现数据远传,集中控制

◆自动错误诊断功能,在非正常状态下,有错误信息提示功能,确保安全准确运行◆冷热两用(采暖、制冷均可计量)

四、施工安装指南

为减少对住户的打扰及提高整体工程的施工效率,施工一般采取先主干后分支的方法。即先进行楼层垂直子系统的布线及设备安装,将处于同一FMU的垂直子系统联网,并对该区域管理器所管辖的设备进行调试,设备运行正常后即可进行入户工作,在这个原则下,一般施工的步骤为:

4.1 施工前准备

线材的选择:

电源线的选用:系统的供电线路,直流供电从主干线到分支线,都可以采用RVV 3x1.0的铜芯护套线。交流供电可以采用BVV 1.0/1.5的铜芯线。

网络线的选用:在户内敷线的时候,RS485网络线使用RVVPS(2x1.0)mm2的屏蔽双绞铜芯护套线;MBUS网络线使用RVV(2x1.0)mm2。在户外敷线的时候,为防鼠害网络线建议使用铠装电缆或导线穿金属管。

信号线的选用:建议使用RVVP 3x0.3 铜芯线线材。(SSU到现场一次仪表的信号,连接长度一般在100m以内)。

网络线、直流电源线和不同类信号线之间的颜色要有明显差异,方便施工和维护,线头需要加套线标。

管路敷设设计原则:

综合计费系统的管线应首先考虑设计安装在弱电环境中,如弱电井中,线路在户内敷设时,管材可选用PVC 管槽;

计费系统的网络线,信号线,直流电源线可同敷一管,但不能与电力线路同敷一管。

不建议计费系统的管线与电力线路平行敷设,当计费系统的管线与电力线路平行敷设不可避免时,两者相距距离不应小于0.3m,且计费系统的管材应选用金属管,且金属管应可靠接地。

跨楼连接的网络线、电源线,为防止雷击,不应架空敷设,应走地下专用线缆管槽,必要时,两端加设防雷器。

当管路需要沿墙敷设时,管材应选用金属管,金属管应可靠接地外,其最高端应低于建筑物的最高端。

计费的网络线及信号线不能与有线电视等高频线路同敷一管,平行敷设时,两者之间和距离应不小于0.8M。

4.2配线与接线的规范

配线:

配线时,应尽量避免导线接头,常常因为接头接触不好而造成事故。若需要接头时,应采用压接或焊接。导线的连接和分支处,不应受到机械力的作用。穿在管内和槽内的导线,在任何情况下,都不能有接头,必要时可把接头放在接线盒内。

户内一次仪表的信号线配置时,接线盒与表头之间的距离不超过30cm。表头引出的信号线要先穿φ12-φ20防护软管后,进入接线盒,在接线盒内接线。

计费系统的网络线,信号线,直流电源线可同敷一管,但不能与电力线路同敷一管。

每条线的两端都应使线用永久性的线号对线路进行区分。

接线:

为保证系统的可靠性,网络线、信号线进出RPT、SSU电路板的接线端时建议选用冷压端子。当有两条以上线端需接入电路板的接线端时,先应绞接、焊接后再接入。

线路需中间接线时,接线头处应作防水处理,其密封性及强度不应底于原来的PVC护套。

接线严格按图纸施工,箱内走线、接线盒接线时,在保证美观的同时,应预留一定长度的线,方便以后的维护。如图所示:

M-BUS网络接线要求使用公司配套的接线盒,确保系统能够正常运行。建议施工单位采用专用的接线盒施工,接线盒如图所示:

4.3线管的敷设

线管敷设时需穿墙入户、穿越楼层,楼与楼之间要地下敷管穿线,因此在线管敷设前要做好凿孔洞、凿地槽,进度安排应做充分的考虑,避免造成线管敷设的困难。

线管敷设时,应尽量避免与土建人员交叉作业,提高工作效率和施工进度;每一道工序完成后,应尽快通知下一道工序进场施工。

4.4线材穿线施工

网络、电源线、信号线等穿线的次序因情况不同,其先后次序也可能不同,网络、电源线的布线一般情况下,应要信号线布线之前完成,有时为了配合土建施工(新楼装修等),信号线布线应提前施工。

4.5设备的安装

4.5.1 区域管理器FMU的安装

FMU适宜安装在弱电设备装置专用的室内场所。安装应选择干燥和环境通风条件良好的地点,避免雨水等潮湿环境和腐蚀性的气体环境,不能安装在有强磁场干扰地方和大型机电设备附近;另外,由于FMU是微型计算机(单片机)系统,易受高频信号的干扰,所以不允许与有线电视等高频信号的电线电缆及其设备安装于同一位置,两者的距离不应小于1米;任何时侯FMU 的金属箱体必须可靠接地。

FMU的安装地点首选计费系统的监控中心,次之为监控中心附近处。当系统庞大选用多个FMU联网时,FMU可考虑安装在现场便于维护修理的地方;当室外安装时,应考虑防雨、防雷

能源、电力监控系统施工方案 (2)

能源管理系统(EMS)、电力监控系统施工方案 1、适用范围及工程概况 工程概况 本EMS系统项目实施范围为多个区域的多个10kV和变电所。 投标单位必须按照能源管理系统(EMS)的要求和标准进行系统集成。 主要元器件技术要求: 多功能电力参数测量仪 低压回路智能仪表要求采用智能测控多功能装置,要求为白色底光背投式大屏幕液晶显示器,直观界面上具有带自导功能的菜单,可同时测量相电压、线电压、电流、频率、功率因数、有功、无功、视在功率、有功/无功电度、THD I及THD U百分比等全部电气参数;至少具有4路开关量输入、2路继电器输出;能够实现保护,控制,电流、电压、功率、频率、能量等所有电力参数的测量。并且能够实现远程“四遥”功能。 对于低压回路的开关要求盘柜厂足够多的辅助接点(含开关状态和故障状态等),而对于其余的塑壳开关要求盘柜厂配备足够多的辅助接点(含开关状态和故障状态等),二次智能控制设备由监控自动化厂家提供,并由盘柜厂负责其二次接线(即完成所有硬件开孔、接线等,只是预留网络通讯接口接线到端子排),由自动化厂家负责通信等相关技术服务,盘柜厂负责二次接线等技术支持和服务;报价要求:设备价分两部分,即设备价+仪表价=设备总价,整个子系统集成单独报价(包括变压器监控部分的费用)。

按要求提供EMS系统硬件及软件,EMS系统的上位组态软件必须采用具有自有知识产权的成熟稳定的能源管理系统软件,目的是考虑①售后服务的通用性②软件必须有免于买方第三方侵权起诉的完整知识产权和版权。 设计并实施EMS系统综合布线,该布线内容包括能源采集点的全部光纤通讯网络布线、高压柜、低压柜、控制柜等智能设备的通讯网络系统的二次接线设计与施工、通讯柜、端子排布置设计供货及现场接线等。 提供EMS系统中所有智能设备的通讯接口软件,并接入能源监控系统,要求EMS系统完整采集智能设备可提供的有关参数如:电流、电压、功率、功率因数、有功电度、无功电度、及以下可选之扩展功能(事件记录、故障录波、事故报警),等。 提供EMS系统专用通讯柜,尺寸为2200mmX800mmX600mm。 每个柜主要包含有:①EMS系统光纤主干网必须的光纤通信交换机; ②1台通讯管理主控单元,每个主控单元至少包含8个RS485接口和1个RJ45以太网接口。 EMS系统核心部件应为运行成熟、先进可靠、品质优良的原装进口的国际知名产品,系统软件应和条款中监控设备成熟配套使用过。 2、适用标准 系统(设备)的技术标准除应符合本招标书技术规范要求外,还应符合有关IEC或GB或DL行业标准。系统(设备)的设计、制造应严格遵循的相关标准 3、技术规范

智慧能源管理系统

智慧能源管理系统 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

智慧能源管理系统 一、建筑能源管理系统................................................... 系统概述............................................................. 法规要求............................................................. 设计依据............................................................. 核心理念............................................................. 优势特点............................................................. 建设目标............................................................. 系统结构............................................................. 能源网络组建......................................................... 二、建立绿色建筑评价体系.............................................. 能源数据采集范围..................................................... 建立用能计量体系 .................................................... 建立绿色建筑评价体系................................................. 三、系统功能详述...................................................... 建筑基础信息配置..................................................... 能耗数据实时监测..................................................... 建筑分类能耗分析..................................................... 建筑分项能耗分析..................................................... 能耗同比、环比分析................................................... 能耗数据分析......................................................... 能耗指标统计......................................................... 能源消耗分析......................................................... 四、界面展示设计...................................................... 界面总览示意图....................................................... 系统分析图........................................................... 实时数据监测......................................................... 设备分项分析饼图..................................................... 空调能耗分析图....................................................... 能耗分户计量图.......................................................

能源管理方案计划平台方案计划

智能化系统-云计算能源管理平台方案 目录 一、引言 (2) 二、项目概述 (3) 三、云计算能源管理平台建设的目标 (3) 四、云计算能源管控平台的特点 (3) 五、设计原则与标准 (4) 5.1 设计原则: (4) 5.2参考标准、规范: (5) 六、云计算能源管控平台设计 (6) 6.1能效管理系统定义: (6) 6.2系统功能要求: (6) 6.3系统网络结构: (7) 6.4监控内容: (8) 6.5能效管理策略: (8) 七、云计算能源管控平台 (9) 7.1系统综述: (9) 7.2系统组成: (10) 7.3系统功能: (11)

一、引言 伴随我国城市化进程度的不断推进,第三产业占GDP比例的加大以及制造业产业结构的调整,建筑能耗在国民经济总能耗中的比例也在持续提高。根据《中国建筑节能年度发展研究报告》(中国工程院咨询项目)提供的数据显示:1996~2008年,总建筑商品能耗由2.59亿tce,增长到6.55亿tce,增加1.5倍。2008年建筑能耗为6.55亿tce,占社会总能耗23%,电力能耗8230亿kwh,占社会总能耗的21%。从1996~2008年间,我国公共建筑总面积由28亿m2增长到71亿m2,增加了1.5倍,而公共建筑的能耗从1996年4140万tce ,到2008年14100万tce,增加了近2.5倍,其中电耗从1996年780亿kwh,增加到2008年3793亿kwh,增加了近4倍。从数据统计可以明显看出,公共建筑的电力能耗呈现高增长趋势。目前普遍认为建筑节能是全社会各领域内节能潜力最大、最为直接有效的方式, 也是缓解能源紧张、解决社会经济发展与能源供应不足的矛盾最有效的措施之一。 建筑节能工程实践表明,建筑物的有效节能方式基本分为三大类,即建筑技术节能、设备更新节能与运行管理节能1。其中建筑技术与设备更新节能更多的侧重于采用新型建筑材料、新型高效设备以及利用可再生能源等。然而,在实际项目的运行中,即使系统形式相同和建筑规模相似的建筑物,其运行管理费用也存在着较大差别。因此,通过优化建筑设备与系统的运行,加强管理、提高用能效率,合理降1.提出可持续管理节能应是建筑节能的关注重点。植入管理节能的概念。

智慧建筑能源管理系统方案-最新版本

智慧建筑能源管理 系 统 方 案

修订记录 日期版本描述作者2015-04-25 1.0 初稿完成

一、概述 随着社会的发展,大型建筑在逐年增加,其能耗也在不断增大,能源与发展的矛盾日益突出。未来几年内写字楼、公寓、饭店、会展中心等大型公共建筑会大幅度增加,而我国约90%以上的大型公共建筑是典型的能耗大户。 建筑行业的能耗消耗种类较为单一,大致分为5类,电能、水能、燃气、集中供热、集中供冷。根据中国建筑能耗信息网提供的资料显示,就电能消耗分析,大型建筑的能耗比重约为空调能耗40%,公共与办公照明能耗47%,一般动力能耗2.9%,其他用电能耗10.1%。而在大型商场中的照明能耗占40%左右,电梯能耗占10%左右,空调系统的能耗则是占到了50%左右。在提倡节能减排的当今,做好节能工作不仅对实现“十二五”建筑节能目标具有重大意义,更是为高耗能建筑进一步节能提供准备条件。

二、能耗现状分析 2.1 能源流失 不同的建筑类型关注能耗的变化所有不同,比如:酒店类型关注客房入住率 与能源消耗的变化关系;大型超市关注空调使用率的变化、单位面积能耗值以及照明范围等多个指标;公司、写字楼关注空调末端使用率、不同功能的照明分类等等。大型商业中心关注不仅关注各类能源消耗的情况,同时对于中央空调、水泵等重点设备的运行和效率也更为关注。 一栋大楼的能源消耗如下图几个方面所显示: 1浪费: 未使用房间的空调 未使用房间的照明 水龙头未关 7设计工程: 建筑节能设计不合理 节能系统未启用 使用高耗能设备 6能量转变效率 电-光 电-热 电-动力 热-电气设备 2设备机器效率 锅炉、空调 水泵、鼓风机电梯 主要的能源流失 5热流: 从配管、通风管道的热量损失 配管、通风管道阻力损失 3运行及保障管理不完备:过大容量运行 设备陈旧 4未充分利用自然条件: 固定窗 没有有效利用外部空气制冷的空调设备 窗口周围边的照明控制

能源管理系统解决方案

能源管理与监测系统技术方案

目录

一、前言 伴随科技与信息化的发展,智能配电与智能能源管理系统越来收到广大用户的关注与喜爱。**经过多年的实践经历总结与积累,立足于用户为酒店、大型商务体、办公楼等提供配电安全与能源管理系统解决方案,使用电更加安全、更加有效便捷、更加节能。 结合本项目的实际情况为本项目设计预付费管理系统和能源管理平台系统。预付费系统配套预付费电表用于售电管理,能源管理平台对园区水电使用情况进行分析管理。预付费系统与能源管理系统可实时进行数据交换。能源管理系统支持CS、BS架构,支持第三方系统数据接入。 以下为系统的初步展示可供参考,为使用户得到最佳的系统解决方案,具体方案需根据本项目的实际需求另行设计定制。 二、预付费电能管理系统 1概述: 本项目中针对酒店和商业广场的商业用户设计一套智能用电计量管理系统,本系统主是针本对商户用电的性质,实现商户用电的智能化管理,为保证商户用电的独立性和安全性,应采用一户一表的方案,针对本项目为商业用户配置**终端预付费电能计量表计 DTSY1352-NKC、DDSY1352-NKC来独立计量每个商业用户的用电量。通讯管理机通过RS-485总线采集所有终端电能计量仪表的数据。通讯管理机将数据通过由光纤组成的专用网络将数据传输至中心管理计算机。系统管理软件对数据进行存储、处理,形成物业管理方需要的图形、文字等形式的文件,以此实现整个广场商户用电的智能化管理。 2技术要求 本项目设计的智能用电计量管理系统,由**品牌三相预付费电能表DTSY1352-C、单相预付费电能表DDSY1352-C,通讯管理机、RS—485总线(局域网)/光纤环网、中心管理计算机、系统管理软件及预付费充值系统组成。**品牌预付费仪表的产品特点有以下几条: ?计量控制独立 电表内对应于各用户单元的计量单元独立,保证计量准确性:控制单元独立,保证控制可靠性。

能耗管理系统设计施工方案

能耗管理系统设计施工方案 1、电的能耗计量:针对各楼栋、各区域、各楼层各用电回路电能耗数据进行实时监测,根据每个配电箱的电力回路的不同用途进行分项计量,根据电力远传仪表的数量和位置设置相应的电表数据采集器,然后通过采集器将所有电力回路能耗数据上传到本地能耗监测管理平台,实现建筑电能分项能耗数据动态监测和远程传输。 2、水的能耗计量:根据设计院给水系统设计,在建筑进水总管和每层楼有表具的总管上安装数字式远传水表。通过水表数据采集器将水能耗数据上传到本地能耗监测管理平台。 3、系统架构:网络传输分两层架构。网络控制层采用TCP/IP 协议,数据采集器支持双服务器上传,将相关数据上传至本地能耗管理平台。现场层数据采集器需要支持RS485、M-BUS、LONWORKS 等接口,支持各类标准的MODBUS、DLT-645 等各类标准国家协议。 4、系统要求:本项目能源管理平台设置在管理中心。现场采集器通过网络和上一级能耗监测平台的联网,同时本地服务器软件进行网络进行同步数据采集和分析,完成相关的能耗分析功能。采集器通过485协议将对应的数据采集。现场采集器必须按照建设部《国家机关办公建筑及大型公共建筑分项能耗数据采集传输导则》和《国家机关办公建筑及大型公共建筑分项能耗数据采集技术导则》进行数据采集和传输,技术规程要求必须上传的能耗数据必须从采集器直接上传省市平台。 对整个建筑的水、电等用能情况进行实时信息采集,并实现显示、分析、处理、维护及优化管理的目的。从而实现以下功能:实现建筑能耗实时监测,确切掌握各能耗总量及动态变化; 对建筑各能耗进行系统诊断,指导合理用能; 协助管理方建立节能长效机制; 对采用的节能新技术进行后评估; 在系统基础上实现分项用能定额管理制度;

能源管理体系建设方案

2019年下半年,总务部节能科准备在全公司建立能源管理体系,但需要公司主要领导的支持! 黑龙江省节能减排工作领导小组对公司每年的重点用能单位能耗总量和强度”双控“目标责任考核实施方案中有多项建立能源管理体系要求,并且企业建立完整的能源管理体系对节能降耗有非常重大而深远的意义。 企业要想真正做到节能降耗就必须建立完善的能源管理体系! 能源管理体系是能源管理工作的总抓手

1、节能降耗首先应本同期对比分析现状,发现问题。 2、分析各种能耗增长问题中各种影响因素。 3、找出影响能耗增长问题的主要原因。 4、针对主要原因,提出解决的措施并执行。 5、检查执行结果是否达到了预定的目标。 6、把成功的经验总结出来,制定相应的标准。 7、把没有解决或新出现的问题转入下一个PDCA循环去解决。 一、什么是能源管理体系:建立并实现能源方针、目标的一系列相互关联要素的有机结合,包括组织机构、职责、惯例、程序、过程和资源等。企业在管理能源方面,借鉴其他体系模式,结合能源利用管理特点,提供优化管理模式,建立系统完整管理标准规范,促进企业最大限度降低能耗提高能效。 二、能源管理体系建设的作用:利用节能贯标机制、节能技术进步机制、节能文化促进机制、全过程管理控制机制,持续提高企业的管理水平,提高能源利用效率。 三、能源管理体系核心思想:

【过程方法】均以过程为基础,着眼于每个具体过程,对其输入、输出进行有效识别与控制,对各个过程及其作用进行识别、策划和管理; 【管理的系统方法】着眼于整体和实现总目标,促进用能单位策划的各个过程相互协调匹配。

四、能源管理体系特点:

建筑物节能管理系统

建筑物节能分析管理系统 建筑能耗是指民用建筑(包括居住建筑和公共建筑以及服务业)使用过程中的能耗,主要包括采暖、空调、通风、热水供应、照明、炊事、家用电器、办公设备、电梯等方面的能耗。其中采暖空调通风能耗约占2/3 左右。 海博能认为,当前造成我国建筑能耗过高的情况大致分为以下几种: (1)建筑设计上不节能,直接导致建筑物能耗需求过高; (2)采暖、通风与空调系统容量选择不合理,造成“大马拉小车”; (3)各能耗系统相互独立,未对能源综合利用作出合理规划,导致能量浪费; (4)设备运行管理不正确,导致能耗过高; (5)设备长时间使用后没有进行正确维护或更换低效率设备,造成能效低下。 从上面可以看出,建筑节能是一项涵盖建筑设计、设备选型、能源规划、运行管理和系统维护的复杂的系统工程。 XX公司建筑节能全面解决方案是建立在建筑节能物分析管理系统基础上的建筑节能综合解决方案,它以仿真预测模型为基础,采用系统工程的理论和方法,实现建筑节能分析、设计、改造和管理的一体化全面技术解决方案,是当前最先进、最有效的建筑节能全面解决方案。 建筑节能分析管理信息系统将建筑设计、设备工艺、自动控制、能源规划、系统优化和信息技术有效集成,在决策、设计、施工组织管理、运行维护及管理、优化及节能改造等各个环节为客户提供全程服务,从而从根本上降低建筑物的设计能耗和运行能耗。 3.2.1 节能设计 节能设计包括建筑物节能设计、设备选型和能源规划三个部分。其目的是为用户降低能耗需求,提高能源综合利用率。 3.2.1.1 建筑物节能设计 BEAMS系统通过对建筑物围护结构模型、设备模型以及当地历史气象信息进行仿真和综合分析,得到建筑物的设计日冷、热负荷,并根据《公共建筑设计节能标准》对建筑物维护结构(墙体材料、外墙保温、外遮阳、内遮阳、玻璃幕墙等)进行优化,使之设计日的冷、热负荷降到最低,从根本上解决建筑物能耗过高的问题。 3.2.1.2 设备选型 以仿真分析为基础的设备选型是解决当前建筑中普遍存在的“大马拉小车”现象的唯一手段,只有在精确预测建筑物负荷的情况下才能真正做到“车马相配”。同时,在设备选型的过程中必须遵循以下原则: (1)满足建筑物的最大冷、热负荷需求,并按规定留出余量; (2)在考虑综合成本及建筑物实际情况的前提下尽量避免运行过程中的“大马拉小车”的情况; (3)兼顾空调主机维护保养计划,避免主机连续运行时间过长,影响主机寿命。 3.2.1.3 能源规划 能源规划是提高能源综合利用率的重要手段。海博能公司根据当前建筑物的用能情况制定了一整套包括热回收、有源能量回馈、太阳能、风能、地热能、沼气等在内的综合能源利用规

企业能源管理系统综合解决方案

企业能源管理系统综合解决方案 关键词:实时数据库 pSpace RTBD SCADA软件能源管理系统EMS 力控监控组 态软件力控eForceCon SD 1.引言 1.1.概述 在我国的能源消耗中,工业是我国能源消耗的大户,能源消耗量占全国能源消耗总量的70%左右,而不同类型工业企业的工艺流程,装置情况、产品类型、能源管理水平对能源消耗都会产生不同的影响。建设一个全厂级的集中统一的能源管理系统可以实现对能源数据进行在线采集、计算、分析及处理,从而对能源物料平衡、调度与优化、能源设备运行与管理等方面发挥着重要的作用。 能源管理系统(简称EMS)是企业信息化系统的一个重要组成部分,因此在企业信息化系统的架构中,把能源管理作为MES系统中的一个基本应用构件,作为大型企业自动化和信息化的重要组成部分。 1.2 整体需求分析 企业希望能够采用先进的自动化、信息化技术建立能源管理调度中心,实现从能源数据采集——过程监控——能源介质消耗分析——能耗管理等全过程的自动化、高效化、科学化管理。从而使能源管理、能源生产以及使用的全过程有机结合起来,使之能够运用先进的数据处理与分析技术,进行离线生产分析与管理。其中包括能源生产管理统计报表、平衡分析、实绩管理、预测分析等。实现全厂能源系统的统一调度。优化能源介质平衡、最大限度地高效利用能源,提高环保质量、降低能源消耗,达到节能降耗和提升整体能源管理水平的目的。 2. 设计内容与原则 2.1设计内容 ★自动化系统 能源管控中心网络系统及设备系统; 能源管控中心软硬件平台系统;

能源系统各站点的数据采集系统; 调度及操作人员所需的人机界面系统; 设备冗余,安全监测系统; 历史数据海量存储及分析系统等。 ★辅助系统 能源系统视频安全监控; 能源系统配套报警系统; 能源系统大屏幕显示系统等。 2.2设计原则 ★完善能源信息的采集、存储、管理和利用 ★规范能源系统的自动化系统设计 ★实现对能源系统采用分散控制和集中管理 ★减少能源管理环节,优化能源管理流程,建立客观能源消耗评价体系 ★减少能源系统运行成本,提高劳动生产率 ★加快能源系统的故障和异常处理,提高对全厂性能源事故的反应能力 ★通过优化能源调度和平衡指挥系统,节约能源和改善环境 ★为进一步对能源数据进行挖掘、分析、加工和处理提供条件 3.系统架构 典型能源系统架构包括能源调度管理中心、通讯网络、远程数据采集单元等三级物理结构(如下图示)。

园区建筑能源管理系统能耗分析节能方案

我们的园区建筑也是能耗大户,高效的能源管理是园区运营和服务的重要支撑,包括水、电、气等能源的大量消耗也占据了园区成本的较大比例,而其中也有一部分能源消耗是被浪费的,并不产生效益,对这部分浪费的资源需要加以管理。源中瑞源管理系统则是对园区的能源使用情况进行的全面监测,统计园区建筑各区域中各类能源的用量、高峰低谷值、一般规律、异常使用等等数据,并在系统内进行分区域分类别分析,给出管理人员对园区能源高效、绿色使用的管理和优化信息。 园区能源管理系统,大型公建能源管理系统,面向园区建筑能源消耗为主的能源用户进行能源管理ruiecjo微加;包括能源消耗情况的可视化、能源设备实时监测、能源计划管理、能源分析预测、优化节能方案等; 通过使用源中瑞138.2311.8291园区能源管理系统的应用,能够对园区内各区域各类能源的使用情况进行阶段性的统计分析,发现不同类型的能源使用的规律,并结合实际的业务发生情况,发现园区能源利用的不合理之处和异常状况,从而制定能源管理的优化方案,避免不必要的能源浪费,降低能源消耗、节约运营成本,进而减少园区的综合运营成本,源中瑞能源管理系统产品技术特点 1、远程监测,实现站点无人值守: 对于具备自动化条件变电站、水泵站、机房、煤气站、加压

站、气柜、空压站等可实现无人值守,由能源管理系统对无人值守站点进行远程实时动态数据监测。 2、支持C/S、B/S结构: 系统支持采用B/S(浏览器/服务器)结构和C/S(客户端/服务器)结构相结合模式。 3、支持多种系统: 系统采用分层分布式跨平台设计,全面支持HP、IBM、X86等各种硬件平台和UNIX、Linux、Windows各种操作系统。4、数据库稳定可靠: 支持多重冗余和负载均衡功能,可以把不同的数据应用进程分布到不同的服务器上,使得每个服务器都能运行在负载比较均衡的状态下。支持灾难恢复、数据同步功能,实现数据库稳定可靠运行。 5、智能通讯网关: 采用新一代嵌入式技术,构筑分布式的数据采集系统,实现能源介质参数连续、稳定、可靠采集传输。 6、模块化结构、扩展性强: 系统采用模块化设计,支持ODBC、OPC、API、DDE等标准数据变换方式,支持多种关系型数据,包括Oracle、SQLServer 等。 7、支持互联网、移动终端: 支持手机、平板等移动终端进行登录浏览访问。

能源管理云平台解决方案

国际机场节能管理能源管理平台解决方案

目录 1.工程概况 (2) 2.建设背景 (3) 1.1挑战 (4) 1.2需求分析 (5) 3.解决方案概述 (6) 4.系统架构 (9) 4.1能源管理系统主站 (9) 4.2通讯网络 (9) 4.3测控层硬件设备 (9) 5.技术特点 (11) 5.1能源管理可视化 (11) 5.2用能分析图形化 (12) 5.3智能数据统计分析 (13) 5.4管理规范化 (16) 5.5支持多种数据源 (16) 5.6能源系统云服务 (16) 6.应用场景 (17) 6.1能源购进 (17) 6.2能源消耗 (17) 6.3能源转供 (17) 6.4能源运行 (17) 7.计量点设置 (18) 7.1电计量点 (18) 7.235KV变电站计量点设置 (18) 7.3试点变电站(1#变电站)计量点设置 (20) 7.4水计量点设置 (21) 7.5热计量点设置 (23) 8.系统配置及预算 (24) 9.结语 (30)

1.工程概况 **国际机场位于*市东南方向,距*市?km,始建于?年,曾于?年进行过扩建。经过扩建后航站楼面积为?万平方米,跑道及滑行道延长至?米,并加宽跑道及滑行道道肩,飞行区等级由?升格为?级,可满足当前最大机型A380等飞机的备降要求,为国内干线机场及首都国际机场的备降场。 经中国民用航空总局批准,“**机场”更名为“**国际机场”。机场已开通航线*多条,通达国内外60多个城市,保障机型近20种。

2.建设背景 节能减排已经被全社会普遍关注。就民航业而言,民航总局明确要求,到2020年我国民航单位产出能耗和排放要比2005年下降22%,达到航空发达国家水平。 目前,机场能耗占民航业能耗的3%。其中,供暖、制冷、照明又占了机场能耗的70%。 在这一背景下,****国际机场的能源管理也提上日程。如何降低运营成本,在保持优质服务水平的基础上减少能源消耗,将耗能大户变为节能大户,树立良好的社会形象,为社会节能减排做贡献,也成为****国际机场运营管理的关注焦点之一。 ****国际机场设有飞行区、航站区、办公生活区、塔台和通讯导航站、气象观测站、供油站、机务维修区、消防应急等区域设施,其面积大,分布广,负荷密集,供电容量大,不仅对于系统的安全性和可靠性要求极高,而且航空级的设施水平和服务水平也决定了机场对管理水平的高度要求。 **国际机场对于能源管理的需求主要包括: 1)持续安全可靠运行。由于机场交通枢纽有大量的人群聚集,为确保人员和设备的安全,对设施的照明、通风、航班的通讯导航等系统的持续可靠运行提出了极高的要求。而且机场功能决定了其站房和相关设施必须长时间持续稳定运行,以便确保设施的高利用率,从而也要求能源管理系统持续可靠地运行。 2)实现能源成本管控。由于机场航空级的设施水平和一系列人性化的体验要求,空调、照明通风的能耗必然很大,因此需要对能耗进行分类监测和统计,找出无效能耗,针对实际客流变化进行合理调控,以降低整体运营能耗。 3)降低运营管理强度。对于规模大、设施分布广、客流密度高的**** 国际机场,其日常运营的管理强度极大,仅仅靠传统的管理模式无法满足正常功能和可靠性保障的要求,必须借助现代自动化技术手段以降低传统的人工管理强度。

企业能源管理系统(EMS)解决方案系统架构

企业能源管理系统(EMS)解决方案系统架构一 能源管理系统(Energy management system,简称EMS)是以帮助工业生产企业在扩大生产的同时,通过能源计划、监控、统计、消费分析、重点能耗设备管理和能源计量设备管理等多种手段,合理计划和利用能源,降低单位产品能源消耗,提高经济效益为目的信息化管控系统。 罗克韦尔自动化公司的电力及能源管理系统(PEMS); 电力管理和控制系统(PMCS);(PMCS)电力监控系统; 在淘汰落后产能的过程中,先进节能的工业自动化技术和设备成为了企业的首选。节能减排的自动化技术除了高能效电机、变频器、过程自动化系统和能源管理系统之外,还有面向冶金、有色、电力、化工、建材、造纸六大“三高”行业治理的成套专用优化系统和专用控制装置,比如特种执行器和特种检测技术,除尘、脱硫优化控制技术,固体废物焚烧的最优控制技术,废液的检测、分离和控制技术,节能、降耗的卡边控制技术,最优燃烧控制技术,最优调速控制技术,热能转换和传递优化技术等等,这些技术也是推进我国高端工业自动化产业化的重要方面。 节能减排在我国的推进离不开先进的自动化技术、产业结构调整、企业管理水平的提升。节约能源已经作为我国建立节约型社会的基本国策,对于“十一五”规划中单位GDP能耗节能减排20%的任务,企业不应该把它仅仅作为约束性指标,而是应该把节能减排融入到长远发展的战略中去,这对企业的发展无疑具有巨大的促进作用。这也是产业结构优化调整到一定程度,企业管理水平也提升到一定水平,共同作用的结果。当三者有机结合,节能减排也就会大行其道了。 随着我国计算机信息技术的高速发展、计算机软件应用技术的不断普及、企业信息化建设经验的不断积累和计算机信息管理系统应用水平的提高,众多企业

智慧能源管理系统

智慧能源管理系统 一、建筑能源管理系统................................................... 系统概述............................................................. 法规要求............................................................. 设计依据............................................................. 核心理念............................................................. 优势特点............................................................. 建设目标............................................................. 系统结构............................................................. 能源网络组建......................................................... 二、建立绿色建筑评价体系.............................................. 能源数据采集范围..................................................... 建立用能计量体系 .................................................... 建立绿色建筑评价体系................................................. 三、系统功能详述...................................................... 建筑基础信息配置..................................................... 能耗数据实时监测..................................................... 建筑分类能耗分析..................................................... 建筑分项能耗分析..................................................... 能耗同比、环比分析................................................... 能耗数据分析......................................................... 能耗指标统计......................................................... 能源消耗分析......................................................... 四、界面展示设计...................................................... 界面总览示意图....................................................... 系统分析图........................................................... 实时数据监测......................................................... 设备分项分析饼图..................................................... 空调能耗分析图....................................................... 能耗分户计量图.......................................................

能耗管理系统方案

同景地产两江工业园项目能效管理系统

目录 1 概述 ....................................................... 错误!未定义书签。 项目概况............................................................... 错误!未定义书签。 系统概述............................................................... 错误!未定义书签。 需求分析............................................................... 错误!未定义书签。 设计依据............................................................ 错误!未定义书签。 设计原则............................................................ 错误!未定义书签。 2 设计方案 ................................................... 错误!未定义书签。 总体设计............................................................... 错误!未定义书签。 系统组成............................................................... 错误!未定义书签。 数据采集系统设计....................................................... 错误!未定义书签。 采集设计............................................................ 错误!未定义书签。 计量表的安装........................................................ 错误!未定义书签。 数据采集器.......................................................... 错误!未定义书签。 数据传输系统设计....................................................... 错误!未定义书签。 系统架构............................................................ 错误!未定义书签。 计量装置和数据采集器的连接.......................................... 错误!未定义书签。 采集网络设计........................................................ 错误!未定义书签。 软件系统设计........................................................... 错误!未定义书签。 设计思路............................................................ 错误!未定义书签。 建筑能耗分项模型设计................................................ 错误!未定义书签。 软件功能介绍........................................................ 错误!未定义书签。 3 能效管理系统软硬件清单...................................... 错误!未定义书签。

能源管理系统(EMS)方案

Contents1系统方案概述2 1.1数采终端(能源子站) (3) 1.2数据监控系统(能源实时监控子系统) (4) 1.2.1能源实时监控服务器 (4) 1.2.2能源实时监控客户机 (5) 1.3数据管理与发布(能源管理和能源监控系统) (5) 1.3.1能源管理分析服务器 (6) 1.3.2能源管理系统客户机 (7) 2系统功能概述 (8) 2.1概述 (8) 2.2方案总体说明 (8) 2.3系统功能 (9) 2.3.1能源数据采集 (9) 2.3.2能源监控系统动态监视 (9) 2.3.3能源档案系统 (11) 2.3.4成本分析与分配系统 (13) 2.3.5能耗标准设定 (16) 2.3.6自定义能源报表 (17) 2.3.7其他能源分析手段 (21)

1系统方案概述 改能源管理系统方案是以罗克韦尔自动化的核心软件产品实时监控软件FTView SE、能源管理平台软件RSEnergyMetrix、以及开放性关系型数据库MSSQL为基础,并融合了现场通信技术、数据库技术、Web技术、SCADA/HMI技术、C/S及B/S技术等的一体化的数据采集监控系统方案。 能源管理系统实时监控与信息管理系统的总目标是建立一个全局性的能源管理系统,构成覆盖能源信息采集及能源信息管理两个功能层次的计算机网络系统,实现对电能、天然气、压缩空气、采暖水、循环水和自来水等能源介质的自动监测,进而完成能源的优化调度和管理,实现安全、优良供能、提高工作效率、降低能耗,从而达到降低产品成本的目的。系统包括3大部分内容:能源数据采集,能源数据实时监控和能源数据分析发布管理。其主要功能是实现对所有与能源有关的数据采集,并在能源管理部门范围内实现数据的发布,并可以为企业管理级的MES、ERP系统提供用能信息。 整个能源管理系统是以稳定可靠的工控PLC和上位管理服务器为核心并采用流行的、可靠的计算机网络构成的集中式数据采集监控分析管理系统。全厂设置一个集中能源监控中心。全厂能源调度监控中心通过网络从各能源子站中获取能源数据,实现全厂的能源数据集中监控和管理。并实现能源数据的集中管理和归档,并通过网络实现在能源管理部门范围内的数据发布;全厂能源管理中心和各能源子站通过工厂已有网络结合在一起构成一个完整的系统。 能源管理数采终端采用工业级控制设备PLC作为核心处理运算单元,各个能源子站都具备运算存储能力。能源管理数采终端集成以太网接口,通过光纤以太网与能源管理服务器系统实现通讯,网络构架简单明了,系统安全可靠。

能源管理平台实施方案1

能源管理平台实施方案 一、能源管理平台建设目的 建设能源管理平台是采用先进的自动化、信息化技术建立能源管理调度中心,实现从能源数据采集——过程监控——能源介质消耗分析——能耗管理等全过程的自动化、高效化、科学化管理。从而使能源管理、能源生产以及使用的全过程有机结合起来,使之能够运用先进的数据处理与分析技术,进行离线生产分析与管理。其中包括能源生产管理统计报表、平衡分析、实绩管理、预测分析等。实现全厂能源系统的统一调度。优化能源介质平衡、最大限度地高效利用能源,提高环保质量、降低能源消耗,达到节能降耗和提升整体能源管理水平的目的。源介质平衡、最大限度地高效利用能源,提高环保质量、降低能源消耗,达到节能降耗和提升整体能源管理水平的目的。 二、能源管理平台建设原则 1、完善能源信息的采集、存储、管理和利用; 2、规范能源系统的自动化系统设计; 3、实现对能源系统采用分散控制和集中管理; 4、减少能源管理环节,优化能源管理流程,建立客观能源消耗评价体系; 5、减少能源系统运行成本,提高劳动生产率; 6、加快能源系统的故障和异常处理,提高对全厂性能源事故的反应能力; 7、通过优化能源调度和平衡指挥系统,节约能源和改善环境; 8、为进一步对能源数据进行挖掘、分析、加工和处理提供条件。 三、能源管理平台实现功能 1、数据采集:自动采集和手工录入两种方式。用能单位、次级用能单位、主要用能设备的能源数据应采用自动采集方式。其它需上报但没有实现自动采集的能源数据和其它数据,可采用手工方式录入。 2、能源监测:实现企业主要能源及耗能工质(电力、天然气、CO2/Ar、压缩空气、水、水等)的能源监测。 3、数据统计:按年、季度、月、日、班统计用能单位总能耗,并统计各种能源介质消耗量及所占比例,统计用能单位的产品单耗、主要工序能耗及单耗,统计次级用能单位、主要耗能设备的能耗量、单耗。且能够生成并显示相应的变化趋势图。 4、数据分析:具有能源绩效与相关能源基准对标的能力,具备按班次进行单耗比对的能力,与企业历史数据进行对比分析(同比、环比分析),与企业综合能耗、工序能耗、单耗标准要求进行比对分析。 5、绩效评价:对标分析得出的差值进行能效评估和节能管理。

能源管理系统

能源管理系统 能源管理系统概述 能源管理系统简单的说就是把生产企业的能源消耗如:水、气(汽)、风、电的使用过程数据,监测、记录、分析、指导。实时监控企业各种能源的详细使用情况,为节能降耗提供直观科学的依据,为企业查找能耗弱点,促进企业管理水平的进一步提高及运营成本的进一步降低。使能源使用合理,控制浪费,达到节能减排,节能降耗,再创造效益的目的。通过数据分析,可以帮助企业对每条生产线、每个工作班组以及主要耗能设备进行实时考核,杜绝浪费,并可以帮助企业进一步优化工艺,以降低单位能耗成本,提高企业综合竞争力。 能源管理系统的开发应用为企业生产管理、计量管理、节能管理提高到一个新的概念,是我们对节能减排、节能降耗实现的一种行之有效的解决方案。唐山天辰电器有限公司愿为我们共同的发展,共同的环境,实现节能环保,恢复保持绿色生态作出贡献。 第一卷能源管理系统的组成 第二卷建立能源管理系统的意义 第三卷能源管理系统方案 第四卷能源管控系统界面案例 行业应用案例>>>能源管理系统实现功能、方案

4、具备柔性的操作后台,支持后期维护和扩展。 5、最终按客户所需求的采控点,生成能源报表。 6、操作界面通过客户端访问,支持网络共享,具有管理员访问和维护功能。 能源管理系统结构示意图 第二卷建立能源管理系统的意义 在自动化技术和信息技术基础上建立的能源管理系统,以客观数据为依据,是冶金、化工、热力、电厂等能源消耗企业,实施节能降耗最根本的办法。推广先进的能源管理系统应用理念。改变传统的能源无科学依据的生产管理方式,是现代化大、中、小型企业先进的行之有效的重大管理措施,正成为各大公司各级管理者的共识。建立能源管理中心系统的基本目的就是要在提高能源系统的运行、管理效率的同时,找到生产工艺能源消耗最佳工艺数据,为企业提供一个成熟的、有效的、使用方便的能源系统整体管控解决方案;一套先进的、可靠的、安全的能源系统运行、操作和管理平台。并实现安全稳定、经济平衡、优质环保、监督考核的基本目标。 一.通过建设能源管理系统,我们将达到的目的:

相关文档
最新文档