SSA3500型全自动比表面积分析仪

SSA3500型全自动比表面积分析仪
SSA3500型全自动比表面积分析仪

SSA--3500型全自动比表面积分析仪

(原理及其特点)

在科技化日新月异的今天,现代化的脚步越来越快。技术更新已经更大程度的影响了一个企业的存亡。计算机智能比表面积测试仪就是其中知识经济的代表。

在工业上,固体高度分散后的固体比表面积的测定和分析(微观结构性能),对于吸附,催化,色谱,冶金,陶瓷,建筑材料的生产和研究工作都有重要意义。本设备是在基于表面物理吸附的相关理论为基础,以Nelsen和Eggertsen提出的连续流动法为结构,从而测定出固体的比表面积。以氦气作为载气,氮气为吸附气体,二者按4:1的比例通入样品管,当样品管浸入液氮时,在低温作用下,混合气中的氮气被样品物理吸附,直至吸附饱和,在随后的样品管及样品在升温的过程中,样品吸附的氮气全部解析出来,此时混合气体中氮气的比例将发生变化。在此吸附和脱附过程中,高精度的热导检测器会完成相关的检测工作,再经过模数转换系统,把模拟电信号转换成数字信号,并通过微机处理系统进行基于布朗诺尔-埃米特-泰勒(BET)的多层吸附理论及其公式计算出固体的比表面积。

本产品(新型智能化表面测定仪)在实际中极大的提高了工作效率,过去用做手工操作的测量,绘制记录波峰,分析得出结果,现

在都可用计算机软件来实现。将工作中的误差减到了最低,计算更加的便捷准确,节省人力和时间,输出规范,便于操作。还在搜索查询等多种功能上完全展现了计算机的独到优势。

SSA系列产品是本公司在原有的此类比表面分析仪的基础上自行研制开发的一种高智能现代化仪器。它具有高精度,高性能,低价位,功能完善的数据处理工具。具备同类进口比表面积处理机的全部功能,并且能随着科学技术的发展功能会得到进一步地完善。仪器操作简单,使用方便,在分析结果结束以后,即可得到您所需的数据结果。

本产品已申请专利,专利号为02229474.0

SSA-3500的特点:

一、自动化: 新型SSA-3500是全自动化的。只需通过计算机操作,

吸附程序、脱附和表面积的显示,所有这些不需要操作者的干涉。

二、精确性:比表面积测试值是通过BET低温吸附原理为理论基础

来计算的,原有的老设备在气体脱附后是通过机械式仪表来实现测量及显示的,因此老式仪器的重复性误差达到了10%---20%,而SSA-3500系列的设备在气体脱附后是采用热导池和高精度传感器来测量转换信号的,并通过取得国家专利的内置工作站和操作软件来实现计算机的数据采集和微处理。由于整个测量、转化和计算的过程都采用了精度极高的软硬件,所以使重复性误差有了大幅度下降,基本保持在2%以下。

三、速度:SSA-3500大致需6分钟完成一次分析。如此快的速度及

高精度和再现性,使SSA-3500成为检验进料、混料、研磨和其它应用的强有力的质量控制和研究设备。SSA-3500使用少量样品,这样可以缩短脱气和分析时间。SSA-3500使用最现代化和最可靠的方法测量BET比表面积,速度快,精度高,仪器使用小量连续气流来驱动系统,快速达到平衡状态,避免了因测量体积造成的延时。

四、可靠性:独特的自动校准特点不仅保证易于使用和精确度,也

保证购买SSA-3500数年后仍像新的仪器一样具有可靠的数据。

SSA-3500电子电路控制着独特设计超级稳定热导检测器的灯丝在极低温度下工作以防止烧坏。灯丝是由一种特殊合金制成,可防止氧化,可保证无故障使用多年。SSA-3500具有高灵敏的内置气流控制器,它使气流极为稳定。SSA-3500具有自封闭快速联接样品管,它不会裂开、磨损或不牢固,并且很容易安装和拆卸。

五、灵敏度及范围:高灵敏度的SSA-3500允许样品重量小于1g,

并可以在不考虑使用吸附气体的情况下测量表面积达到0.01m2以上。

六、多功能性:SSA-3500使用修正了的BET方程计算表面积。不

像其它方法,SSA-3500允许用户选择正确的吸附剂浓度以给出与多点方法相同的结果。例如,3,5,10%的吸附气/载气混合物能用于微孔材料。这是由于SSA-3500在任何浓度下都是线性的,这是其它仪器难以做到的。而且,除了使用氮气之外,

SSA-3500还可以使用许多别的吸附剂。例如:氩、氦和其它非腐蚀性气体。SSA-3500可使用更大范围的样品管。这使它可以测量许多不同类型的样品,比如粉末样、片状、纤维、膜片和其它不规则形状的样品。SSA-3500可变的灵敏度可适用于更大范围的样品和吸附气体。

七、易于使用:SSA-3500比其它设备更易于操作。没有经过培训

的人员都可以在几分钟内学会操作。不像其它类似产品。没有因阀门误转而使粉末冲出样品管的可能。样品管易于填充,也易于冲洗,安装在自封闭快速联接装置中。当样品从脱气站转移到分析站时,因样品管封闭而避免污染。

八、精确度和再现性:使用高精度的24位A/D转换器与2000以上

的离散点可完成电压/表面积的线性测试,这是SSA-3500的独特之处。可调整的积分仪的临界滞后技术模拟多点BET的截距以得到更高的精度。SSA-3500检测器的设计提供了极高精度和稳定性并且在不需要独立的加热设备的条件下可以使加热时间缩到最小。

九、安全性:自动断气保护装置使引起的安全系数大大提升。降低和

提升液氮浴的安全电梯是SSA-3500的特点。

十、应用

SSA-3500比表面分析仪目前用于研究和质量控制领域中。比如:陶瓷、催化剂、填料、碳黑、焦炭、纤维、矿物、核燃料、石油化学、药物、土壤、肥料、化妆品、水泥、粉体食品和其它。

3500型技术参数

1. 测量重复性误差≤2%

2.测量范围

此表面测量范围: 0.01㎡/g ≤X㎡/g ≤3500㎡/g

3.基线稳定线

半小时基线漂移不大于0.1mv,噪声不大于0.05mv。

4.要求气体纯度

吸附质——氮气,纯度99.99%以上。

载气——氦气,纯度99.99%以上。

或氢气,纯度99.99%以上。(注意被测物不能与氢气作用) 5.仪器供电电源

交流220v±10%,电流频率50赫兹,功率不大于200瓦。6.主机外形尺寸:600Χ380Χ410 mm3 重量:约50KG。

7.计算机配备系统:

处理器:奔腾二以上

内存:32MB以上

显示器设备:高分辨率彩显

Windows98以上操作系统8.采样频率:100HZ 9.最小峰宽:0.1min 10.最低峰高检测限20uV

比表面积分析仪使用方法及测试步骤

Rise系列全自动静态容量法氮吸附 比表面积及孔隙度分析仪使用方法及操作步骤 样品准备阶段:样品管烘干,样品管称重,添加样品,新样品管应在样品管称重前测试自由体积。 样品测试阶段:将准备好的样品管安装到样品测试端口,将杜瓦平稳放置到自动升降架,输入样品信息,样品管信息,选择测试方法比表面积或全过程,开始测试。自由体积测试:对新样品管首先烘干样品管,将其固定到样品测试端口,将杜瓦平稳放置到自动升降架,输入样品管编号,开始测试,测试完成后保存样品管信息。 5.1 样品测试 5.1.1样品准备 1.将真空泵与脱气站连接好,选择样品管,确认样品管编号。如果样品是超细粉 状物,须将样品进行压片处理。 2.将样品管固定到脱气口(如果真空泵未打开请打开真空泵) 3.将加热包固定到加热端口 4.设置加热时间和加热温度,开始加热脱气 5.脱气时间到,看到提示或听到提示声音停止加热和抽真空。 6.样品管冷却5分钟后取下。 7.用分析天平称量样品管重量(g1),并记录。 8.为已称好的样品管中加入适量样品,比表面积较大的样品一般在0.2~0.5克,比表面积较小的样品一般在1-10克。比表面积特别大的样品适当减少样品重量 9.将样品管固定到脱气口 10. 将加热包固定到加热端口 11. 设置加热温度,和加热脱气时间,开始加热脱气 12.脱气时间到,看到提示或听到提示声音,停止加热和脱气。 13.样品管冷却5分钟后取下 14.用分析天平称量样品管重量(g2),并记录。 15.(g2-g1)计算样品重量(g),并记录。 * 已使用过的样品管可不做1~7步。 5.1.2 杜瓦瓶准备 将液氮加入杜瓦瓶到指定液位,静置半小时以后待用。 5.1.3 样品管固定到测试端口 5.1.4 输入样品信息 输入样品名称,材料(微孔分析使用),比重,质量。 5.1.5输入样品管信息 空管,选择管号,点击测试后自动测试冷体积和修正系数,然后保存。 5.1.6 输入样品测试数据文件 文件名称可以直接输入,或点击选择 不输入文件名,开始测试后系统自动生成文件名。 5.1.7 开始测试

SSA3500型全自动比表面积分析仪

SSA--3500型全自动比表面积分析仪 (原理及其特点) 在科技化日新月异的今天,现代化的脚步越来越快。技术更新已经更大程度的影响了一个企业的存亡。计算机智能比表面积测试仪就是其中知识经济的代表。 在工业上,固体高度分散后的固体比表面积的测定和分析(微观结构性能),对于吸附,催化,色谱,冶金,陶瓷,建筑材料的生产和研究工作都有重要意义。本设备是在基于表面物理吸附的相关理论为基础,以Nelsen和Eggertsen提出的连续流动法为结构,从而测定出固体的比表面积。以氦气作为载气,氮气为吸附气体,二者按4:1的比例通入样品管,当样品管浸入液氮时,在低温作用下,混合气中的氮气被样品物理吸附,直至吸附饱和,在随后的样品管及样品在升温的过程中,样品吸附的氮气全部解析出来,此时混合气体中氮气的比例将发生变化。在此吸附和脱附过程中,高精度的热导检测器会完成相关的检测工作,再经过模数转换系统,把模拟电信号转换成数字信号,并通过微机处理系统进行基于布朗诺尔-埃米特-泰勒(BET)的多层吸附理论及其公式计算出固体的比表面积。 本产品(新型智能化表面测定仪)在实际中极大的提高了工作效率,过去用做手工操作的测量,绘制记录波峰,分析得出结果,现

在都可用计算机软件来实现。将工作中的误差减到了最低,计算更加的便捷准确,节省人力和时间,输出规范,便于操作。还在搜索查询等多种功能上完全展现了计算机的独到优势。 SSA系列产品是本公司在原有的此类比表面分析仪的基础上自行研制开发的一种高智能现代化仪器。它具有高精度,高性能,低价位,功能完善的数据处理工具。具备同类进口比表面积处理机的全部功能,并且能随着科学技术的发展功能会得到进一步地完善。仪器操作简单,使用方便,在分析结果结束以后,即可得到您所需的数据结果。 本产品已申请专利,专利号为02229474.0 SSA-3500的特点: 一、自动化: 新型SSA-3500是全自动化的。只需通过计算机操作, 吸附程序、脱附和表面积的显示,所有这些不需要操作者的干涉。 二、精确性:比表面积测试值是通过BET低温吸附原理为理论基础 来计算的,原有的老设备在气体脱附后是通过机械式仪表来实现测量及显示的,因此老式仪器的重复性误差达到了10%---20%,而SSA-3500系列的设备在气体脱附后是采用热导池和高精度传感器来测量转换信号的,并通过取得国家专利的内置工作站和操作软件来实现计算机的数据采集和微处理。由于整个测量、转化和计算的过程都采用了精度极高的软硬件,所以使重复性误差有了大幅度下降,基本保持在2%以下。

比表面及孔径分析原理和仪器介绍比表面积介绍比表面积定义为

比表面及孔径分析原理和仪器介绍 一、比表面积介绍 比表面积定义为单位质量物质的总表面积,国际单位是(m2/g),主要是用来表征粉体材料颗粒外表面大小的物理性能参数。实践和研究表明,比表面积大小与材料其它的许多性能密切相关,如吸附性能、催化性能、表面活性、储能容量及稳定性等,因此测定粉体材料比表面积大小具有非常重要的应用和研究价值。材料比表面积的大小主要取决于颗粒粒度,粒度越小比表面积越大;同时颗粒的表面结构特征及形貌特性对比表面积大小有着显著的影响,因此通过对比表面积大小的测定,可以对颗粒以上特性进行参考分析。 研究表明,纳米材料的许多奇异特性与其颗粒变小比表面积急剧增大密切相关,随着近年来纳米技术的不断进步,比表面积性能测定越来越普及,已经被列入许多的国际和国内测试标准中。 二、气体吸附法 比表面积测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它测试方法,成为公认的最权威测试方法。许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277。我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004 《气体吸附BET法测定固体物质比表面积》。 气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和。 氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。 三、测试方法及原理 比表面积测试方法有两种分类标准。一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动法、容量法及重量法,重量法现在基本上很少采用;再者是根据计算比表面积理论方法不同可分为:直接对比法、Langmuir法和BET法等。同时这两种分类标准又有着一定的联系,直接对比法只能采用连续流动法来测定吸附气体量的多少,而BET法既可以采用连续流动法,也可以采用容量法来测定吸附气体量。 1)连续流动法 连续流动法是相对于静态法而言,整个测试过程是在常压下进行,吸附剂是在处于连续流动的状态下被吸附。连续流动法是在气相色谱原理的基础上发展而来,藉由热导检测器来测定样品吸附气体量的多少。连续动态氮吸附是以氮气为吸附气,以氦气或氢气为载气,两种气体按一定比例混合,使氮气达到指定的相对压力,流经样品颗粒表面。当样品管置于液氮环境下时,粉体材料对混合气中的氮气发生物理吸附,而载气不会被吸附,造成混合气体成分比例变化,从而导致热导系数变化,这时就能从热导检测器中检测到信号电压,即出现吸附峰。吸附饱和后让样品重新回到室温,被吸附的氮气就会脱附出来,形成与吸附峰相反的脱附峰。吸附峰或脱附峰的面积大小正比于样品表面吸附的氮气量的多少,可通过定量气体来标定峰面积所代表的氮气量。通过测定一系列氮气分压P/P0下样品吸附氮气量,可绘

比表面积测定仪的原理

比表面积测定仪的原理 比表面:单位质量固体的总表面积。 孔径分布:固体表面孔体积对孔半径的平均变化率随孔半径的变化。 氮吸附法测定固体比表面和孔径分布是依据气体在固体表面的吸附规律。在恒定温度下,在平衡状态时,一定的气体压力,对应于固体表面一定的气体吸附量,改变压力可以改变吸附量。平衡吸附量随压力而变化的曲线称为吸附等温线,对吸附等温线的研究与测定不仅可以获取有关吸附剂和吸附质性质的信息,还可以计算固体的比表面和孔径分布。 一.比表面的计算与测定 1.Langmuir吸附等温方程――单层吸附 理论模型: 吸附剂(固体)表面是均匀的;吸附粒子间的相互作用可以忽略;吸附是单分子层。 吸附等温方程(Langmuir) ------ (1) 式中:v 气体吸附量 Vm 单层饱和吸附量 P 吸附质(气体)压力 b 常数 以对p作图,为一直线,根据斜率和截距可求出b和Vm,只要得到单分子层饱和吸附量Vm即可求出比表面积Sg 。用氮气作吸附质时,Sg由下式求得 ------ (2) 式中:Vm用ml表示,W 用g表示,得到是的比表面Sg为(㎡/g)。 2.BET吸附等温线方程――多层吸附理论 目前被公认为测量固体比表面的标准方法。 理论模型: 认为物理吸附是按多层方式进行,不等第一层吸满就可有第二层吸附,第二层上又可能产生第三层吸附,吸附平衡时,各层达到各层的吸附平衡。 BET吸附等温方程: -----(3) 式中:V 气体吸附量 Vm 单分子层饱和吸附量 P 吸附质压力 P0 吸附质饱和蒸气压 C 常数 将P/V(P0-P)对P/P0作图为一直线,且 1/(截距+斜率)=Vm ,代入(2)式,即求得比表面积。用BET法测定比表面,最常用的吸附质是氮气,吸附温度在其液化点(-195℃)附近。低温可以避免化学吸附。相对压力控制在0.05----0.35之间,低于0.05时,不易建立多

比表面积仪操作细则

水泥比表面积测定操作比赛实施细则 一、水泥比表面积测定要求: 1、参赛人员在规定时间内,对规定试样(水泥)采用勃氏法进行水泥比表面积测定,确定该样品的比表面积(30min内完成,并出具正式的试验报告); 2、水泥比表面积测定必须按照JTG E30-2005《公路工程水泥及水泥混凝土试验规程》的试验步骤及本细则有关要求进行试验; 二、水泥比表面积测定步骤: 1、漏气检查: 用橡胶塞塞紧压力计容桶接口,设定必要参数然后起动仪器,仪器自动停止后,仔细观察液面是否有降落,无降落为正常。 2、试料层体积测定: 1)将两片滤纸沿圆筒壁放入透气圆筒内,用一个直径略比透气圆筒小的细长棒往下按,直到滤纸平整放在金属的穿孔板上。 2)装满水银,用一小块薄玻璃板轻压水银表面,使水银面与圆筒口平齐,保证在玻璃板和水银表面之间没有气泡或空洞存在。 3)从圆筒中倒出水银,称量P1,精确到0.05g。重复几次测定,到数值基本不变为止。 4)从圆筒中取出一片滤纸,试用约3.3g的水泥。 5)轻敲圆筒的边,使水泥层表面平坦。 6)再放入一片滤纸,用捣器均匀捣实试料直至捣器的支持环紧紧接触圆筒顶边并旋转两周。(应制备坚实的水泥层,如水泥太松或不能压到要求体积时,应调整水泥的质量。)

7)慢慢取出捣器,再在圆筒上部空间注入水银。 8)同上方法除去气泡、压平、倒出水银称量P2。 9)测量室温。 10)圆筒内试料层体积V=10-6×(P1-P2)/ρ水银,精确到5×10-9m3。 11)进行两次平行测定,两次数值相差不超过5×10-9m3,则取两者的平均值,精确至10-10m3。 3、确定试样量:W=试样密度ρ×圆筒内试料层体积V×(1-ε) 注:ε——空隙率,标准水泥采用0.500,P.Ⅰ、P.Ⅱ型水泥采用0.500;其它水泥采用0.530。 4、试料层制备: 1)将穿孔板放入透气圆筒的突缘上,用一根直径比圆筒略小的细棒把一片滤纸送到穿孔板上,边缘压紧。 2)称取确定的试样量,精确到0.001g,倒入圆筒。 3)轻敲圆筒的边,使水泥层表面平坦。 4)再放入一片滤纸,用捣器均匀捣实试料直至捣器的支持环紧紧接触圆筒顶边并旋转两周,慢慢取出捣器。 5、参数标定(K值标定): 1)将仪器放平稳,接通电源,打开仪器左侧的电源开关。此时仪器左侧的四位数码管显示Errl,表示玻璃压力计内的水位未达最低刻度线。 2)用滴管从压力计左侧一滴滴的滴入清水。滴水过程中应仔细观察仪器左侧显示屏,至显示good时立即停止加水。此时左侧数码管显示仪器常数K的值;右侧三位数码管显示当前环境温度。至此仪器处于待机状态,可以进行操作。3)将装有试样的容桶锥部的下部均匀涂上少量黄油(或凡士林),将容桶边旋

比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪

比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪 3H-2000PS4仪器外观尺寸:H78cm * W72cm * L47cm Weight:46Kg 3H-2000PS4大型静态容量法比表面及孔径分析仪 性能简介: 分析站数量:具有4个样品分析站,1个P0测试站,4个样品脱气站; 比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪测试方法:静态容量法 优势特征: ◆具有国内领先独立的高精度饱和蒸汽压(P0)实时测试站; ◆具有国内首家有氦气和无氦气可选测试功能;(有氦气可提高死体积测试精度,降低样品吸附误差) ◆具有国内领先精确的全自动液氮面伺服智能保持系统; ◆具有独立的真密度测试功能,可氦气测试,精确度高,独立报告; ◆具有国内外领先的测试、脱气完毕自动恢复常压功能,防止样品飞溅; ◆先进的智能自检流程,智能判断样品管是否安装,试管夹套是否拧紧有无漏气; ◆具有国内外首创的样品预处理普通模式和分子置换模式两种模式; ◆精确的分压点控制机制,可按设定要求对重点孔径段进行精细分析,分析点数可达千点;

◆清晰形象的图形化控制界面,并可在界面上进行所有硬件的控制操作; ◆具有国内唯一的液氮杯防意外“安全下降”智能控制机制,完全避免了液氮杯意外下降气体膨胀使样品管爆裂的危险;比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪。 ◆超强的稳定性,即使意外断电、断线,亦不会丢失当前数据,且实验可恢复继续进行; ◆强大的实验报告数据库化管理功能,可按多种方式进行报告查询、比较与分类管理; ◆数据报告小窗口自动预览功能,同时显示结果与曲线; ◆原始测试数据导出导入,PDF报告单个导出、批量导出; ◆全程自动化智能化运行,亲和的真人语音操作提示; ◆自动记忆上次测试设置,同类分析只需修改样品名称与重量,其它设置自动沿用上次; ◆详尽的仪器运行日志显示与记录,每次实验全自动过程中的所有硬件动作与流程进展的均有记录,时间精确到秒,方便过程查询与故障反馈; ◆仪器配置芯片记忆功能,实现人工对仪器硬件参数的零配置; ◆软件界面详尽的操作帮助与指示功能,未经培训人员几乎只需按照帮助信息就可实现对软件的应用;比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪 ◆具有便捷的液氮杯自动加盖; ◆软件界面自定义风格转换; 比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪测试理论与报告内容: 1、吸附、脱附等温线; 2、BET单点法比表面S BET-O 3、BET多点法比表面S BET-M ,BET常数C BET 4、朗格缪尔(Langmuir)比表面S Langmuir ,朗格缪尔平衡常数b Langmuir 5、统计吸附层厚度法外比表面(STSA)S 外 6、粒度估算报告和真密度; 7、BJH法孔容孔径分布;(微分、积分孔体积、孔面积、孔径分布,柱状图、曲线图) 8、MK-plate法(平行板模型)孔容孔径分布(为BJH法的补充,适合对片层状结构材料分析); 9、t-plot法(Boder)微孔分析;(V-t图,t法微孔孔径分布图) 10、MP法(Brunauer) 微孔分析;(V-t图,微孔孔径分布图)(该方法考虑到不同材料吸附常

自动比表面积仪说明书

准确快速方便 KBS-2型自动比表面积测定仪 使 用 说 明 书 绍兴市肯特机械电子有限公司 shaoxingKENT Machine Electric Co.,Ltd Tel: 4 Fax: 1 E-mail

一、产品简介 实践表明,水泥性能和比表面积具有较好的相关性,比表面积值与颗粒级配、与各龄期水泥强度有较好相关性,在相同的工艺情况下,比表面积值越大,即矿粉越细,矿粉颗粒分布范围越宽。而因为颗粒的形状及颗粒级配不同,造成细度(筛余)与比表面积之间并没有必然的联系,一味增加粉磨时间,虽可使颗粒变细,但不一定使水泥性能大幅提高。因此,合理地控制比面值,既可提高水泥性能,提高水泥早期强度,又可降低能耗,其重要性日益受到人们的重视。但过去采用人工测量,人为因素多,测量误差大,计算不方便,不能满足实际要求。 我公司开发生产的KBS-2型自动比表面积测定仪,采用新型高可靠工业级单片机和I2C总线存储技术,自动计时、自动测温、自动检测水位、自动检测仪器工作状态、自动计算并显示结果,自动存储仪器常数以及上次所输入的数据(数据可永久保存),全自动测量,无人为误差,全触摸式按钮,简单准确迅速方便。现已在全国各地得到广泛应用。 二、仪器的原理和用途 本仪器主要是根据国家标准GB8074—87水泥比表面积测定方法规,并参照美国ASMTC204—75透气改进制成。 基本原理是采用一定量的空气,透过具有一定空隙率和一定厚度的压实粉层时所受的阻力不同而进行测定的,它主要应用于测定水泥、煤粉、火药等粉状物料的比表面积。 三、仪器 a)仪器的主要技术参数 1.1 透气圆筒内腔直径?+0.05mm 1.2透气圆筒内腔试料层高度15±0.5mm 1.3穿孔板孔数35个 穿孔板孔径?1.0mm 穿孔板板厚1—0.10mm 1.4电磁泵工作电压周波220V 50HZ 1.5 电磁泵功耗< 1.6 仪器重量2.8Kg 1.7 外形尺寸280mm×150mm×420mm 四.仪器的使用方法及操作步骤 1.0 仪器面板说明,如图: 1.1 仪器的使用 ①加水:接通电源,按复位键,仪器显示LL_ _ , 并闪烁, 往U形管中加水,待 水位慢慢地快接近最下面的光电开关时,在在U形管右边放入浮球,当浮球接近 最下面的光电开关时,改用滴管加水,当仪器显示温度时(如20℃ ),表示水位已 够. ②仪器的漏气检查,进行试验前,必须检查仪器是否漏气。检查的方法是,用胶 皮塞塞紧圆筒口(胶塞与玻璃管需用凡士林密封),按测定按钮秒,显示器显示cd_ _,然后连续按确认按钮直到气泵抽气,气泵停止后,用手表计时,在5分钟之

全自动孔径分析仪技术指标

全自动孔径分析仪技术指标 工作原理:非浸润液体仅当施加外压力时方可进入多孔体。在不断增压和测量作为外压力函数的进汞体积,即可得到由外力作用下进入抽空样品中的汞体积测得样品的孔体积、比表面积和孔径分布。它可以对块状和粉状试样进行测试,可直接用于检测水泥、陶瓷、混凝土、耐火材料、玻璃等无机非金属材料样品以及金属和部分有机材料样品内部微观的气孔分布状态;也可用于研究材料内部的微观气孔结构对材料性能的影响规律;深入和拓宽材料微观结构的研究领域等等 1.设备技术性能指标及参数 1.1孔径测量范围:最大压力:33000PSI,1080-0.005 m 1.2传感器精度:低压≤±0.11%;高压≤±0.1% 1.3传感器重复性:≤ 0.1% 1.4样品管为全透明管,并配备独立的金属外套管 1.5有液压油全自动再循环系统 1.6配备蓄油池和自动油泵来消除液压系统中的空气 1.7 配备不锈钢密封汞池,为保证操作者安全避免汞池爆裂伤人,汞池的汞应处于仪器内部不可见的位置 1.8 为保证测试人员在测试初期的安全,仪器的低压站应处于仪器内部不可见的位置,提供仪器实物照片 此外,根据实验安全和健康防护要求,特别需要具备下列保护措施: 1.9配备液氮冷阱(内置)防护装置,防止汞蒸气泄漏挥发侵害 1.10具有多重安全防范系统,包括手动急停开关,泄压阀及低压回路互锁机构,油封等。 2.使用目的和用途 测试过程可采用连续增压或步进加压方式,能对材料的孔大小分布、孔体积/面积的微分/平均分布进行测量表征,从而分析获得样品压缩率、堆积密度和表观密度、孔的分形维数等参数。可直接用于检测粉末和多孔固体试样内部微观的气孔分布状态;也可用于研究材料内部的微观气孔结构对材料性能的影响规律;深入和拓宽宏观-微观领域的研究内容。

比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪

比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪 i"匸面无HL if卅 世戈 ■■■ 3H-2000PS4 仪器外观尺寸:H78cm * W72cm * L47cm Weight : 46Kg 3H-2000PS4大型静态容量法比表面及孔径分析仪 性能简介: 分析站数量:具有4个样品分析站,1个P。测试站,4个样品脱气站; 比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪测试方法:静态容量法 优势特征: ?具有国内领先独立的高精度饱和蒸汽压(P0)实时测试站; ?具有国内首家有氦气和无氦气可选测试功能;(有氦气可提高死体积测试精度,降低样品吸附误差) ?具有国内领先精确的全自动液氮面伺服智能保持系统; ?具有独立的真密度测试功能,可氦气测试,精确度高,独立报告; ?具有国内外领先的测试、脱气完毕自动恢复常压功能,防止样品飞溅; ?先进的智能自检流程,智能判断样品管是否安装,试管夹套是否拧紧有无漏气; ?具有国内外首创的样品预处理普通模式和分子置换模式两种模式;

?精确的分压点控制机制,可按设定要求对重点孔径段进行精细分析,分析点数可达千点; ?清晰形象的图形化控制界面,并可在界面上进行所有硬件的控制操作; ?具有国内唯一的液氮杯防意外“安全下降”智能控制机制,完全避免了液氮杯意外下降气体膨 胀使样品管爆裂的危险;比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度, 孔隙率分布测试仪。 ?超强的稳定性,即使意外断电、断线,亦不会丢失当前数据,且实验可恢复继续进行; ?强大的实验报告数据库化管理功能,可按多种方式进行报告查询、比较与分类管理; ?数据报告小窗口自动预览功能,同时显示结果与曲线; ?原始测试数据导出导入,PDF 报告单个导出、批量导出; ?全程自动化智能化运行,亲和的真人语音操作提示; ?自动记忆上次测试设置,同类分析只需修改样品名称与重量,其它设置自动沿用上次; ?详尽的仪器运行日志显示与记录,每次实验全自动过程中的所有硬件动作与流程进展的均有记录,时间精确到秒,方便过程查询与故障反馈; ?仪器配置芯片记忆功能,实现人工对仪器硬件参数的零配置; ?软件界面详尽的操作帮助与指示功能,未经培训人员几乎只需按照帮助信息就可实现对软件的应用;比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪 ?具有便捷的液氮杯自动加盖; ?软件界面自定义风格转换; 比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪测试理论与报告内容: 1、吸附、脱附等温线; 2、BET单点法比表面S BET-O 3、BET多点法比表面S BET-M , BET常数C B ET 4、朗格缪尔(Langmuir )比表面S Langmuir ,朗格缪尔平衡常数b Langmuir 5、统计吸附层厚度法外比表面(STSA S外 6、粒度估算报告和真密度; 7、BJH法孔容孔径分布;(微分、积分孔体积、孔面积、孔径分布,柱状图、曲线图) 8、MK-plate法(平行板模型)孔容孔径分布(为BJH法的补充,适合对片层状结构材料分析) 9、t-plot法(Boder)微孔分析;(V-t图,t法微孔孔径分布图) 10、MP法(Brunauer)微孔分析;(V-t图,微孔孔径分布图)(该方法考虑到不同材料吸附常数不同的

FBT-5、6、9全自动勃氏比表面积仪

■FBT-5/6/9全自动勃氏比表面积仪简介 FBT-5/6/9全自动勃氏比表面积仪是由上海喆钛机械制造有限公司根据美国ASTM204-80透气法以及根据国家标准GB8074-87《水泥比表面积测定方法》的有关规定改进制成,基本原理是采用一定量的空气,透过具有一定空隙率和一定厚度的压实粉料层时受到的阻力不同而进行测定的。广泛应用于水泥、陶瓷、磨料、金属、火药等非多孔性粉状物料的比表面积。 它采用高可靠单片机和集成电路,软、硬件采用多种抗干扰技术,采用EEPROM存储现场的工作数据,具有停、掉电数据不丢失,自动计时,自动测温,自动检测水位,自动检测仪器工作状态,自动计算并显示结果,全自动测量,无人为误差,简单准确讯速方便。现已在全国各地得到广泛应用。为了提高水泥行业试验室自动检测水平,减少人为误差,我们开发出自动比表面积测定仪(勃式法)。本仪器依据中华人民共和国国家标准GB8074-2008水泥比表面积测定方法(勃式法)设计和生产由单片机自动控制完成整个测量过程,简单、方便、准确迅速可靠 1.水泥比表面积指单位质量的水泥粉末所具有的总表面积。 2.用一定量的空气通过一定空隙率和固定厚度的水泥层时,所受阻力不同而引起流速的变化来测定其比表面积。 FBT-5型为数码显示,孔隙不可调,FBT-6型为数码显示,孔隙可调,FBT-9型为液晶显示,孔隙可调。 ■FBT-5数显勃氏透气比表面积仪主要技术参数 1、透气圆筒内腔直径:φ12.7+0.05 mm 2、透气圆筒内腔试料层高度:(15±0.5)mm 3、穿孔板孔数:35个 穿孔板孔径:φ1.0 mm 穿孔板板厚: 1-0.10 mm 4、电磁泵工作电压:220V;周波:50HZ 5、电磁泵功耗:<15VA 6、电磁阀工作电压:12V 7、仪器重量:约5 kg (毛重) 8、外型尺寸: 460 mm×220 mm×170mm (连仪器箱外型为480 mm×230 mm×190mm) ■FBT-6数显勃氏透气比表面积仪主要技术参数 1、透气圆筒内腔直径:φ12.7+0.05 mm 2、透气圆筒内腔试料层高度:(15±0.5)mm 3、穿孔板孔数:35个 4、穿孔板孔径:φ1.0 mm 5、穿孔板板厚: 1-0.10 mm 6、电磁泵工作电压:220V;周波:50HZ 7、电磁泵功耗:<15VA 8、电磁阀工作电压:12V 9、仪器重量:约3.2kg(连仪器箱总重4 kg) 10、外型尺寸: 460 mm×220 mm×170mm (连仪器箱外型为480 mm×230 mm×190mm) ■FBT-9数显勃氏透气比表面积仪主要技术参数 1、透气圆筒内腔直径:φ12.7+0.05 mm 2、透气圆筒内腔试料层高度:(15±0.5)mm

比表面积测试方法分类

测试方法分类 比表面积测试方法有两种分类标准。一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动法、容量法及重量法(重量法现在基本上很少采用);另一种是根据计算比表面积理论方法不同可分为:直接对比法比表面积分析测定、Langmuir法比表面积分析测定和BET法比表面积分析测定等。同时这两种分类标准又有着一定的联系,直接对比法只能采用连续流动法来测定吸附气体量的多少,而BET法既可以采用连续流动法,也可以采用容量法来测定吸附气体量。连续流动法 连续流动法是相对于静态法而言,整个测试过程是在常压下进行,吸附剂是在处于连续流动的状态下被吸附。连续流动法是在气相 色谱原理的基础上发展而来,由热导检测器 来测定样品吸附气体量的多少。连续动态氮 吸附是以氮气为吸附气,以氦气或氢气为载 气,两种气体按一定比例混合,使氮气达到指定的相对压力,流经样品颗粒表面。当样品管置于液氮环境下时,粉体材料对混合气中的氮气发生物理吸附,而载气不会被吸附,造成混合气体成分比例变化,从而导致热导系数变化,这时就能从热导检测器中检测到信号电压,即出现吸附峰。吸附饱和后让样品重新回到室温,被吸附的氮气就会脱附出来,形成与吸附峰相反的脱附峰。吸附峰或脱附峰的面积大小

正比于样品表面吸附的氮气量的多少,可通过定量气体来标定峰面积所代表的氮气量。通过测定一系列氮气分压P/P0下样品吸附氮气量,可绘制出氮等温吸附或脱附曲线,进而求出比表面积。通常利用脱附峰来计算比表面积。 特点:连续流动法测试过程操作简单,消除系统误差能力强,同时具有可采用直接对比法和BET方法进行比表面积理论计算。 容量法 容量法中,测定样品吸附气体量多少是利用气态方程来计算。在预抽真空的密闭系统中导入一定量的吸附气体,通过测定出样品吸脱附导致的密闭系统中气体压力变化,利用气态方程P*V/T=nR换算出被吸附气体摩尔数变化。 直接对比法 直接对比法比表面积分析测试是 利用连续流动法来测定吸附气体量, 测定过程中需要选用标准样品(经严 格标定比表面积的稳定物质)。并联 到与被测样品完全相同的测试气路 中,通过与被测样品同时进行吸附,分别进行脱附,测定出各自的脱

比表面积仪的标定方法

比表面积标定方法 ① .标准样的处理,将水泥细度和比表面积标淮样在110C 士5C下烘干1h 并在干燥器中冷却至室温 ② . 料筒体积标定(水银排代法) :将穿孔板平放人圆筒内,再放人两 片滤纸。然后用水银注满圆筒,用玻璃片挤压圆筒上口多余的水银,使水银面与圆筒上口平齐,倒出水银称量(m1) ,然后取出一片滤纸,在圆筒内加入适量的试样。再盖上一片滤纸后用捣器压实至试料层规定高度。取出捣器用水银注满圆筒,同样用玻璃片挤压平后,将水银 倒出称量(m)。圆筒试料层体积按式V=(m—m)/ p水银计算。试料层体积要重复测定两遍,取平均值,计算精确至0.00l cm3。 ③ .称取水泥细度和比表面积标准样的质量m (g)确定,标准样质 量按式m =p V(1 - £)计算,精确称取至0. OOlg。p -水泥细度 和比表面积标准样的密度( g/cm3);V 一透气圆筒的试料层体积 (cm i) ; e ----- 取0.5。 ④ . 试料层制备, 将穿孔板放人透气圆筒的突缘上,用捣棒把一片滤纸放到穿孔板上,边缘放平并压紧。将准确称取的按本方法②计算的水泥细度和比表面积标准样倒人圆筒,轻敲圆筒的边,使粉煤灰层表面平坦。再放人一片滤纸,用捣器均匀压实标准样直至捣器的支持环紧紧接触圆筒顶边,旋转捣器1?2圈,慢慢取出捣器。 ⑤ . 透气试验:将装好标准样的圆筒外锥面涂一薄层凡士林,把它连 接到U形压力计上,打开阀门,缓慢地从压力计一臂中抽出空气,直到压力计内液面上升到超过第i 条刻度线时关闭阀门。当压力计内液面的

弯月面下降到第 3 条刻线时开始计时,当液面的弯月面下降到第 2 条刻线时停止计时。记录液面从第 3 条刻线到第2 条刻线所需的时间ts ,精确至0.

在线总硬度分析仪及方案

总硬度在线分析仪 总硬度在线分析仪 ====技术方案==== 日期: 2012年6月

一、技术参数分析指标 分析物水中的总硬度 测量范围8-200 mg/L 检测下限8.0mg/L 标准偏差<1.1% 重现性<±3% 测量方法比色法 测量原理水中钙镁离子与显色剂生产稳定的紫色,在620nm下分别测量加入显色剂之前和之后的样品吸光值,计算总硬度浓度,并自动补偿样品色度。 分析步骤- 通过隔膜泵取样20ml到光度池(cuvette); - 加入2N的NaOH溶液调节pH值; - 加入显色剂溶液; - 等待120s,在620nm波长下第一次测量吸光度A1;- 加入0.0005N 的EDTA溶液,掩蔽钙镁离子; - 等待30s,在610nm波长下第二次测量吸光度A2;- 计算结果,输出。 试剂及样品的要求

试剂EDTA溶液0.0005N(每次分析消耗3ml)NaOH溶液2N (每次分析消耗1ml) Calver-B溶液0.1%(每次分析消耗0.4ml)Ca2+标准溶液10ppm(每次校正消耗约1ml) 校正全自动校正程序,可自由选择校正频率,两点校正样品数量2个样品 分析周期约8分钟每个样品 样品体积10 ml 样品温度0-40℃ 样品压力< 1 bar,推荐0.5 bar 仪器配置 外形尺寸600 x 400 x 260 mm 重量25Kg 电源115/230 V,50/60 Hz 材料聚苯乙烯、玻璃、PFA 环境温度<40℃ 箱体防护IP65/NEMA4;Smarter在线总硬度分析仪采用一块集成线路版,并且将湿化学组件(滴定杯、蠕动泵和样品流路)与电路板部分完全隔离,保证电路在露天或潮湿环境也可长时间正常运行。

全自动比表面积测定仪使用方法与操作步骤

FBT-9型数显勃氏透气比表面积仪本仪器的使用方法与操作步骤可参照GB8074-87水泥比表面积测定方法---勃氏法的有关规定进行,现摘录如下: (1)仪器的校正 1、标准物料:使用比表面积接近2800cm2/g和4000 cm2/g的标准物料对试验仪器进行校正。标准样品在使用前应保持与室温相同。 2、试料层体积的测定 测定试料层的体积用下述水银排代法 A、将二片滤纸沿筒壁放入透气圆筒内,用推杆(附件一)的大端往下按,直到滤纸平正地放在穿孔板上,然后装满水银,用一薄玻璃板轻压水银表面,使水银表面与圆筒上口平齐,从圆筒中倒出水银称重,记录水银质量P1。 B、从圆筒中取出一片滤纸,然后加入适量的粉料,再盖上一层滤纸用捣器压实,直到捣器的支持环与圆筒顶边接触为止,取出捣器,再在圆筒上部空间加入水银,同上述方法使水银面与圆筒上口平齐,再倒出水银称重,记录水银质量P2。(称重精确到0.5g) C、试料层占有的体积用下式计算:(精确到0.005cm3) V=(P1-P2)/ρ水银 式中:V——试料层体积(cm2); P1——圆筒内未装料时,充满圆筒的水银质量(g); P2——圆筒内装料后,充满圆筒的水银质量(g); ρ水银——试验温度下水银的密度(g/cm3)(见表一)

试料层体积的测定,至少进行二次,每次应单独压实,取二次数值相差不超过0.005 cm3的平均值,并记录测定过程中圆筒附近的温度。每隔一季度至半年应重新校正试料层体积。 注:应制备坚实的水泥层,如太松或水泥层达不到要求的体积时,应调整水泥的试用量。 (2)FBT-9型数显勃氏透气比表面积仪漏气检查 将透气圆筒上口用橡皮塞塞紧,把它接到压力计上用抽气泵从压力计一臂中抽出部分气体、然后关闭阀门,压力计中液面如有任何连续下降表示系统内漏气,需用活塞油脂加以密封。 (3)试样准备 1、将经110℃±5℃下烘干冷却至室温的标准试样,倒入100ml的密闭瓶内用力摇动2 min,将结块成团的试样振碎,使试样松散,静置2 min后,打开瓶盖,轻轻搅拌,使在松散过程中沉到表面的细粉,分布到整个试样中去。 2、水泥试样应先通过0.9mm的方孔筛,再在110℃±5℃下烘干、冷却至室温。 3、确定试样量:校正试验用标准试样重量和测定水泥的重量,应达到制备的试料层中空隙率为0.500±0.005,计算式为: W=ρv(1-ε) 式中:W—需要的试样量; ρ—试样密度(g/cm3); V—按上述测定的试料层体积(cm3);

比表面积,孔径分析仪应用

化工(吸附剂,粘合剂,油漆与涂料,石油化工) 比表面积、总孔体积和孔径分布对于工业吸附剂的质量控制和分离工艺的发展非常重要,它们影响吸附剂的选择性颜料或填料的比表面积影响油漆和涂料的光泽度、纹理、颜色、颜色饱和度、亮度、固含量及成膜附着力。(孔隙度能控制油漆和涂料的应用性能,例如流动性、干燥性或凝固时间及膜厚)。 化工行业中很多的产品生产过程都需用到催化剂,催化剂发展也因此由来已久。随着材料技术的发展,催化剂的性能也越来越强大。材料的催化性能除其化学成分外,最主要的决定因素是其比表面积和孔容积的大小及其表面形貌结构。催化材料一般比表面积都很大,且为多孔物质,两者皆能增加催化剂与反应物质的接触面积,因此大大提高催化效能。比表面积和孔容积的大小是衡量催化剂性能好坏的重要性能指标。 催化剂 催化剂的活性表面及孔结构显著影响到反应速度。孔径的控制只允许所需大小的分子进入并通过,使催化剂产生预期的催化作用进而得到主要产物。(化学吸附测试实验对选择特殊用途催化剂、催化剂生产商品质鉴定及测试催化剂的有效性以便确定何时更换催化剂等方面都非常有价值)。 炭化学(活性碳、炭黑) 在汽车油气回收、油漆的溶剂回收和污水等污染控制方面,活性炭的孔隙度和比表面积必须控制在很窄的范围内。轮胎的磨损寿命、摩擦性和使用性能与添加的炭黑比表面积相关。 在橡胶行业中,炭黑补强已经是一项非常成熟的技术,被广泛采用。目前已经发展成非传统上的单一碳黑补强,近年来出来了很多的普通碳黑的替代物,如白炭黑。研究表明,再炭黑补强工艺上,补强剂的除微孔外的外比表面积对补强性能有非常重要的影响。因此在炭黑行业,通常需要测定补强剂的外比表面积来衡量其性能的好坏。 建筑材料 隔热防护罩和绝缘材料的比表面和孔隙度影响其重量和功能。混凝土中、水泥和其他建筑材料的扩散性、渗透性和毛细血管的流量在其降解过程中非常重要。 目前中国正处在建筑行业大发展时期,高品质的建筑离不开高质量的水泥。水泥作为粘结剂,粘结性能与其比表面积的大小密切相关。气体吸附法普及以前,早期水泥比表面积的测定是采用勃氏法来测定,该测定方法测定的结果一般误差较大。随着水泥生产技术的提高,以及现代化建筑对其品质提出了更高要求,因此勃氏法测定的结果逐渐无法满足其精度要求。采用精度更高的气体吸附法来测定水泥的比表面积成为大势所趋。 药品 比表面积及孔隙度在药品的净化、加工、混合、制片和包装能力中扮演着重要角色。药品有效期、溶解速率与药效也依赖于材料的比表面和孔隙度。 陶瓷 比表面积和孔隙度影响陶胚的加工和烧结固化与成品的强度、质感、外观以及密度。釉料以及玻璃原料的比表面积影响皱缩、裂纹、表面分布的不均匀性。 电池行业 随着工业技术的发展,能源问题越来越成为社会关注的焦点,不可再生能源枯竭和造成的环境污染迫使人类寻找新的替代能源。电能,特别是储能型电池,由于其低污染,可再生等特性被人们普遍看好,最有可能成为未来替代型能源,有着广阔的发展前景。储能电池中的关键部分-储能材料,由于其储能的特殊要求,对材料的比表面积性能要求非常严格,过大或过小都对电池的性能不利,因此比表面积成为电极材料最重要的物理性能指标。 随着材料技术的不断发展,比表面积及空隙度(孔容积)的性能测定还在其它许许多多的行业中都有着广泛的应用,如电磁材料、荧光材料、陶瓷、粉末冶金、吸附剂、化妆品、

全自动比表面积测定仪使用方法与操作步骤

全自动比表面积测定仪 使用方法与操作步骤 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

FBT-9型数显勃氏透气比表面积仪本仪器的使用方法与操作步骤可参照 GB8074-87水泥比表面积测定方法---勃氏法的有关规定进行,现摘录如下:(1)仪器的校正 1、标准物料:使用比表面积接近2800cm2/g和4000 cm2/g的标准物料对试验仪器进行校正。标准样品在使用前应保持与室温相同。 2、试料层体积的测定 测定试料层的体积用下述水银排代法 A、将二片滤纸沿筒壁放入透气圆筒内,用推杆(附件一)的大端往下按,直到滤纸平正地放在穿孔板上,然后装满水银,用一薄玻璃板轻压水银表面,使水银表面与圆筒上口平齐,从圆筒中倒出水银称重,记录水银质量P1。 B、从圆筒中取出一片滤纸,然后加入适量的粉料,再盖上一层滤纸用捣器压实,直到捣器的支持环与圆筒顶边接触为止,取出捣器,再在圆筒上部空间加入水银,同上述方法使水银面与圆筒上口平齐,再倒出水银称重,记录水银质量P2。(称重精确到 C、试料层占有的体积用下式计算:(精确到 V=(P1-P2)/ρ水银 式中:V——试料层体积(cm2); P1——圆筒内未装料时,充满圆筒的水银质量(g); P2——圆筒内装料后,充满圆筒的水银质量(g); ρ水银——试验温度下水银的密度(g/cm3)(见表一)

试料层体积的测定,至少进行二次,每次应单独压实,取二次数值相差不超过cm3的平均值,并记录测定过程中圆筒附近的温度。每隔一季度至半年应重新校正试料层体积。 注:应制备坚实的水泥层,如太松或水泥层达不到要求的体积时,应调整水泥的试用量。 (2)FBT-9型数显勃氏透气比表面积仪漏气检查 将透气圆筒上口用橡皮塞塞紧,把它接到压力计上用抽气泵从压力计一臂中抽出部分气体、然后关闭阀门,压力计中液面如有任何连续下降表示系统内漏气,需用活塞油脂加以密封。 (3)试样准备 1、将经110℃±5℃下烘干冷却至室温的标准试样,倒入100ml的密闭瓶内用力摇动2 min,将结块成团的试样振碎,使试样松散,静置2 min后,打开瓶盖,轻轻搅拌,使在松散过程中沉到表面的细粉,分布到整个试样中去。 2、水泥试样应先通过的方孔筛,再在110℃±5℃下烘干、冷却至室温。 3、确定试样量:校正试验用标准试样重量和测定水泥的重量,应达到制备的试料层中空隙率为±,计算式为: W=ρv(1-ε) 式中:W—需要的试样量; ρ—试样密度(g/cm3); V—按上述测定的试料层体积(cm3); ε—试料层空隙率(注2)。 FBT-9型数显勃氏透气比表面积仪表一在不同温度下水银密度、空气粘度η 室温(℃)水银密度(g/cm3)空气粘度η

BET-你的孔径分析准确吗-mailing

1
你的孔径分析结果准确吗?
---- 物理吸附最新分析技术进展
杨正红
美国康塔仪器公司首席代表,中国区经理
上海 2009年6月
Autosorb-1MP/C Improvements
Autosorb?-1
2
康塔公司的仪器是做什么的?
Adsorption/Desorption Isotherms 吸附/脱附等温线 ? Surface Area Measurement 比表面积测量 ? Pore Size Distribution 孔径分布 ? Chemisorption Studies 化学吸附研究 ? Water Sorption Behavior 水吸附行为研究 ? Mercury Porosimetry 压汞法测孔 ? True Solid Density 真实固体密度 ? Tapped Density 堆密度
Autosorb-1MP/C Improvements

3
参考资料
ISO 15901:《用压汞法和气体吸附法评价材料的孔 径分布和孔隙率》, 分为3个部分:
— 第1部分:压汞法 (GB/T 21650.1-2008 ) — 第2部分:气体吸附分析介孔—大孔法 (GB/T 21650.2-2008) — 第3部分:气体吸附分析微孔法 (GB/T 21650.3-2008 )
Autosorb-1MP/C Improvements
4
参考资料
Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density.
该书为<颗粒技术丛书>的第16卷, ISBN 1-4020-2302-2
本书全面覆盖了 气体吸附法(物理吸附 和化学吸附), 压汞法和 密度测量法.作者巧妙 地将19章内容分成理 论概念和实验指南两 个部分…..对催化表征 具有广泛的指导意义.
---- JACS (2005)127,14117
Autosorb-1MP/C Improvements

相关文档
最新文档