高考物理选修3-4知识点浓缩总结

高考物理选修3-4知识点浓缩总结
高考物理选修3-4知识点浓缩总结

高考物理选修3-4知识点浓缩总结

选修3-4知识点67—81为选修3-3知识点(本地区不选,略)82.简谐运动简谐运动的表达式和图象Ⅱ1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是...

82.简谐运动简谐运动的表达式和图象Ⅱ1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。2、简谐振动:在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。3、描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。(1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。(2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。(3)周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。(4)频率f:振动物体单位时间内完成全振动的次数。(5)角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运本.文,来.源,于.贵,州.学,习.网, 动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。

附:广义相对论简介(不作要求)1.广义相对性原理:在任何参考系(包括惯性系和非惯性系)中,物理规律都是相同的。2.等效原理:一个均匀的引力场与一个做匀加速运动的参考系等价。3.广义相对论的几个结论:(1)物质的引力使光线弯曲(或称:光线经过强引力场时会发生弯曲)。(2)引力场的存在使得空间不同位置的时间进程出现差别。例如:在强引力的星球附近,时间进程会变慢。实例:在矮星表面,时间进程比较慢,原子发光频率比同种原子在地球上的低,看起来偏红,这个现象叫做引力红移

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

人教版高中物理选修3-5知识点总结

选修3-5知识梳理 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。 (二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

物理选修3-5_知识点总结

物理选修3-5_知识点 总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理选修3-5知识点梳理 一、动量 动量守恒定律 1、动量:P = mv 。单位是s m kg ?.动量是矢量,其向就是瞬时速度的向。因为速度是相对的,所以动量也是相对的。 冲量:Ft I = 冲量是矢量,在作用时间力的向不变时,冲量的向与力的向相同;如果力的向是变化的,则冲量的向与相应时间物体动量变化量的向相同。若力为同一向均匀变化的力,该力的冲量可以用平均力计算;若力为一般变力,则不能直接计算冲量。同一向上动量的变化量=这一向上各力的冲量和。 动量定理:00P P mv mv I t t -=-= 动量与力的关系:物体动量的变化率等于它所受的力。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。(适用于目前物理学研究的一切领域。) 动量守恒定律成立的条件:①系统不受外力作用。②系统虽受到了外力的作用,但所受合外力为零。③系统所受的外力远远小于系统各物体间的力时,系统的总动量近似守恒(碰撞,击打,爆炸,反冲)。④系统所受的合外力不为零,但在某一向上合外力为零,则系统在该向上动量守恒。⑤系统受外力,但在某一向上力远大于外力,也可认为在这一向上系统的动量守恒。 常见类型:①由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等。②在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于物体间弹力的作用,斜面在水平向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平向具有共同的速度,物体到达斜面顶端时,在竖直向上的分速度等于零。③子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同,子弹位移为木块位移与木块厚度之和。 二、验证动量守恒定律(实验、探究) Ⅰ 【注意事项】 1.“水平”和“正碰”是操作中应尽量予以满足的前提条件. 2.入射球的质量应大于被碰球的质量. 3.入射球每次都必须从斜槽上同一位置由静止开始滚下.法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球. 4.若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪器确保导轨水平。 【误差分析】 误差来源于实验操作中,两个小球没有达到水平正碰,一是斜槽不够水平,二是两球球心不在同一水平面上,给实验带来误差.每次静止释放入射小球的释放点越高,两球相碰时作用力就越大,动量守恒的误差就越小.应进行多次碰撞,落点取平均位置来确定,以减小偶然误差.

化学选修三,人教版知识点总结

选修三知识点 第一章原子结构与性质 1能级与能层 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。 能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而

是指这样顺序填充电子可以使整个原子的能量最低。 (2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli)原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund)规则 洪特规则特例:当p、d、f轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。 4.基态原子核外电子排布的表示方法 (1)电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K:[Ar]4s1。 ③外围电子排布式(价电子排布式) (2)电子排布图(轨道表示式)是指将过渡元素原子的电子排布式中符合上一周期稀有气体的原子的电子排布式的部分(原子实)或主族元素、0族元素的内层电子排布省略后剩下的式子。每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。如基态硫原子的轨道表示式为 二.原子结构与元素周期表

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高中物理选修34知识点

电磁波 电磁波的发现:麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场 产生磁场→预言电磁波的存在 赫兹证实电磁波的存在 电磁振荡:周期性变化的电场能与磁场能周期性变化,周期和频率 电磁波的发射和接收 电磁波与信息化社会:电视、雷达等 电磁波谱:无线电波、红外线、可见光、紫外线、x 射线、ν射线 选 修3—4 一、知识网络 周期:g L T π2= 机械振动 简谐运动 物理量:振幅、周期、频率 运动规律 简谐运动图象 阻尼振动 受力特点 回复力:F= - kx 弹簧振子:F= - kx 单摆:x L mg F - = 受迫振动 共振 波的叠加 干涉 衍射 多普勒效应 特性 实例 声波,超声波及其应用 机械波 形成和传播特点 类型 横波 纵波 描述方法 波的图象 波的公式:vT =λ x=vt

二、考点解析 考点80 简谐运动 简谐运动的表达式和图象 要求:I 1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。 简谐运动的回复力:即F = – kx 注意:其中x 都是相对平衡位置的位移。 区分:某一位置的位移(相对平衡位置)和某一过程的位移(相对起点) ⑴回复力始终指向平衡位置,始终与位移方向相反 ⑵“k ”对一般的简谐运动,k 只是一个比例系数,而不能理解为劲度系数 ⑶F 回=-kx 是证明物体是否做简谐运动的依据 2)简谐运动的表达式: “x = A sin (ωt +φ)” 3)简谐运动的图象:描述振子离开平衡位置的位移随时间遵从正弦(余弦)函数的规律变化的,要求能将图象与恰当的模型对应分析。可根据简谐运动的图象的斜率判别速度的方向,注意在振幅处速度无方向。 A 、简谐运动(关于平衡位置)对称、相等 ①同一位置:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相同. ②对称点:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相反. ③对称段:经历时间相同 ④一个周期内,振子的路程一定为4A (A 为振幅); 半个周期内,振子的路程一定为2A ; 四分之一周期内,振子的路程不一定为A 相对论简介 相对论的诞生:伽利略相对性原理 狭义相对论的两个基本假设:狭义相对性原理;光速不变原理 时间和空间的相对性:“同时”的相对性 长度的相对性: 2 0)(1c v l l -= 时间间隔的相对性:2 )(1c v t -?= ?τ 相对论的时空观 狭义相对论的其他结论:相对论速度变换公式:2 1c v u v u u '+'= 相对论质量: 2 0)(1c v m m -= 质能方程2mc E = 广义相对论简介:广义相对性原理;等效原理 广义相对论的几个结论:物质的引力使光线弯曲 引力场的存在使得空间不同位置的时间进程出现差别

(完整版)人教版高中物理选修3-5知识点总结

人教版高中物理选修3-5知识点总结 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。(二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

高中化学选修4-第三章知识点归纳(很不错)

第三章 水溶液中的离子平衡 一、弱电解质的电离 1、定义:电解质:在水溶液中或熔化状态下能导电的化合物, 非电解质 :在水溶液中或熔化状态下都不能导电的化合物 强电解质 : 在水溶液里全部电离成离子的电解质 弱电解质: 在水溶液里只有一部分分子电离成离子的电解质 。 ! 2、电解质与非电解质本质区别: 电解质——离子化合物或共价化合物 非电解质——共价化合物 注意:①电解质、非电解质都是化合物 ②SO 2、NH 3、CO 2等属于非电解质 ③强电解质不等于易溶于水的化合物(如BaSO 4不溶于水,但溶于水的BaSO 4全部电离,故BaSO 4为强电解质)——电解质的强弱与导电性、溶解性无关。 3、影响电离平衡的因素: A 、温度:电离一般吸热,升温有利于电离。 B 、浓度:浓度越大,电离程度 越小 ;溶液稀释时,电离平衡向着电离的方向移动。 C 、同离子效应:在弱电解质溶液里加入与弱电解质具有相同离子的电解质,会 减弱 电离。 D 、其他外加试剂:加入能与弱电解质的电离产生的某种离子反应的物质时,有利于电离。 4、电离方程式的书写:用可逆符号 弱酸的电离要分布写(第一步为主) 5、电离常数:在一定条件下,弱电解质在达到电离平衡时,溶液中电离所生成的各种离子浓度的乘积,跟溶液中未电离的分子浓度的比是一个常数。叫做电离平衡常数,(一般用Ka 表示酸,Kb 表示碱。 ) — 表示方法:AB A ++B - Ki=[ A +][ B -]/[AB] 6、影响因素: a 、电离常数的大小主要由物质的本性决定。 b 、电离常数受温度变化影响,不受浓度变化影响,在室温下一般变化不大。 C 、同一温度下,不同弱酸,电离常数越大,其电离程度越大,酸性越强。如:H 2SO 3>H 3PO 4>HF>CH 3COOH>H 2CO 3>H 2S>HClO 二、水的电离和溶液的酸碱性 1、水电离平衡:: 水的离子积:K W = c[H +]·c[OH -] 25℃时, [H +]=[OH -] =10-7 mol/L ; K W = [H +]·[OH -] = 1*10-14 注意:K W 只与温度有关,温度一定,则K W 值一定 ; 物质 单质 @ 化合物 电解质 非电解质: 非金属氧化物,大部分有机物 。如SO 3、CO 2、C 6H 12O 6、CCl 4、CH 2=CH 2…… 强电解质: 强酸,强碱,大多数盐 。如HCl 、NaOH 、NaCl 、BaSO 4 弱电解质: 弱酸,弱碱,极少数盐,水 。如HClO 、NH 3·H 2O 、Cu(OH)2、H 2 O …… 混和物 纯净物

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

高中物理选修3-4知识点总结及讲义

高中物理选修3-4知识及讲义目录: 一、简谐运动 二、机械波 三、电磁波电磁波的传播 四、电磁振荡电磁波的发射和接收 五、振动和波(机械振动与机械振动的传播) 一.简谐运动 1、机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2、简谐振动: 在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解: (1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 (2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 3、描述振动的物理量 描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。 (1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 (2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。 (3)周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 (4)频率f:振动物体单位时间内完成全振动的次数。 (5)角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 周期、频率、角频率的关系是:。 (6)相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。 4、研究简谐振动规律的几个思路:

物理选修35知识点总结

知识点梳理高中物理选修3-5动量守恒定律一、动量 kg ms mvP.。单位是1、动量:动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。= I Ft 冲量:冲量是矢量,在作用时间内力的方向不变时,冲量的方向与力的方向相同;如果力的方向是变化的,则冲量的方向与相应时间内物体动量变化量的方向相同。若力为同一方向均 匀变化的力,该力的冲量可以用平均力计算;若力为一般变力,则不能直接计算冲量。同一方向 上动量的变化量=这一方向上各力的冲量和。 1mv mv P P动量定理:otot 动量与力的关系:物体动量的变化率等于它所受的力。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。(适用于目前 物理学研究的一切领域。)_____ _ __ _____ _ _________ _____ __________ 动量守恒定律成立的条件:①系统不受外力作用。②系统虽受到了外力的作用,但所受合外 力为零。③系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒(碰撞,击打,爆炸,反冲)。④系统所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。⑤系统受外力,但在某一方向上内力远大于外力,也可认为在这一方向上系统的 动量守恒。 常见类型:①由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等。②在物体滑上斜面(斜面放在光滑水平面 上)的过程中,由于物体间弹力的作用,斜面在水平方向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体到达斜面顶端时,在竖直方向上的 分速度等于零。③子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同,子弹位 移为木块位移与木块厚度之和。 二、验证动量守恒定律(实验、探究)I 【注意事项】 1?“水平”和“正碰”是操作中应尽量予以满足的前提条件. 2.入射球的质量应大于被碰球的质量. 3?入射球每次都必须从斜槽上同一位置由静止开始滚下?方法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球. 4.若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪器确保导轨水平。 【误差分析】 误差来源于实验操作中,两个小球没有达到水平正碰,一是斜槽不够水平,二是两球球心不在同 一水平面上,给实验带来误差.每次静止释放入射小球的释放点越高,两球相碰时作用力就越大, 动量守恒的误差就越小?应进行多次碰撞,落点取平均位置来确定,以减小偶然误差. 三、碰撞与爆炸 1.碰撞的特点:①相互作用的时间极短,可忽略不计。②系统的内力远大于外力,外力可忽略③速度发生突变,物体发生的位移极小,可认为碰撞前后物体处于同一位置。 2.爆炸的特点:作用时间短,内力非常大,机械能增加,动能会增加。 3.碰撞中遵循的规律:动量守恒,动能不增加。 4.一维碰撞:两个物体碰撞前后斗艳同一直线运动,这种碰撞叫做一维碰撞。

2020高考物理知识点总结.docx

2020 高考物理知识点总结 1.简谐振动 F=-kx{F: 回复力, k: 比例系数, x: 位移,负号表示 F 的方向与 x 始终反向 } 2.单摆周期 T=2π(l/g)1/2{l: 摆长 (m),g: 当地重力加速度值,成 立条件 : 摆角θ<100;l>>r } 3.受迫振动频率特点: f=f 驱动力 4.发生共振条件 :f 驱动力 =f 固, A=max,共振的防止和应用〔见第一册 P175〕 5.机械波、横波、纵波〔见第二册 P2〕 7.声波的波速 ( 在空气中 )0 ℃: 332m/s;20 ℃:344m/s;30 ℃:349m/s;( 声波是纵波 ) 8.波发生明显衍射 ( 波绕过障碍物或孔继续传播 ) 条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同 ( 相差恒定、振幅相近、振动 方向相同 ) 10.多普勒效应 : 由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{ 相互接近,接收频率增大,反之,减小〔见第二册 P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统 本身 ; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰 与波谷相遇处 ; (3)波只是传播了振动,介质本身不随波发生迁移 , 是传递能量的一种方式 ;

(4)干涉与衍射是波特有的 ; (5)振动图象与波动图象 ; 1) 常见的力 1.重力 G=mg(方向竖直向下, g=9.8m/s2 ≈10m/s2,作用点在 重心,适用于地球表面附近 ) 2.胡克定律 F=kx{ 方向沿恢复形变方向, k:劲度系数 (N/m) , x:形变量 (m)} 3.滑动摩擦力 F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力 (N) } 4.静摩擦力 0≤f静≤ fm( 与物体相对运动趋势方向相反, fm 为 最大静摩擦力 ) 5.万有引力 F=Gm1m2/r2(G= 6.67×10-11N?m2/kg2, 方向在它们 的连线上 ) 6.静电力 F=kQ1Q2/r2(k=9.0 ×109N?m2/C2,方向在它们的连线上 ) 7.电场力 F=Eq(E:场强 N/C,q:电量 C,正电荷受的电场力与 场强方向相同 ) 8.安培力 F=BILsin θ( θ为 B 与 L 的夹角,当 L⊥B时:F=BIL , B//L 时:F=0) 9.洛仑兹力 f=qVBsin θ( θ为 B 与 V 的夹角,当 V⊥B时: f=qVB,V//B 时:f=0) 注: (1)劲度系数 k 由弹簧自身决定 ; (2)摩擦因数μ 与压力大小及接触面积大小无关,由接触面材 料特性与表面状况等决定 ; (3)fm 略大于μFN,一般视为 fm≈μ FN;

高中物理选修3-4知识点总结

高中物理选修3-4知识点梳理 一、简谐运动、简谐运动的表达式和图象 1、机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:①回复力不为零;②阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2、简谐振动: 在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解:①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动。 3、描述振动的物理量 研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。 ⑴位移x :由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 ⑵振幅A :做机械振动的物体离开平衡位置的 最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。 ⑶周期T :振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 ⑷频率f :振动物体单位时间内完成全振动的次数。 ⑸角频率ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。周期、频率、角频率的关系是:T f = 1,T ω π 2=. ⑹相位?:表示振动步调的物理量。 4、研究简谐振动规律的几个思路: ⑴用动力学方法研究,受力特征:回复力F =- kx ;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 ⑵用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。 ⑶用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。 ⑷从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。 5、简谐运动的表达式 )( )(002sin sin x ?π?ω+A =+=t Τt Α 振幅A ,周期T ,相位02?π +t Τ ,初相0? 6、简谐运动图象描述振动的物理量 1.直接描述量:①振幅A ;②周期T ;③任意时刻的位移t . 2.间接描述量:①频率f :T f 1= ;②角速度ω:T πω2=;③x-t 图线上一点的切线的斜率等于v

物理选修3-5知识总结

选修3-5公式 一、碰撞与动量守恒 1、动量:mv p =,矢量,单位:kg ·m/s 2、动量的变化:12mv mv p -=? (一维) 是矢量减法,一般选初速度方向为正方向 3、动量与动能的关系:k mE p 2=,m p E k 22 = 4、冲量:Ft I =(力与力的作用时间的乘积),矢量,单位:N ·s 5、动量定理:p I ?=,或12mv mv Ft -= 6、动量守恒定律:''221121v m v m mv mv +=+ 条件:系统受到的合外力为零. 7、实验——验证动量守恒定律: M O m ON m OP m '211?+?=? 8、弹性碰撞:没有动能损失 021211'v m m m m v +-=,021122'v m m m v += 9、完全非弹性碰撞:(碰后黏一起)系统损失的动能最多 ')(2101v m m v m += 10、若m 、M 开始均静止,且系统动量守恒,则:mv 1=Mv 2,ms 1=Ms 2 二、波粒二象性 1、光子的能量:λ νhc h E == (ν为光的频率,λ为光的波长) 其中h =×10-34 J ·s 2、遏止电压:km E mv eU ==2max 2 1 3、爱因斯坦光电效应方程:W mv h +=2max 2 1ν 4、康普顿效应——光子的动量:λ h p = 5、德布罗意波的波长:p h =λ

三、原子结构之谜 1、汤姆生用电磁场测定带电粒子的荷质比: 22d B Eh m q = 2、原子的半径约为10-10 m ,原子核的半径约为10-15 m 3、巴耳末系(可见光区):..., , ), n n R(λ543121122=-= 对于氢原子,里德伯常量R=×107m -1 4、氢原子的能级公式:121E n E n =,轨道半径公式:12r n r n = 其中n 叫量子数,n=1, 2, 3…. E 1=- eV ,r 1=×10-10m 5、能级跃迁:n m E E h -=ν 四、原子核 1、剩余的放射性元素质量:T t m m )2 1(0=(T 为半衰期) 2、剩余的放射性元素个数:T t N N )2 1(0= 3、α衰变: He Th U 422349023892+→ 4、β衰变:e 0-1234 90Pa Th +→234 91 γ射线伴随着α衰变、β衰变产生 5、卢瑟福发现质子:H O He N 1117842147+→+ 6、査德威克发现中子:n C He Be 101264294+→+ 7、居里夫妇发现人工放射性同位素:n P He Al 1 03015422713+→+ P 30 15具有放射性,e S P 01301430 15+→i 8、爱因斯坦质能方程:2c m E ?=,2 c m E ??=? 9、重核的裂变:n 3Ba Kr n U 101445680 3610235 92++→+

高中化学选修三知识点总结

高中化学选修三知识点总结 第一章原子结构与性质 1、电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图。离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小。 2、电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 3、原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7。 4、原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子。 5、原子核外电子排布原理: (1)能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道;

(2)泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子;(3)洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同。 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1 6、根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。 根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。 7、第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1)原子核外电子排布的周期性 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化: 每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到 ns2np6的周期性变化.

最新最全高中物理所有知识点总结(精华)

高考物理基本知识点总结 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 = 相同,,轮上边缘各点v 相同,v A =v B 3. 传动装置中,特点是:同轴上各点C A 4. 同步地球卫星特点是:①,② ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度 3.1km/s。 m1m2 2 r F=G ,卡文迪许扭秤实验。 5. 万有引力定律:万有引力常量首先由什么实验测出: g' =GM/r 2 6. 重力加速度随高度变化关系: GM 说明:r为某位置到星体中心的距离。某星体表面的重力加速 度。 g 02 R

2 g' g R R ——某星体半径 h 为某位置到星体表面的距离 2 (R h) 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 2 2 GM r GM GMm mv r GMm mv r 2 2 2 g' = r r r 、v = 、 、 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度 = m ω 2R =m ( 2π /T ) 2 R GM r gR gR 2 = GM r =R ,为第一宇宙速度 v 1= = 当 r 增大, v 变小;当 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向 ②竖直方向 ③合运动 ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 S ,求 v T gT 2 相位 v y 0 t x v 0 t v x v 0 1 2 2 y gt v y gt 1 4 2 2 2 2 4 2 2 S v 0 t g t v t v g t gt 2v 0 1 2 gt v 0 tg tg tg tg ⑥在任何两个时刻的速度变化量为△ v =g △ t ,△ p = mgt x 2 处,在电场中也有应用 ⑦v 的反向延长线交于 x 轴上的 10. 从倾角为 α的斜面 上 A 点以速度 v 0 平抛的小球,落到了斜面上的 B 点,求: S AB

高中物理选修3-4知识点总结

高中物理选修3-4 一、简谐运动、简谐运动的表达式和图象 1、机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:①回复力不为零;②阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2、简谐振动: 在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解: ①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 ②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动, 3、描述振动的物理量 研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。 ⑴位移x :由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 ⑵振幅A :做机械振动的物体离开平衡位置的 最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。 ⑶周期T :振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 ⑷频率f :振动物体单位时间内完成全振动的次数。 ⑸角频率ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 周期、频率、角频率的关系是:T f = 1,T ω π2=. ⑹相位?:表示振动步调的物理量。 4、研究简谐振动规律的几个思路: ⑴用动力学方法研究,受力特征:回复力F =- kx ;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 ⑵用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。 ⑶用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。 ⑷从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。 5、简谐运动的表达式 )()(002sin sin x ?π?ω+A =+=t Τt Α 振幅A ,周期T ,相位02?π+t Τ ,初相0? 6、简谐运动图象描述振动的物理量 1.直接描述量: ①振幅A ;②周期T ;③任意时刻的位移t . 2.间接描述量:

相关文档
最新文档