薄壁压力容器稳定性分析

薄壁压力容器稳定性分析
薄壁压力容器稳定性分析

压力容器稳定性分析

谢全利

(华陆工程科技有限责任公司 设备室,西安 710054)

摘 要 对于受外压的容器,除了圆筒、球壳、锥壳和有限定的开孔外,其他的很多形状以及不均匀的载荷等都无法按照现有的标准规范进行稳定性校核。本文通过分析结果的对比,确定了基于有限元屈曲分析为基础的压力容器稳定性分析方法和评判准则。 关键词 薄壁; 压力容器; 稳定性; 屈曲; 分析设计;

Pressure Vessels Stability Analysis

Xie Quanli

(Hualu Engineering & Technology Co., Ltd, Equipment Division, Xi ’an 710054)

Abstract :For the vessel in outside pressure, in addition to cylindrical shell, spherical shell, cone shells and limited nozzle opening, many of the other, as well as non-uniform shape of the load can not be in accordance with all existing standards for checking the stability. By comparing the results of the analysis identified based on finite element analysis of buckling, this paper get the method of the stability of the pressure vessel analysis and evaluation rule.

Keywords :Lamella ;Pressure vessels ;Stability ;Flexure ;Design by analysis ;

所谓压力容器的失稳是指压力容器承受外载荷或其他不稳定载荷超过其一临界值时突然失去其几何形状的现象。不同形式的容器以及不同形式的载荷所引起的失稳后的几何形状是不同的。失稳又称屈曲。它并不是结构的强度不足而造成的失效。研究压力容器稳定性的目的在于确定容器的临界载荷以及其相应的失稳模态,以改进加强措施,提高结构的抗失稳能力。

1. 压力容器稳定性的常规计算

对于简单的结构,如压杆、外压圆筒、外压球壳,欧拉、米西斯等人推导有经典的理论公式可以求得理论的临界载荷。

圆筒临界外压的米西斯公式为:[1]

)](n )

πR nl (μ

n [)R δE(.])πR nl ()[(n R E

δp o

o

e o o e cr 11122730112223222-++--?++-=

式中:cr p -------临界外压力,Mpa ;

e δ---------圆筒有效厚度,mm ;

R----------圆筒外半径,mm;

o

E------------材料弹性模量,MPa;

-----------泊松比;

l------------圆筒的长度,;

n------------圆筒曲屈时形成的波形数目。

承受外压的回转壳,尽管各国容器得设计规范所推荐的方法有所不同,但大体上都是以米西斯公式为基础推导出来的[1]。为对于球壳和圆筒以外的其他结构,都是采用近似成圆筒或球壳进行计算的,因此误差较大。各国标准对结构加以限制,并选取适当的安全系数以满足工程的一般需要。也就是说,对于均匀外压的筒体、封头、锥壳以及满足标准限制的开孔,现行压力容器标准给出了计算方法。对于超出标准限制的结构和载荷情况的压力容器的外压稳定性计算需要寻求新的手段和方法。

2.压力容器稳定性分析

压力容器分析设计的发展和大型有限元软件的出现使上述问题的计算成为可能。理论上讲,任何形状,任何载荷分布情况的外压容器都可以采用以有限元为基础的分析设计的方法求解屈曲载荷。

Ansys软件中提供了两种结构屈曲载荷的分析方法:特征值屈曲分析和非线性屈曲分析[2]。

2.1.特征值屈曲分析

特征值屈曲分析也称线性屈曲分析,它用于预测一个理想弹性结构的理论屈曲强度。例如,一个压杆稳定的特征值屈曲分析结果,将与经典欧拉解相当;外压圆筒的特征值屈曲分析结果与米西斯公式的计算结果相当。但是,初始缺陷和非线性使得很多结构都不是在其弹性屈曲强度处发生屈曲。因此,特征值屈曲分析经常得出非保守的结果,通常不能用于实际工程分析。

2.2.非线性屈曲分析

非线性屈曲分析比特征值屈曲分析更精确,故需用于对实际结构的设计或计算。该方法用一种逐渐增加的非线性静力分析技术来求得结构开始变的不稳定时的临界载荷。应用非线性技术,模型中可以包括初始缺陷,扰动等特征。本文以下提及的初始缺陷指的是加工制造的实际形状与理论几何形状的偏差,如圆筒的不圆度。初始缺陷对结构的临界载荷影响很大,因此GB150的制造、检验和验收章节对承受外压及真空容器的壳体不圆度进行了限制。

非线性屈曲分析需采用以下步逐:

a)用特征值屈曲分析方法求取结构的特征值屈曲载荷Q以及特征屈曲模

态;

b)设置初始缺陷为特征值屈曲模态,最大变形量为加工制造的最大偏差,

最大载荷为1.2Q,考虑材料为理想弹塑性材料模型,采用弧长法加载;

c)选取最大位移点的位移为横坐标,对应的载荷为纵坐标绘制载荷—位移

曲线图。

d)采用两倍弹性斜率法确定极限载荷。

采用上述方法我们可以对任意形状的结构求极限载荷。对于强度问题,规范规定许用载荷不得超过极限载荷的2/3[3]。即安全系数为1.5。对于稳定性问题我们必须找到适当的安全系数以求取许用外压载荷。安全系数是与计算方法和精度有密切关系的。有人认为,用此方法计算需取稳定性安全系数为3,但未有文献证实。

3.对比计算

下面我们取7组不同情况的外压圆筒,其数据对比如下:

从上表的对比可以看出,线性屈曲分析得到的临界载荷是米西斯公式计算得到的临界载荷的1.25~1.60倍之间,多数趋近于1.3倍。按本文2.2节计算得到的临界载荷求许用载荷时应取的安全系数在1.5~2.5之间,它很难趋向于某一个定值。这也可能与按GB150计算的许用载荷保守程度不一致有关。

在工程实际应用中,对于均匀外载荷可采取以下步骤:

a)按本文2.2节计算一个跟实际结构最为近似的均匀外压圆筒,求得临界

载荷Q J ;

b)按GB150计算这个外压圆筒,求得许用载荷[Q J] ;

c)按本文2.2节计算实际结构,求得临界载荷Q S ;

d)则实际结构的许用载荷按下式求得:

[Q S]= Q S×[Q J]/ Q J

如果实际结构的外压是不均匀的,也可换算成安全系数进行比较,具体步骤如下:

a)按本文2.2节计算一个跟实际结构最为近似的均匀外压圆筒,求得临界

载荷Q J ;

b)按GB150计算这个外压圆筒,求得许用载荷[Q J] ;

c)按本文2.2节计算实际载荷结构,求得临界载荷是实际载荷的倍数,即

安全系数N S ;

d)则实际结构的许用安全系数按下式求得:

[N S]= Q J /[Q J]

按GB150计算的圆筒与实际结构的近似程度决定了结果的可靠性。采用此方法计算还应另外考虑结构的强度。

4.工程实例

4.1.实例1

某工程的夹套容器,夹套内的设计压力0.6MPa,内筒参数同本文3节中的第7组数据。在其一端1433mm处有一个内径1180mm、有效厚度36mm的接管,其外伸长度为900mm。其线性屈曲分析临界载荷为3.48MPa,按照本文2.2节提出的计算方法得到的临界载荷为1.71MPa,按第3节提出的计算步骤,计算出许用外压为0.85MPa,校核合格。本设备已投入使用,内筒的外压稳定性是安全的。

4.2.实例2

某工污水处理厂的VT反应器在安装过程中的受力情况手里如下图:

与其最为近似的圆筒如本文3节中的第6组数据。VT反应器线性屈曲分析临界载荷对应的安全系数为6.28,按照本文2.2节提出的计算方法得到的临界载

荷对应的安全系数Ns为2.9,按第3节提出的计算步骤,计算出许用安全系数[Ns]为1.91,校核合格。现场按此施工,未发生失稳现象。

5.结论

考虑了材料的非线性和几何非线性以及初始缺陷的非线性分析能够比较精确的仿真实际情况。对于超出规范的结构,按照本文2.2节提出的计算方法可求得结构的极限载荷及其对应的安全系数,只要找到合适的许用安全系数,就可确定结构是否安全。

参考文献

[1]《钢制压力容器—分析设计标准标准释义》第五章1999;

[2] Help Documentation for ANSYS 11.0,Chapter 7. Buckling Analysis,2007;

[3] 《钢制压力容器—分析设计标准》5 分析设计的一般准则1995

作者简介:谢全利1976年生,1998年毕业于北京化工大学机械工程学院,长期从事压力容器常规设计和分析设计。

李雅普诺夫稳定性分析

常微分大作业--李雅普诺夫稳定性 11091059洪一洲 从19世纪末以来,李雅普诺夫稳定性理论一直指导着关于稳定性的研究和应用。不少学者遵循李雅普诺夫所开辟的研究路线对第二方法作了一些新的发展。一方面,李雅普诺夫第二方法被推广到研究一般系统的稳定性。例如,1957年,В.И.祖博夫将李雅普诺夫方法用于研究度量空间中不变集合的稳定性。随后,J.P.拉萨尔等又对各种形式抽象系统的李雅普诺夫稳定性进行了研究。在这些研究中,系统的描述不限于微分方程或差分方程,运动平衡状态已采用不变集合表示,李雅普诺夫函数是在更一般意义下定义的。1967年,D.布肖对表征在集合与映射水平上的系统建立了李雅普诺夫第二方法。这时,李雅普诺夫函数已不在实数域上取值,而是在有序定义的半格上取值。另一方面,李雅普诺夫第二方法被用于研究大系统或多级系统的稳定性。此时,李雅普诺夫函数被推广为向量形式,称为向量李雅普诺夫函数。用这种方法可建立大系统稳定性的充分条件。 1.李雅普诺夫稳定性概念 忽略输入后,非线性时变系统的状态方程如下 ),(t x f x = (1) 式中,x 为n 维状态向量;t 为时间变量;),(t x f 为n 维函数,其展开式为 12(,,,,)i i n x f x x x t = n i ,,1 = 假定方程的解为 ),;(00t x t x ,x 0和t 0 分别为初始状态向量和初始时刻,0000),;(x t x t x =。 平衡状态 如果对于所有t ,满足 0),(==t x f x e e (2) 的状态x e 称为平衡状态(又称为平衡点)。平衡状态的各分量不再随时间变化。若已知状态 方程,令0=x 所求得的解x ,便是平衡状态。 对于线性定常系统Ax x = ,其平衡状态满足0=e Ax ,如果A 非奇异,系统只有惟一的零解,即存在一个位于状态空间原点的平衡状态。至于非线性系统,0),(=t x f e 的解可能有多个,由系统状态方程决定。 控制系统李雅普诺夫意义下的稳定性是关于平衡状态的稳定性,反映了系统在平衡状态附近的动态行为。鉴于实际线性系统只有一个平衡状态,平衡状态的稳定性能够表征整个系统的稳定性。对于具有多个平衡状态的非线性系统来说,由于各平衡状态的稳定性一般并不相同,故需逐个加以考虑,还需结合具体初始条件下的系统运动轨迹来考虑。

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。 在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

卡尔曼滤波器介绍 --- 最容易理解

10.6 卡尔曼滤波器简介 本节讨论如何从带噪声的测量数据把有用信号提取出来的问题。通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内。如前所述,为了消除噪声,可以把 FIR滤波器或IIR滤波器设计成合适的频带滤波器,进行频域滤波。但在许多应用场合,需要进行时域滤波,从带噪声的信号中提取有用信号。虽然这样的过程其实也算是对信号的滤波,但所依据的理论,即针对随机信号的估计理论,是自成体系的。人们对随机信号干扰下的有用信号不能“确知”,只能“估计”。为了“估计”,要事先确定某种准则以评定估计的好坏程度。最小均方误差是一种常用的比较简单的经典准则。典型的线性估计器是离散时间维纳滤波器与卡尔曼滤波器。 对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的。当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作。这项研究是用于防空火力控制系统的。维纳滤波器是基于最小均方误差准则的估计器。为了寻求维纳滤波器的冲激响应,需要求解著名的维纳-霍夫方程。这种滤波理论所追求的是使均方误差最小的系统最佳冲激响应的明确表达式。这与卡尔曼滤波(Kalman filtering)是很不相同的。卡尔曼滤波所追求的则是使均方误差最小的递推算法。 在维纳进行滤波理论研究并导出维纳-霍夫方程的十年以前,在1931年,维纳和霍夫在数学上就已经得到了这个方程的解。 对于维纳-霍夫方程的研究,20世纪五十年代涌现了大量文章,特别是将维纳滤波推广到非平稳过程的文章甚多,但实用结果却很少。这时正处于卡尔曼滤波问世的前夜。 维纳滤波的困难问题,首先在上世纪五十年代中期确定卫星轨道的问题上遇到了。1958年斯韦尔林(Swerling)首先提出了处理这个问题的递推算法,并且立刻被承认和应用。1960年卡尔曼进行了比斯韦尔林更有意义的工作。他严格地把状态变量的概念引入到最小均方误差估计中来,建立了卡尔曼滤波理论。空间时代的到来推动了这种滤波理论的发展。 维纳滤波与卡尔曼滤波所研究的都是基于最小均方误差准则的估计问题。 维纳滤波理论的不足之处是明显的。在运用的过程中,它必须把用到的全部数据存储起来,而且每一时刻都要通过对这些数据的运算才能得到所需要的各种量的估值。按照这种滤波方法设置的专用计算机的存储量与计算量必然很大,很难进行实时处理。虽经许多科技工作者的努力,在解决非平稳过程的滤波问题时,给出能用的方法为数甚少。到五十年代中期,随着空间技术的发展,这种方法越来越不能满足实际应用的需要,面临了新的挑战。尽管如此,维纳滤波理论在滤波理论中的开拓工作是不容置疑的,维纳在方法论上的创见,仍然影响着后人。 五十年代中期,空间技术飞速发展,要求对卫星轨道进行精确的测量。为此,人们将滤波问题以微分方程表示,提出了一系列适应空间技术应用的精练算法。1960年

李亚普诺夫法稳定性分析

第3章李亚普诺夫法稳定性分析 第1节基本概念 1.系统的平衡状态 设系统的齐次状态方程为 x= f ), (t x 若存在状态e x,对所有t都满足0 ), x e x f (= =t ,则称e x为系统的平衡状态。 一个系统,不一定都存在平衡状态;如存在,也不一定唯一;多个平衡状态,可能连续,也可能孤立。一般只研究孤立平衡状

态。 一般地,0≠e x ,此时可通过平移变换e x x x =-使(,)x f x t =的平衡点0e x =。故一般只研究0=e x (原点)处的稳定性。 一般地,认为0t t =时刻扰动消失,此时系统初始状态为0e x x ≠。 2.系统的稳定性 系统受到扰动后其状态将偏离原平衡状态e x 。系统稳定性表示扰动消失后系统在平衡状态(原e x 或新e x )下继续工作的能力。 稳定性是系统的一种内部属性,可采用齐次状态方程 ),(t x f x = 通过00≠x ,0t t ≥的自由运动进行研究。 稳定性是针对平衡点而言的。 对0≠A 的线性定常系统,只有一个平衡点=0e x ,平衡点的稳定性与系统稳定性是统一的。

对多平衡点系统,不同的平衡点可能具有不同的稳定性,不存在统一的系统稳定性问题,必须逐一分析各平衡点的稳定性。3.李亚普诺夫关于稳定性的定义 状态x到e x的距离(欧几里德范数): 2/1 2 2 1 1 ] ) ( ) [(ne n e e x x x x x x- + + - = - ε ≤ -e x x称为e x的邻域(以e x为中心、ε为半径的超球体) (ε s x∈)。 李亚普诺夫关于稳定性的定义: 对任意实数0 > ε,总存在0 ) , ( > t ε δ 。当δ < -e x x0时,系统), (t x f x= 自0x出发的状态轨迹)(t x( t t≥): 1)若满足ε ≤ - ∞ → e t x x lim,称系统在e x处李亚普诺夫稳定; 2)若满足0 lim= - ∞ → e t x x,称系统在e x处渐近稳定;

第五章李雅普诺夫稳定性分析

第六章 李雅普诺夫稳定性分析 在反馈控制系统的分析设计中,系统的稳定性是首先需要考虑的问题之一。因为它关系到系统是否能正常工作。 经典控制理论中已经建立了劳斯判据、Huiwitz 稳定判据、Nquist 判据、对数判据、根轨迹判据等来判断线性定常系统的稳定性,但不适用于非线性和时变系统。分析非线性系统稳定性及自振的描述函数法,则要求系统的线性部分具有良好的滤除谐波的性能;而相平面法则只适合于一阶、二阶非线性系统。 1892年俄国学者李雅普诺夫(Lyapunov )提出的稳定性理论是确定系统稳定性的更一般的理论,它采用状态向量来描述,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统。 §6-1 外部稳定性和内部稳定性 系统的数学模型有输入输出描述(即外部描述)和状态空间描述(即内部描述),相应的稳定性便分为外部稳定性和内部稳定性。 一、外部稳定性 1、定义(外部稳定性): 若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的。 (外部稳定性也称为BIBO (Bounded Input Bounded Output )稳定性) 说明: (1)所谓有界是指如果一个函数)(t h ,在时间区间],0[∞中,它的幅值不会增至无穷,即存在一个实 常数k ,使得对于所有的[]∞∈0 t ,恒有∞<≤k t h )(成立。 (2)所谓零状态响应,是指零初始状态时非零输入引起的响应。 2、系统外部稳定性判据 线性定常连续系统 ∑),,(C B A 的传递函数矩阵为 Cx y Bu Ax x =+= BU A sI X BU X A sI CX Y BU AX sX 1)()(--==-=+= B A sI C s G 1 )()(--= 当且仅当)(s G 极点都在s 的左半平面内时,系统才是外部稳定(或BIBO 稳定)的。

卡尔曼滤波算法总结

2015.12.12 void Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; }

首先是卡尔曼滤波的5个方程: (|1)(1|1)()X k k AX k k Bu k -=--+(1)先验估计 (|1)(1|1)'P k k AP k k A Q -=--+(2)协方差矩阵的预测 ()(|1)'/(|1)') Kg k P k k H HP k k H R =--+(3)计算卡尔曼增益 (|)(|1)()(()(|1)) X k k X k k Kg k Z k HX k k =-+--(4)进行修正 5个式子比较抽象,现在直接用实例来说: 一、卡尔曼滤波第一个式子 对于角度来说,我们认为此时的角度可以近似认为是上一时刻的角度值加上上一时刻陀螺仪测得的角加速度值乘以时间,因为d dt θω=?,角度微分等于时间的微分乘以角速度。但是陀螺仪有个静态漂移(而且还是变化的),静态漂移就是静止了没有角速度然后陀螺仪也会输出一个值,这个值肯定是没有意义的,计算时要把它减去。 由此我们得到了当前角度的预测值Angle Angle=Angle+(Gyro - Q_bias) * dt; 其中等号左边Angle 为此时的角度,等号右边Angle 为上一时刻的角度,Gyro 为陀螺仪测的角速度的值,dt 是两次滤波之间的时间间隔,我们的运行周期是4ms 或者6ms 。 同时 Q_bias 也是一个变化的量。 但是就预测来说认为现在的漂移跟上一时刻是相同的,即 Q_bias=Q_bias 将上面两个式子写成矩阵的形式 1_01_0 Angle dt Angle dt Q bias Q bia o s Gyr -=+ 得到上式,这个式子对应于卡尔曼滤波的第一个式子 (|1)(1|1)()X k k AX k k Bu k -=--+ ()|1X k k -为2维列向量 _Angle Q bias ,A 为2维方阵101dt -,()|-11X k k -为2维列向量_Angle Q bias ,B 为2维列向量0dt , ()u k 为Gyro (|)(|1) P k k I Kg k H P k k =--(())(5)更新协方差阵

卡尔曼滤波的原理及应用自己总结

卡尔曼滤波的原理以及应用 滤波,实质上就是信号处理与变换的过程。目的是去除或减弱不想要成分,增强所需成分。卡尔曼滤波的这种去除与增强过程是基于状态量的估计值和实际值之间的均方误差最小准则来实现的,基于这种准则,使得状态量的估计值越来越接近实际想要的值。而状态量和信号量之间有转换的关系,所以估计出状态量,等价于估计出信号量。所以不同于维纳滤波等滤波方式,卡尔曼滤波是把状态空间理论引入到对物理系统的数学建模过程中来,用递归方法解决离散数据线性滤波的问题,它不需要知道全部过去的数据,而是用前一个估计值和最近一个观察数据来估计信号的当前值,从而它具有运用计算机计算方便,而且可用于平稳和不平稳的随机过程(信号),非时变和时变的系统的优越性。 卡尔曼滤波属于一种软件滤波方法,概括来说其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。其所得到的解是以估计值的形式给出的。 卡尔曼滤波过程简单来说主要包括两个步骤:状态变量的预估以及状态变量的校正。预估过程是不考虑过程噪声和量测噪声,只是基于系统本身性质并依靠前一时刻的估计值以及系统控制输入的一种估计;校正过程是用量测值与预估量测值之间的误差乘以一个与过程

噪声和量测噪声相关的增益因子来对预估值进行校正的,其中增益因子的确定与状态量的均方误差有关,用到了使均方误差最小的准则。而这一过程中体现出来的递归思想即是:对于当前时刻的状态量估计值以及均方误差预估值实时进行更新,以便用于下一时刻的估计,使得系统在停止运行之前能够源源不断地进行下去。 下面对于其数学建模过程进行详细说明。 1.状态量的预估 (1)由前一时刻的估计值和送给系统的可控制输入来预估计当前时刻状态量。 X(k|k-1)=A X(k-1|k-1)+B U(k) 其中,X(k-1|k-1)表示前一时刻的估计值,U(k)表示系统的控制输入,X(k|k-1)表示由前一时刻估计出来的状态量的预估计值,A表示由k-1时刻过渡到k时刻的状态转移矩阵,B表示控制输入量与状态量之间的一种转换因子,这两个都是由系统性质来决定的。 (2)由前一时刻的均方误差阵来预估计当前时刻的均方误差阵。 P(k|k-1)=A P(k-1|k-1)A’+Q 其中,P(k-1|k-1)是前一时刻的均方误差估计值,A’代表矩阵A 的转置,Q代表过程噪声的均方误差矩阵。该表达式具体推导过程如下: P(k|k-1)=E{[Xs(k|k)-X(k|k-1)][Xs(k|k)-X(k|k-1)]’}------ 其中Xs(k|k)=A Xs(k-1|k-1)+B U(k)+W(k-1)表示当前时刻的实际值,Xs(k-1|k-1)表示前一时刻的实际值,可以看出与当前时刻的预估计值

李雅普诺夫稳定性分析

基于正定二次型的 李雅普诺夫稳定性分析 张俊超 (控制科学与工程、控制理论与控制工程、2010010215) 摘要:李雅普诺夫稳定性理论以状态向量描述为基础,不仅适用于单变量、 线性、定常系统,而且适用于多变量、非线性、时变系统。但要应用李氏判据判断系统稳定性,就要涉及到系统矩阵A特征值的求解以及根据系统状态方程构造正定二次型的李雅普诺夫函数来判断系统稳定性。 1.问题的提出 我们在处理实际工程问题时,经常需要判断系统稳定性,一般稳定性判据都有一定局限性,李雅普诺夫稳定性理论是确定系统稳定性的一般的理论,不仅适用于单变量、线性、定常系统,而且适用于多变量、非线性、时变系统,它以状态向量描述为基础,结合正定二次型的相关知识对系统稳定性进行判断。 2.问题的求解 李雅普诺夫稳定性理论分析系统稳定性的两种方法: (1)利用线性系统微分方程的解来判断系统的稳定性 ——李雅普诺夫第一法(间接法) 李雅普诺夫第一法的主要内容 1)用一次近似式表示状态方程,即:X=AX+B(x) 如果A的全部特征值都具有负实部,则系统在平衡点xe=0处是稳定的, 且系统的稳定性与高阶项B(x)无关。 2)如果X=AX+B(x)的A的特征值中至少有一个具有正实部,则无论B(x)如何,系统在平衡点xe=0处为不稳定的。 3)如果X=AX+B(x)的A的含有等于零的特征值,则系统的稳定性由B(x)决定。李雅普诺夫第一法是根据系统矩阵A的特征值来判断系统的稳定性的。 (2)构造李雅普诺夫函数,利用构造的李氏函数判断系统稳定性 ——李雅普诺夫第二法(直接法) 观察振动现象,若系统能量(含动能和位能)随时间推移而衰减,则系统迟早会达到平衡状态。基本思想:若系统内部能量随时间↑而↓,最终到达静止状态,系统稳定。虚构一个能量函数(李雅普诺夫函数) V(x,t)=f(x 1,x 2 , (x) n ,t) V(x)=f(x 1,x 2 , (x) n ) V(x,t)或V(x)是一个标量函数。能量总大于零,故为正定函数。能量随随时间增加而衰减,即:V(x,t)或V(x)的导数小于零。

卡尔曼滤波简介和实例讲解

卡尔曼,美国数学家和电气工程师。1930年5月19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波 精彩文档

理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与Kalman and Bucy (1961)发表. 精彩文档

卡尔曼滤波研究综述

卡尔曼滤波研究综述 1 卡尔曼滤波简介 1.1卡尔曼滤波的由来 1960年卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文-《A New Approach to Linear Filtering and Prediction Problems 》(线性滤波与预测问题 的新方法),在这篇文章里一种克服了维纳滤波缺点的新方法被提出来,这就是 我们今天称之为卡尔曼滤波的方法。卡尔曼滤波应用广泛且功能强大,它可以估 计信号的过去和当前状态甚至能估计将来的状态即使并不知道模型的确切性质。 其基本思想是以最小均方误差为最佳估计准则,采用信号与噪声的状态空间 模型利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出 当前时刻的估计值。算法根据建立的系统方程和观测方程对需要处理的信号做出 满足最小均方误差的估计。 对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。它的广泛 应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面 的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识 别,图像分割,图像边缘检测等等。 1.2 标准卡尔曼滤波-离散线性卡尔曼滤波 为了描述方便我们作以下假设:物理系统的状态转换过程可以描述为一个离 散时间的随机过程;系统状态受控制输入的影响;系统状态及观测过程都不可避 免受噪声影响;对系统状态是非直接可观测的。在以上假设前提下,得到系统的 状体方程和观测方程。 X 1-1 式中:X k 为状态向量,L k 为观测向量,Φk,k-1为状态转移矩阵,U k-1为控制向量, 一般不考虑,Γk,k-1,B k 为系数矩阵,Ωk-1为系统动态噪声向量,Δk 为观测噪声向量, 其随机模型为 E(Ωk ) =0;E(Δk ) =0;cov(Ωk ,Ωj ) = DΩ(k )δkj , cov (Δk ,Δj ) = D k (k )δkj ;cov(Ωk ,Δj ) =0;E(X 0) =μx(0) var(X 0) = D(X 0);cov(X 0,Ωk ) =0;cov(X 0,Δk ) =0. 1-2 卡尔曼滤波递推公式为 X ∧ (k/k) = X ∧(k/k-1)+J k (L k -B k X ∧(k/k-1)), D(k/k) = (E-J k B k )D x (k/k-1), J k = D x (k/k-1)BT k [B k D x (k/k-1)]B T k +D Δ(k)]-1, X ∧ (k/k-1) =Φk ,k-1X ∧ (k-1/k-1), D x (k/k-1) =Φk ,k-1D x (k-1/k-1)ΦT k ,k-1+Γk ,k-1D Δ(k-1)ΓT k ,k-1. 1-3 2 几种最新改进型的卡尔曼滤波算法。 2.1 近似二阶扩展卡尔曼滤波 标准的卡尔曼滤波只适用于线性系统,而工程实际问题涉及的又大多是非 线性系统,于是基于非线性系统线性化的扩展卡尔曼滤波(EKF)在上世纪70年代

李雅普诺夫稳定性分析报告

控制系统的李雅普诺夫稳定性分析 内容提要 稳定性是系统的又一重要特性。所谓系统的稳定性,就是系统在受到小的外界扰动后,被调量与规定量之间的偏差值的过渡过程的收敛性。显然,稳定性是系统的一个动态属性。在控制理论和控制工程中,无论是调节器理论、观测器理论还是滤波预测、自适应理论,都不可避免的要遇到系统稳定性问题。稳定性问题一直是一个最基本的和最重要的问题。 随着控制理论与控制工程所涉及的领域由线性时不变系统扩展为时变系统和非线性系统,稳定性分析的复杂程度也在急剧的增长。直到目前,虽然有许多判据可应用于线性时不变系统或其它各自相应类型的问题中,以判断系统稳定情况,但能同时有效地适用于线性、非线性、定常、时变等各类系统的方法,则是俄国数学家李雅普诺夫(Lyaponov)在19世纪所提出的方法。这就是控制系统稳定性分析的李雅普诺夫方法。李雅普诺夫稳定性理论是稳定性分析、应用与研究的最重要基础。 习题与解答 5.1 判断下列函数的正定性 1)222 1231213()2322V x x x x x x x x =++-+ 2)222 123121323()82822V x x x x x x x x x x =++-+- 3)22 131223()2V x x x x x x x =+-+ 4)222 123122313()104224V x x x x x x x x x x =+++-- 5)222 123122313()311242V x x x x x x x x x x =++-++ 解 1) 210()131011T T V x x Ax x x -?? ??==-?????? , 因为顺序主子式 2120, 50,1 3 ->=>- 2101 11300 1 1 --=> 所以0A >,()V x 为正定函数。

李雅普诺夫稳定性定理的应用汇总

李雅普诺夫稳定性定理的应用—— 设计模型参考自适应律 2010.04.14 理论依据 李雅普李雅普诺夫直接法一致渐近稳定的条件:接致渐稳定条件V (x , t 正定V (x , t 负定?

á假设可调系统与参考模型在数学模型的结构上完全相同,该设计要求设计可调参数的变化规律(自适应律),以使得可调系统的外特性能够完全趋于参考模型的外特性。 例题 试用李雅普诺夫稳定性理论设计参数可调试用李雅普诺夫稳定性理论设计参数调的模型参考自适应律,其中参考模型和可, 调系统的传递函数分别是: k ?(s =g 参考模型:s +a k v ?v (

s =可调系统:g s +a v 解:给予参考模型和可调系统以相同的输入u ,假设它们的输出分别是y 和y v ,当然它们都是可以直接量测的所要求的模型参考自是可以直接量测的。所要求的模型参考自适应律就是当 a v =a v (t , u , y , y v 及k v =k v (t , u , y , y v 时可调系统实现对参考模型的自适应时,可调系统实现对参考模型的自适应,即: =k ?k →0?k v ? =a ?a v →0?a ?e =y ?y → 0v ? 将参考模型和可调系统都写成微分方程的形式: y (t + a ? y (t = k ? u (t yv (t + av yv (t = kvu (t 于是:e (t = y (t ? y v (t = ku (t ? a ? y (t ? k v u (t + a v y v (t = k u (t ? k v u (t ? a y (t + a y v (t ? a y v (t + a v y v (t = ( k ? k v u (t ? a[ y (t ?y v (t ] ? ( a ? a v y v (t ~ ~ = ? a ? e (t + k ? u (t ? a ? y (t v 设系统的广义状态变量是 ~ ~ x (t = [ e(t k (t a (t ]T 则前述自适应的目标就是广义系统渐近稳定。为此取李雅普诺夫函数 ~2 ~ v( x = P e (t + P2 k (t + P3 a 2 (t 1 2 Pi > 0 显然是正定泛函,另一方面观察 ~~ ~~ v( x = 2 P e e + 2 P2 k k + 2 P3 a a 1 ~ ~~ ~ y + 2P k k + 2P a a ~~ = 2 P e (?a e + k u ? a v 1 2 3 ~ ~~ 2 ~ ~~ = ?2 P a e + 2 P e k u + 2 P2 k k ? 2 P e a yv + 2 P3 a a 1 1 1 ~ ~ ~ ~ = ?2 P a e 2 + 2 k ( P e u + P2 k ? 2a ( P e yv ? P3 a 1 1 1 显然,只要保证a > 0, ~ P e u + P2 k = 0, 1 ~ P e yv ? P3 a = 0 1 就能确保 v( x < 0 ,即为负定泛函。即为负定泛函即可求出~ P k = ? 1 e u, P2 ~ = P ey 1 a v P3 最

李雅普诺夫稳定性分析

第5章 李雅普诺夫稳定性分析 本章讨论李雅普诺夫稳定性分析。主要介绍李雅普诺夫稳定性的定义以及分析系统状态稳定性的李雅普诺夫理论和方法;着重讨论李雅普诺夫第二法及其在线性系统和3类非线性系统的应用、李雅普诺夫函数的构造、李亚普诺夫代数(或微分)方程的求解等。最后介绍李亚普诺夫稳定性问题的Matlab 计算与程序设计。 一个自动控制系统要能正常工作,必须首先是一个稳定的系统,即当系统受到外界干扰时它的平衡被破坏,但在外界干扰去掉以后,它仍有能力自动地恢复在平衡态下继续工作。系统的这种性能,叫做稳定性。例如,电压自动调解系统中保持电机电压为恒定的能力、电机自动调速系统中保持电机转速为一定的能力以及火箭飞行中保持航向为一定的能力等。具有稳定性的系统称为稳定系统,不具有稳定性的系统称为不稳定系统。也可以说,系统的稳定性就是系统在受到外界干扰后,系统状态变量或输出变量的偏差量(被调量偏离平衡位置的数值)过渡过程的收敛性,用数学方法表示就是 ε≤Δ∞→)(Lim t x t 式中,)(t x Δ为系统被调量偏离其平衡位置的变 化量;ε为任意小的规定量。 如果系统在受到外扰后偏差量越来越大,显然它不可能是一个稳定系统。在经典控制理论中,借助于常微分方程稳定性理论,产生了许多线性定常系统的稳定性判据,如劳斯-胡尔维茨(Routh-Hurwitz)判据和奈奎斯特判据等,都给出了既实用又方便的稳定性判别及设计方法。但这些稳定性判据仅限于讨论SISO 线性定常系统输入输出间动态关系,讨论的是有界输入有界输出(BIBO)稳定性,未研究系统的内部状态变化的稳定性。再则,对于非线性或时变系统,虽然通过一些系统转化方法,上述稳定判据尚能在某些特定系统和范围内应用,但是难以胜任一般系统。现代控制系统的结构比较复杂,大都存在非线性或时变因素,即使是系统结构本身, 往往也需要根据性能指标的要求而加以改变,才能适应新的情况,保证系统的正常或最佳运行状态。在解决这类复杂系统的稳定性问题时,最通常的方法是基于李雅普诺夫第二法而得到的一些稳定性理论。 早在1892年,俄国学者李雅普诺夫就发表了题为“运动稳定性一般问题”的著名文献,建立了关于运动稳定性研究的一般理论。 李雅普诺夫把分析系统稳定性的方法归纳为两类,分别称为李雅普诺夫第一法和李雅普诺夫第二法。李雅普诺夫第一法(亦称间接法)是解描述系统动力学的微分方程式,然后根据解的性质来判断系统的稳定性的方法。对于线性定常系统,主要是根据系统极点的分布来判断系统的稳定性,即为经典控制理论的稳定性判

李雅普诺夫稳定性分析

第六章李雅普诺夫稳定性分析 在反馈控制系统的分析设计中,系统的稳定性是首先需要考虑的问题之一。因为它关系到系统是否能正常工作。 经典控制理论中已经建立了劳斯判据、Huiwitz 稳定判据、Nquist 判据、对数判据、根轨迹判据等来判断线性定常系统的稳定性,但不适用于非线性和时变系统。分析非线性系统稳定性及自振的描述函数法,则要求系统的线性部分具有良好的滤除谐波的性能;而相平面法则只适合于一阶、二阶非线性系统。 1892 年俄国学者李雅普诺夫( Lyapunov )提出的稳定性理论是确定系统稳定性的更一般的理论,它采用状态向量来描述,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统。 §6-1 外部稳定性和内部稳定性系统的数学模型有输入输出描述(即外部描述)和状态空间描述(即内部描述) ,相应的稳定性便分为外部稳定性和内部稳定性。 一、外部稳定性 1、定义(外部稳定性) :若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定 的。 ( 外部稳定性也称为BIBO( Bounded Input Bounded Output )稳定性) 说明: (1)所谓有界是指如果一个函数h(t) ,在时间区间[0, ]中,它的幅值不会增至无穷,即存在一个实 常数k ,使得对于所有的t 0 ,恒有h(t) k 成立。 (2)所谓零状态响应,是指零初始状态时非零输入引起的响应。 2、系统外部稳定性判据 线性定常连续系统(A,B,C) 的传递函数矩阵为 x Ax Bu y Cx sX AX BU Y CX (sI A)X BU X (sI A) 1BU G(s) C(sI A) 1 B 当且仅当G(s) 极点都在s的左半平面内时,系统才是外部稳定(或BIBO稳定)的。 例6.1.1 】已知受控系统状态空间表达式为

李雅普诺夫稳定性定理的应用

李雅普诺夫稳定性定理的应用 ——设计模型参考自适应律 2010.04.14

理论依据 李雅普接致渐稳定条件李雅普诺夫直接法一致渐近稳定的条件:(),V x t 正定 (),V x t ?负定

假设可调系统与参考模型在数学模型的结á 构上完全相同,该设计要求设计可调参数的变化规律(自适应律),以使得可调系统的外特性能够完全趋于参考模型的外特性。

例题 试用李雅普诺夫稳定性理论设计参数调试用李雅普诺夫稳定性理论设计参数可调的模型参考自适应律,其中参考模型和可, 调系统的传递函数分别是: k ?参考模型:a s s g +=)(可调系统:v v v a s k s g +=)( ?

解:给予参考模型和可调系统以相同的输入u ,假设它们的输出分别是y 和,当然它们都是可以直接量测的所要求的模型参考自v y 是可以直接量测的。所要求的模型参考自适应律就是当 及时可调系统实现对参考模型的自适应(,,,)v v v a a t u y y =) ,,,(v v v y y u t k k =时,可调系统实现对参考模型的自适应,即: ?00v k k k =?→? 0v a a a e =?→??=?→v y y ?

将参考模型和可调系统都写成微分方程的形式: ?? )()()()()()(t u k t y a t y t u k t y a t y v v v v =+=+ 于是: ) ()()()()()()(t y a t u k t y a t ku t y t y t e v v v v +???=?=)()()()()()(t y a t y a t y a t y a t u k t u k v v v v v ?????=+?+??=)(~)(~)() ()()]()([)()(t y a t u k t e a t y a a t y t y a t u k k v v v v v ???+?? =

相关文档
最新文档