2008年海南省高考数学试卷(文)答案与解析

2008年海南省高考数学试卷(文)答案与解析
2008年海南省高考数学试卷(文)答案与解析

2008年海南省高考数学试卷(文)

参考答案与试题解析

一、选择题(共12小题,每小题5分,满分60分)

1.(5分)(2008?海南)已知集合M={x|(x+2)(x﹣1)<0},N={x|x+1<0},则M∩N=()A.(﹣1,1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,2)

【考点】交集及其运算.

【分析】由题意M={x|(x+2)(x﹣1)<0},N={x|x+1<0},解出M和N,然后根据交集的定义和运算法则进行计算.

【解答】解:∵集合M={x|(x+2)(x﹣1)<0},

∴M={x|﹣2<x<1},

∵N={x|x+1<0},

∴N={x|x<﹣1},

∴M∩N={x|﹣2<x<﹣1}

故选C.

【点评】此题主要考查一元二次不等式的解法及集合的交集及补集运算,一元二次不等式的解法及集合间的交、并、补运算布高考中的常考内容,要认真掌握,并确保得分.

2.(5分)(2008?海南)双曲线的焦距为()

A.3 B.4C.3D.4

【考点】双曲线的简单性质.

【专题】计算题.

【分析】本题比较简明,需要注意的是容易将双曲线中三个量a,b,c的关系与椭圆混淆,而错选B

【解答】解析:由双曲线方程得a2=10,b2=2,

∴c2=12,

于是,

故选D.

【点评】本题高考考点是双曲线的标准方程及几何性质,在新课标中双曲线的要求已经降低,考查也是一些基础知识,不要盲目拔高.

3.(5分)(2008?海南)已知复数z=1﹣i,则=()

A.2 B.﹣2 C.2i D.﹣2i

【考点】复数代数形式的混合运算.

【分析】把复数z代入化简,复数的分子化简即可.

【解答】解:将z=1﹣i代入得,

故选A.

【点评】复数的加减、乘除及乘方运算是需要掌握的内容,基础题目.

4.(5分)(2008?海南)设f(x)=xlnx,若f′(x0)=2,则x0=()

A.e2B.e C.D.ln2

【考点】导数的乘法与除法法则.

【分析】利用乘积的运算法则求出函数的导数,求出f'(x0)=2解方程即可.

【解答】解:∵f(x)=xlnx

∵f′(x0)=2

∴lnx0+1=2

∴x0=e,

故选B.

【点评】本题考查两个函数积的导数及简单应用.导数及应用是高考中的常考内容,要认真掌握,并确保得分.

5.(5分)(2008?海南)已知平面向量=(1,﹣3),=(4,﹣2),与垂直,则

λ是()

A.﹣1 B.1 C.﹣2 D.2

【考点】数量积判断两个平面向量的垂直关系.

【专题】计算题.

【分析】由于,所以,即(λ+4)﹣3(﹣3λ﹣2)=0,整理得λ=﹣1.

【解答】解:∵,

∴,

即(λ+4)﹣33λ﹣2)=0,

整理得10λ+10=0,

∴λ=﹣1,

故选A.

【点评】高考考点:简单的向量运算及向量垂直;

易错点:运算出错;

全品备考提示:高考中每年均有相当一部分基础题,要想得到高分,这些习题均不能大意,要争取多得分,最好得满分.

6.(5分)(2008?海南)下面程序框图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()

A.c>x B.x>c C.c>b D.b>c

【考点】排序问题与算法的多样性.

【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,由于该题的目的是选择最大数,因此根据第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,而且条件成立时,保存最大值的变量X=C.

【解答】解:由流程图可知:

第一个选择框作用是比较x与b的大小,

故第二个选择框的作用应该是比较x与c的大小,

∵条件成立时,保存最大值的变量X=C

故选A.

【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.

7.(5分)(2008?海南)已知a1>a2>a3>0,则使得(1﹣a i x)2<1(i=1,2,3)都成立的x取值范围是()

A.B.C.D.

【考点】一元二次不等式的应用.

【分析】先解出不等式(1﹣a i x)2<1的解集,再由a1>a2>a3>0确定x的范围.

【解答】解:,

所以解集为,又,

故选B.

【点评】本题主要考查解一元二次不等式.属基础题.

8.(5分)(2008?海南)设等比数列{a n}的公比q=2,前n项和为S n,则=()

A.2 B.4 C.D.

【考点】等比数列的前n项和.

【专题】等差数列与等比数列.

【分析】根据等比数列的性质,借助公比q表示出S4和a1之间的关系,易得a2与a1间的关系,然后二者相除进而求得答案.

【解答】解:由于q=2,

∴;

故选:C.

【点评】本题主要考查等比数列的通项公式及求和公式的综合应用.等差数列及等比数列问题一直是高中数学的重点也是高考的一个热点,要予以高度重视.

9.(5分)(2008?海南)平面向量,共线的充要条件是()

A.,方向相同

B.,两向量中至少有一个为零向量

C.?λ∈R,

D.存在不全为零的实数λ1,λ2,

【考点】向量的共线定理;必要条件、充分条件与充要条件的判断.

【分析】根据向量共线定理,即非零向量与向量共线的充要条件是必存在唯一实数λ使得成立,即可得到答案.

【解答】解:若均为零向量,则显然符合题意,且存在不全为零的实数λ1,λ2,使得;

若,则由两向量共线知,存在λ≠0,使得,

即,符合题意,

故选D.

【点评】本题主要考查向量共线及充要条件等知识.在解决很多问题时考虑问题必须要全面,除了考虑一般性外,还要注意特殊情况是否成立.

10.(5分)(2008?海南)点P(x,y)在直线4x+3y=0上,且x,y满足﹣14≤x﹣y≤7,则点P到坐标原点距离的取值范围是()

A.[0,5]B.[0,10]C.[5,10]D.[5,15]

【考点】简单线性规划.

【专题】计算题;数形结合.

【分析】先根据条件画出可行域,再利用几何意义求最值,只需求出可行域内的点到原点距离的最值即可.

【解答】解析:因x,y满足﹣14≤x﹣y≤7,

则点P(x,y)在

所确定的区域内,且原点也在这个区域内.

又点P(x,y)在直线4x+3y=0上,

,解得A(﹣6,8).

,解得B(3,﹣4).

P到坐标原点的距离的最小值为0,

又|AO|=10,|BO|=5,

故最大值为10.

∴其取值范围是[0,10].

故选B.

【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.解决时,首先要解决的问题是明白题目中目标函数的意义.

11.(5分)(2008?海南)函数f(x)=cos2x+2sinx的最小值和最大值分别为()A.﹣3,1 B.﹣2,2 C.﹣3,D.﹣2,

【考点】三角函数中的恒等变换应用.

【专题】压轴题.

【分析】用二倍角公式把二倍角变为一倍角,得到关于sinx的二次函数,配方整理,求解二次函数的最值,解题时注意正弦的取值范围.

【解答】解:∵,

∴当时,,

当sinx=﹣1时,f min(x)=﹣3.

故选C.

【点评】三角函数值域及二次函数值域,容易忽视正弦函数的范围而出错.高考对三角函数的考查一直以中档题为主,只要认真运算即可

12.(5分)(2008?海南)已知平面α⊥平面β,α∩β=l,点A∈α,A?l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()

A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β

【考点】空间中直线与平面之间的位置关系.

【专题】综合题;压轴题.

【分析】利用图形可得AB∥l∥m;A对

再由AC⊥l,m∥l?AC⊥m;B对

又AB∥l?AB∥β,C对

AC⊥l,但AC不一定在平面α内,故它可以与平面β相交、平行,故不一定垂直,所以D 不一定成立.

【解答】解:如图所示AB∥l∥m;A对

AC⊥l,m∥l?AC⊥m;B对

AB∥l?AB∥β,C对

对于D,虽然AC⊥l,但AC不一定在平面α内,故它可以与平面β相交、平行,故不一定垂直;故错.

故选D.

【点评】高考考点:线面平行、线面垂直的有关知识及应用

易错点:对有关定理理解不到位而出错.

全品备考提示:线面平行、线面垂直的判断及应用仍然是立体几何的一个重点,要重点掌握二、填空题(共4小题,每小题5分,满分20分)

13.(5分)(2008?海南)已知{a n}为等差数列,a3+a8=22,a6=7,则a5=15.

【考点】等差数列的性质.

【专题】等差数列与等比数列.

【分析】根据等差中项的性质可知a3+a8=a5+a6,把a3+a8=22,a6=7代入即可求得a5.

【解答】解:∵{a n}为等差数列,

∴a3+a8=a5+a6

∴a5=a3+a8﹣a6=22﹣7=15

【点评】本题主要考查了等差数列有关性质及应用.等差数列及等比数列“足数和定理”是数列中的重点内容,要予以重点掌握并灵活应用.

14.(5分)(2008?海南)一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为,底面周长为3,那么这个球的体积为

【考点】球的体积和表面积;棱柱的结构特征.

【专题】计算题;综合题;压轴题.

【分析】先求正六棱柱的体对角线,就是外接球的直径,然后求出球的体积.

【解答】解:∵正六边形周长为3,得边长为,故其主对角线为1,从而球的直径

∴R=1,

∴球的体积

故答案为:.

【点评】正六棱柱及球的相关知识,易错点:空间想象能力不强,找不出球的直径.空间想象能力是立体几何中的一个重要能力之一,平时要加强培养.

15.(5分)(2008?海南)过椭圆的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则△OAB的面积为.

【考点】直线与圆锥曲线的综合问题.

【专题】计算题;压轴题.

【分析】将椭圆与直线方程联立:,得交点

,进而结合三角形面积公式计算可得答案.

【解答】解:由题意知,

解方程组得交点,

∴.

答案:.

【点评】本题考查直线与椭圆的位置关系,解题时要注意对于圆锥曲线目前主要以定义及方程为主,对于直线与圆锥曲线的位置关系只要掌握直线与椭圆的相关知识即可.

16.(5分)(2008?海南)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:

甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307

308 310 314 319 323 325 325 328 331 334 337 352

乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318

320 322 322 324 327 329 331 333 336 337 343 356

由以上数据设计了如下茎叶图:

根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:

①乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度;

②乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度.

【考点】茎叶图.

【专题】压轴题.

【分析】利用茎叶图中的数据可以计算乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度;

通过观察茎叶图中数据的分布可知甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大.

【解答】解:(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).

(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).

(3)甲品种棉花的纤维长度的中位数为307mm,乙品种棉花的纤维长度的中位数为318mm.(4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.

【点评】主要考查利用茎叶图估计总体特征,属于基础题.

三、解答题(共7小题,22题,23题选做一题。满分70分)

17.(12分)(2008?海南)如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.

(1)求cos∠CBE的值;

(2)求AE.

【考点】正弦定理的应用.

【分析】(1)根据图中各角和边的关系可得∠CBE的值,再由两角差的余弦公式可得答案.(2)根据正弦定理可直接得到答案.

【解答】解:.(1)∵∠BCD=90°+60°=150°,CB=AC=CD

∴∠CBE=15°,∴.

(2)在△ABE中,AB=2,由正弦定理得,故.

【点评】本题主要考查正弦定理及平面几何知识的应用.解三角形一直是高考的重点内容之一,不能轻视.

18.(12分)(2008?海南)如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).

(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;

(2)按照给出的尺寸,求该多面体的体积;

(3)在所给直观图中连接BC′,证明:BC′∥面EFG.

【考点】简单空间图形的三视图;棱柱、棱锥、棱台的体积;直线与平面平行的判定.【专题】计算题;作图题;证明题.

【分析】(1)按照三视图的要求直接在正视图下面,画出该多面体的俯视图;

(2)按照给出的尺寸,利用转化思想V=V长方体﹣V正三棱锥,求该多面体的体积;

(3)在长方体ABCD﹣A′B′C′D′中,连接AD′,在所给直观图中连接BC′,证明EG∥BC′,即可证明BC′∥面EFG.

【解答】解:(1)如图

(2)所求多面体的体积

(3)证明:如图,

在长方体ABCD﹣A′B′C′D′中,连接AD′,则AD′∥BC′

因为E,G分别为AA′,A′D′中点,所以AD′∥EG,从而EG∥BC′,

又EG?平面EFG,所以BC′∥平面EFG;

【点评】长方体的有关知识、体积计算及三视图的相关知识,对三视图的相关知识掌握不到位,求不出有关数据.三视图是新教材中的新内容,故应该是新高考的热点之一,要予以足够的重视.

19.(12分)(2008?海南)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.

(1)求该总体的平均数;

(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.

【考点】众数、中位数、平均数.

【专题】计算题.

【分析】(1)根据所给的六个人的分数,代入求平均数的公式,求出平均数,数据比较多,解题时不要漏掉数据,避免出错.

(2)由题意知,本题是一个古典概型,试验发生包含的事件是从6个总体中抽取2个个体,列举出所有的结果数,共有15种结果,满足条件的事件列举出共有7种结果,根据古典概型概率公式得到结果.

【解答】解:(1)总体平均数为

(2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”

从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),

(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),

(8,9),(8,10),(9,10),共15个基本结果.

事件A包含的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),

(7,8),(7,9),共有7个基本结果;

∴所求的概率为

【点评】本题考查统计及古典概率的求法,易错点是对基本事件分析不全面.古典概率的求法是一个重点,但通常不难,要认真掌握.

20.(12分)(2008?海南)已知m∈R,直线l:mx﹣(m2+1)y=4m和圆C:x2+y2﹣8x+4y+16=0.(1)求直线l斜率的取值范围;

(2)直线l能否将圆C分割成弧长的比值为的两段圆弧?为什么?

【考点】基本不等式在最值问题中的应用;直线的斜率;直线与圆的位置关系.

【分析】(1)写出直线的斜率利用基本不等式求最值;

(2)直线与圆相交,注意半径、弦心距、弦长的一半构成的直角三角形

【解答】解:(1)直线l的方程可化为,此时斜率,

即km2﹣m+k=0,k=0时,m=0成立;

又∵△≥0,∴1﹣4k2≥0,

所以,斜率k的取值范围是.

(2)不能.由(1知l的方程为y=k(x﹣4),其中;

圆C的圆心为C(4,﹣2),半径r=2;圆心C到直线l的距离

由,得,即,

从而,若l与圆C相交,则圆C截直线l所得的弦所对的圆心角小于,

所以l不能将圆C分割成弧长的比值为的两段弧.

【点评】本题考查直线与圆及不等式知识的综合应用.

高考考点:直线与圆及不等式知识的综合应用

易错点:对有关公式掌握不到位而出错.

全品备考提示:本题不是很难,但需要大家有扎实的功底,对相关知识都要受熟练掌握.21.(12分)(2008?海南)设函数,曲线y=f(x)在点(2,f(2))处的切

线方程为7x﹣4y﹣12=0.

(1)求y=f(x)的解析式;

(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.

【考点】利用导数研究曲线上某点切线方程;导数的几何意义;直线的一般式方程.

【分析】(1)已知曲线上的点,并且知道过此点的切线方程,容易求出斜率,又知点(2,f (2))在曲线上,利用方程联立解出a,b

(2)可以设P(x0,y0)为曲线上任一点,得到切线方程,再利用切线方程分别与直线x=0和直线y=x联立,得到交点坐标,接着利用三角形面积公式即可.

【解答】解析:(1)方程7x﹣4y﹣12=0可化为,当x=2时,,

又,于是,解得,故.

(2)设P(x0,y0)为曲线上任一点,由知曲线在点P(x0,y0)处的切线方程为,即

令x=0,得,从而得切线与直线x=0的交点坐标为;

令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0);

所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为.

故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形面积为定值,此定值为6.

【点评】高考考点:导数及直线方程的相关知识

易错点:运算量大,不仔细而出错.

备考提示:运算能力一直是高考考查的能力之一,近年来,对运算能力的要求降低了,但对准确率的要求提高了.

22.(10分)(2008?海南)如图,过圆O外一点M作它的一条切线,切点为A,过A作直线AP垂直直线OM,垂足为P.

(1)证明:OM?OP=OA2;

(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM=90°.

【考点】与圆有关的比例线段.

【专题】压轴题.

【分析】(1)在三角形OAM中考虑,因为MA是圆O的切线,所以OA⊥AM,从而由射影定理即得;

(2)结合(1)问的结论,利用比例线段证明两个三角形△ONP、△OMK相似,通过对应角相等即可得.

【解答】证明:(1)因为MA是圆O的切线,

所以OA⊥AM,又因为AP⊥OM,

在Rt△OAM中,由射影定理知OA2=OM?OP,

故OM?OP=OA2得证.

(2)因为BK是圆O的切线,BN⊥OK,同(1)有:

OB2=ON?OK,又OB=OA,

所以OM?OP=ON?OK,即,又∠NOP=∠MOK,

所以△ONP~△OMK,

故∠OKM=∠OPN=90°.

即有:∠OKM=90°.

【点评】本题考查的高考考点是圆的有关知识及应用、切割线定理的运用,易错点:对有关知识掌握不到位而出错,高考对平面几何的考查一直要求不高,故要重点掌握,它是我们的得分点之一.

23.(2008?海南)自选题:已知曲线C1:(θ为参数),曲线C2:

(t为参数).

(Ⅰ)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;

(Ⅱ)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′,C2′.写出C1′,C2′的参数方程.C1′与C2′公共点的个数和C与C2公共点的个数是否相同?说明你的理由.【考点】圆的参数方程;直线与圆锥曲线的关系;直线的参数方程.

【专题】计算题;压轴题.

【分析】(I)先利用公式sin2θ+cos2θ=1将参数θ消去,得到圆的直角坐标方程,利用消元法消去参数t得到直线的普通方程,再根据圆心到直线的距离与半径进行比较,从而得到

C1与C2公共点的个数;

(II)求出压缩后的参数方程,再将参数方程化为普通方程,联立直线方程与圆的方程,利用判别式进行判定即可.

【解答】解:(Ⅰ)C1是圆,C2是直线.C1的普通方程为x2+y2=1,

圆心C1(0,0),半径r=1.C2的普通方程为.

因为圆心C1到直线的距离为1,

所以C2与C1只有一个公共点.

(Ⅱ)压缩后的参数方程分别为C1′:(θ为参数);

C2′:(t为参数).

化为普通方程为:C1′:x2+4y2=1,C2′:,

联立消元得,

其判别式,

所以压缩后的直线C2′与椭圆C1′仍然只有一个公共点,和C1与C2公共点个数相同.

【点评】本题主要考查了圆与直线的参数方程,以及直线圆的位置关系的判定,同时考查了利用判别式进行判定两曲线的公共点,转化与化归的思想方法,属于基础题.

高考数学试题分类大全

2015年高考数学试题分类汇编及答案解析(22个专题) 目录 专题一集合..................................................................................................................................................... 专题二函数..................................................................................................................................................... 专题三三角函数............................................................................................................................................ 专题四解三角形............................................................................................................................................ 专题五平面向量............................................................................................................................................ 专题六数列..................................................................................................................................................... 专题七不等式................................................................................................................................................. 专题八复数..................................................................................................................................................... 专题九导数及其应用................................................................................................................................... 专题十算法初步............................................................................................................................................ 专题十一常用逻辑用语 .............................................................................................................................. 专题十二推理与证明................................................................................................................................... 专题十三概率统计 ....................................................................................................................................... 专题十四空间向量、空间几何体、立体几何...................................................................................... 专题十五点、线、面的位置关系 ............................................................................................................ 专题十六平面几何初步 .............................................................................................................................. 专题十七圆锥曲线与方程.......................................................................................................................... 专题十八计数原理 ..................................................................................................................................... 专题十九几何证明选讲 ............................................................................................................................ 专题二十不等式选讲.................................................................................................................................

试论近三年高考数学试卷分析

HR Planning System Integration and Upgrading Research of A Suzhou Institution 近三年高考数学试卷分析 陈夏明 近三年的数学试卷强调了对基础知识的掌握、突出运用所学知识解决实际问题的能力.整套试卷遵照高考考试大纲的要求,从题型设置、考察知识的范围和运算量,书写量等方面保持相对稳定,体现了考查基础知识、基本运算方法和基本数学思想方法的特点.好多题都能在课本上找到影子,是课本题的变形和创新.这充分体现了高考数学试题“来源于课本”的命题原则,同时,也注重了知识之间内在的联系与综合,在知识的交汇点设计试题的原则。 2009年高考数学考试大纲与往年对比,总体保持平稳,个别做了修改,修改后更加适合中学实际和现代中学生的实际水平,从大纲来看,高考主干知识八大块:1.函数;2.数列;3.平面向量;4.不等式(解与证);5.解析几何;6.立体几何;7.概率与统计。仍为考查的重点,其中函数是最核心的主干知识. 考试要求有变化: 今年数学大纲总体保持平稳,并在平稳过渡中求试题创新,试题难度更加适合中学教学实际和现代中学生的实际水平;适当加大文理卷的差异,力求文理学生成绩平衡,文科试题“适当拉大试题难度的分布区间,试题难度的起点应降低,而试题难度终点应与理科相同”。 试题难度没有太大变化,但思维量进一步加大,更加注重基础知识、基本技能的考查.注重通性通法,淡化特殊技巧,重视数学思想方法的考查.不回避重点知识的考查。函数、数列、概率(包括排列、组合)、立体几何、解析几何等知

识仍是考查的重点内容.保持高考改革的连续性、稳定性,严格遵循《考试大纲》命题. 针对高考变化教师应引导学生: 1.注重专题训练,找准薄弱环节 2.关注热点问题进行有针对性的训练 3.重视高考模拟试题的训练 4.回归课本,查缺补漏。 5.重视易错问题和常用结论的归纳总结 6.心理状态的调整与优化 (1)审题与解题的关系: 我建以审题与解题的关系要一慢一快:审题要慢,做题要快。 (2)“会做”与“得分”的关系: 解题要规范,俗话说:“不怕难题不得分,就怕每题都扣分”所以务必将解题过程写得层次分明,结构完整.这非常重要,在平时训练时要严格训练. (3)快与准的关系: 在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”才可不必考虑再花时间检查,而“快”是平时训练的结果. (4)难题与容易题的关系: 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,因此不要在某个卡住的题上打“持久战”,特别不要“小题大做”那样既耗费时间又未心能拿分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,而且解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难。 因此,我建议答题应遵循: 三先三后: 1.先易后难 2.先高(分)后低(分) 3.先同后异。

2017海南高考数学试题

2017年普通高等学校招生全国统一考试(海南) 理科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.31i i +=+( ) A .12i + B .12i - C .2i + D .2i - 2.设集合{}1,2,4A =,{} 240x x x m B =-+=.若{}1A B =,则B =( ) A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,5 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏 4.如图,网格纸上小正方形的边长为1,学科&网粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( ) A .90π B .63π C .42π D .36π 5.设x ,y 满足约束条件2330233030x y x y y +-≤?? -+≥??+≥?,则2z x y =+的最小值是( ) A .15- B .9- C .1 D .9 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A .12种 B .18种 C .24种 D .36种 7.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =( )

2017高考数学(理)(全国II卷)详细解析

绝密★启用前 2017年普通高等学校招生全国统一考试 新课标II卷 理科数学 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1. A.B.C.D. 【答案】D 2.设集合,.若,则 A.B.C.D. 【答案】C 【解析】 试题分析:由得,即是方程的根,所以,,故选C. 【考点】交集运算、元素与集合的关系 【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性. 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A.1盏B.3盏C.5盏D.9盏

4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A. B. C. D. 【答案】B 【解析】 试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱, 其体积,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积 ,故该组合体的体积.故选B. 【考点】三视图、组合体的体积 【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解. 5.设,满足约束条件,则的最小值是 A.B.C.D.

高考真题理科数学解析版

理科数学解析 一、选择题: 1.C【解析】本题考查集合的概念及元素的个数. 容易看出只能取-1,1,3等3个数值.故共有3个元素. 【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题考查了列举法与互异性.来年需要注意集合的交集等运算,Venn图的考查等. 2.D【解析】本题考查常有关对数函数,指数函数,分式函数的定义域以及三角函数的值域. 函数的定义域为,而答案中只有的定 义域为.故选D. 【点评】求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围.其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0:(4)实际问题还需要考虑使题目本身有意义.体现考纲中要求了解一些简单函数的定义域,来年需要注意一些常见函数:带有分式,对数,偶次根式等的函数的定义域的求法. 3.B【解析】本题考查分段函数的求值. 因为,所以.所以. 【点评】对于分段函数结合复合函数的求值问题,一定要先求内层函数的值,因为内层函数的函数值就是外层函数的自变量的值.另外,要注意自变量的取值对应着哪一段区间,就使用

哪一段解析式,体现考纲中要求了解简单的分段函数并能应用,来年需要注意分段函数的分段区间及其对应区间上的解析式,千万别代错解析式. 4.D【解析】本题考查三角恒等变形式以及转化与化归的数学思想. 因为,所以.. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式转化;另外,在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的.体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等. 5.B【解析】本题以命题的真假为切入点,综合考查了充要条件,复数、特称命题、全称命题、二项式定理等. (验证法)对于B项,令,显然,但不互为共轭复数,故B为假命题,应选B. 【点评】体现考纲中要求理解命题的概念,理解全称命题,存在命题的意义.来年需要注意充要条件的判断,逻辑连接词“或”、“且”、“非”的含义等. 6.C【解析】本题考查归纳推理的思想方法. 观察各等式的右边,它们分别为1,3,4,7,11,…, 发现从第3项开始,每一项就是它的前两项之和,故等式的右

2017年海南省高考文科数学试题及答案

海南省2017年高考文科数学试题及答案 (word 版) (考试时间:120分钟 试卷满分:150分) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符 合题目要求的。 1. 设集合{}{}123234A B ==,,, ,,, 则=A B A. {}123,4,, B. {}123,, C. {}234,, D. {}134,, 2.(1+i )(2+i )= A. 1-i B. 1+3i C. 3+i D. 3+3i 3. 函数()f x =π sin (2x+)3的最小正周期为 A. 4π B. 2π C. π D. 2 π 4. 设非零向量a ,b 满足+=-b b a a 则 A. a ⊥b B. =b a C. a ∥b D. >b a 5. 若a >1,则双曲线x y a =2 22-1的离心率的取值范围是 A. 2∞(,) B. 22(,) C. 2(1,) D. 12(,) 6. 如图,网格纸上小正方形的边长为1,粗实线画出的 是某几何体的三视图,该几何体由一平面将一圆柱截 去一部分后所得,则该几何体的体积为 A. 90π B.63π C.42π D.36π 7. 设x 、y 满足约束条件2+330233030x y x y y -≤??-+≥??+≥? 。则2z x y =+ 的最小值是 A. -15 B.-9 C. 1 D. 9 8. 函数2 ()ln(28)f x x x =-- 的单调递增区间是

A.(-∞,-2) B. (-∞,-1) C.(1, +∞) D. (4, +∞) 9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A. 乙可以知道两人的成绩 B. 丁可能知道两人的成绩 C. 乙、丁可以知道对方的成绩 D. 乙、丁可以知道自己的成绩 10. 执行右面的程序框图,如果输入的a = -1,则输出的S= A. 2 B. 3 C. 4 D. 5 11. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再 随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上 的数的概率为 A. 110 B. 15 C. 310 D. 25 12. 过抛物线C:y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线, 点N 在l 上且MN ⊥l,则M 到直线NF 的距离为 A. 5 B. 22 C. 23 D. 33 二、填空题,本题共4小题,每小题5分,共20分. 13. 函数()cos sin =2+f x x x 的最大值为 . 14. 已知函数()f x 是定义在R 上的奇函数,当x ()-, 0∈∞时,()322=+f x x x , 则() 2=f 15. 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 16. △ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B= 三、解答题:共70分。解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个

三年高考(2016-2018)数学(理)真题分类解析:专题14-与数列相关的综合问题

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且 .若 , 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当时, ,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则

但,即 ,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.

(I)求和的通项公式; (II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.

2018高考江苏数学试题与答案解析[解析版]

2017年普通高等学校招生全国统一考试(卷) 数学I 一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2017年,1,5分】已知集合}2{1A =,,23{},B a a =+.若{}1A B =I ,则实数a 的值为_______. 【答案】1 【解析】∵集合}2{1A =,,23{},B a a =+.{}1A B =I ,∴1a =或231a +=,解得1a =. 【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用. (2)【2017年,2,5分】已知复数()()1i 12i z =-+,其中i 是虚数单位,则z 的模是_______. 【答案】10 【解析】复数()()1i 12i 123i 13i z =-+=-+=-+,∴() 2 21310z = -+=. 【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题. (3)【2017年,3,5分】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_______件. 【答案】18 【解析】产品总数为2004003001001000+++=件,而抽取60辆进行检验,抽样比例为606 1000100 = ,则应从丙 种型号的产品中抽取6 30018100 ?=件. 【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例, 即样本容量和总体容量的比值,在各层中进行抽取. (4)【2017年,4,5分】如图是一个算法流程图:若输入x 的值为1 16 ,则输出y 的值是_______. 【答案】2- 【解析】初始值116 x =,不满足1x ≥,所以41 216 222log 2log 2y =+=-=-. 【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于 基础题. (5)【2017年,5,5分】若1tan 46πα? ?-= ?? ?.则tan α=_______. 【答案】7 5 【解析】tan tan tan 114tan 4tan 161tan tan 4 π απααπαα--??-= == ?+? ?+Q ,∴6tan 6tan 1αα-=+,解得7tan 5α=. 【点评】本题考查了两角差的正切公式,属于基础题. (6)【2017年,6,5分】如如图,在圆柱12O O 有一个球O ,该球与圆柱的上、下底面及母线均相 切。记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12 V V 的值是________. 【答案】3 2 【解析】设球的半径为R ,则球的体积为:3 43 R π,圆柱的体积为:2322R R R ππ?=.则313223423 V R R V ππ==. 【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力. (7)【2017年,7,5分】记函数2()6f x x x =+- 的定义域为D .在区间[45]-,上随机取一个数x ,则x ∈D

2017年高考数学试题分项版解析几何解析版

2017年高考数学试题分项版—解析几何(解析版) 一、选择题 1.(2017·全国Ⅰ文,5)已知F 是双曲线C :x 2 -y 2 3 =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( ) A .13 B .12 C .23 D .32 1.【答案】D 【解析】因为F 是双曲线 C :x 2- y 2 3 =1的右焦点,所以F (2,0). 因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P 3=1,解得y P =±3, 所以P (2,±3),|PF |=3. 又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32. 故选D. 2.(2017·全国Ⅰ文,12)设A ,B 是椭圆C :x 23+y 2 m =1长轴的两个端点.若C 上存在点M 满 足∠AMB =120°,则m 的取值范围是( ) A .(0,1]∪[9,+∞) B .(0,3]∪[9,+∞) C .(0,1]∪[4,+∞) D .(0,3]∪[4,+∞) 2.【答案】A 【解析】方法一 设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N , 则N (x,0). 故tan ∠AMB =tan(∠AMN +∠BMN ) =3+x |y |+3-x |y |1-3+x |y |· 3-x |y |=23|y |x 2+y 2-3. 又tan ∠AMB =tan 120°=-3, 且由x 23+y 2m =1,可得x 2 =3-3y 2 m , 则23|y |3-3y 2m +y 2-3=23|y |(1-3m )y 2=- 3.

2020年海南省高考数学试卷(新课标Ⅱ)

2020年海南省高考数学试卷(新课标Ⅱ) 一、选择题 1. 设集合A ={2,3,5,7}, B ={1,2,3,5,8},则A ∩B =( ) A.{1,8} B.{2,5} C.{2,3,5} D.{1,2,3,5,8} 【答案】 C 【考点】 交集及其运算 【解析】 此题暂无解析 【解答】 解:因为A ={2,3,5,7},B ={1,2,3,5,8}, 所以A ∩B ={2,3,5}. 故选C . 2. (1+2i)(2+i)=( ) A.?5i B.5i C.?5 D.5 【答案】 B 【考点】 复数代数形式的乘除运算 【解析】 此题暂无解析 【解答】 解:(1+2i )(2+i )=2+5i +2i ?i =2+5i ?2=5i . 故选B . 3. 如果D 为△ABC 的边AB 的中点,则向量CB → =( ) A.2CD → ?CA → B.2CA →?CD → C. 2CD →+CA → D. 2CA →+CD → 【答案】 A 【考点】 向量在几何中的应用 向量的三角形法则 【解析】 此题暂无解析 【解答】 解:由三角形中线性质,2CD → =CB → +CA → ,

所以CB → =2CD → ?CA → . 故选A . 4. 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( ) A.20° B.40° C.50° D.90° 【答案】 B 【考点】 解三角形的实际应用 在实际问题中建立三角函数模型 【解析】 此题暂无解析 【解答】 解:画出截面图如图所示, 其中CD 是赤道所在平面的截线, l 是点A 处的水平面的截线,依题意可知OA ⊥l , AB 是晷针所在直线,m 是晷面的截线. 依题意依题意,晷面和赤道平面平行,晷针与晷面垂直, 根据平面平行的性质定理可得可知m//CD ,根据线面垂直的定义可得AB ⊥m . 由于∠AOC =40°,m//CD , 所以∠OAG =∠AOC =40°. 由于∠OAG +∠GAE =∠BAE +∠GAE =90°, 所以∠BAE =∠OAG =40°,也即晷针与点A 处的水平面所成角为∠BAE =40°. 故选B .

高考数学试题分类汇编个专题

2017年高考数学试题分类汇编及答案解析(22个专题)目录 专题一 集合 ............................................................................................................................................................................... 1 专题二 函数 ............................................................................................................................................................................... 6 专题三 三角函数...................................................................................................................................................................... 21 专题四 解三角形...................................................................................................................................................................... 32 专题五 平面向量...................................................................................................................................................................... 40 专题六 数列 ............................................................................................................................................................................. 48 专题七 不等式 ......................................................................................................................................................................... 68 专题八 复数 ............................................................................................................................................................................. 80 专题九 导数及其应用 .............................................................................................................................................................. 84 专题十 算法初步.................................................................................................................................................................... 111 专题十一 常用逻辑用语 ........................................................................................................................................................ 120 专题十二 推理与证明 ............................................................................................................................................................ 122 专题十三 概率统计 ................................................................................................................................................................ 126 专题十四 空间向量、空间几何体、立体几何 .................................................................................................................... 149 专题十五 点、线、面的位置关系 ........................................................................................................................................ 185 专题十六 平面几何初步 ........................................................................................................................................................ 186 专题十七 圆锥曲线与方程 .................................................................................................................................................... 191 专题十八 计数原理 .............................................................................................................................................................. 217 专题十九 几何证明选讲 ...................................................................................................................................................... 220 专题二十 不等式选讲 .......................................................................................................................................................... 225 专题二十一 矩阵与变换 ........................................................................................................................................................ 229 专题二十二 坐标系与参数方程 .. (230) 专题一 集合 1.(15年北京文科)若集合{}52x x A =-<<,{} 33x x B =-<<,则A B =I ( ) A .{} 32x x -<< B .{} 52x x -<< C .{} 33x x -<< D .{} 53x x -<< 【答案】A 考点:集合的交集运算. 2.(15年广东理科) 若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =I A .? B .{}1,4-- C .{}0 D .{}1,4

2016年高考数学试卷分析

2016年高考数学试卷分析 随着2016年高考的结束,,作为一线教师,也应该是对今年的高考试题进行一番细致的研究了。陕西省是即课改后首次使用全国卷。2015年的陕西卷已经为下一年的平稳过度做好了铺垫。首先在题型设置上,与全国卷保持一致,这已给师生做好了思想工作,当2016年的高考数学进入人们眼帘的时候,似乎也不是很陌生,很有老朋友相见的感觉。 今年的全国卷数学试题从试题结构与去年相比变化不大,严格遵守考试大纲说明,五偏题,怪题现象。试卷难度呈阶梯型分布,试题更灵活。入口容易出口难,有利于高校选拔新生。 一、总体分析: 1,试题的稳定性: 从文理试卷整体来看,考查的内容注重基础考查,又在一定的程度上进行创新。知识覆盖全面且突出重点。高中知识“六大板块”依旧是考查的重点。无论大小体目90%均属于常规题型,难度适中。是学生训练时的常见题型。其中,5,15,18注重考查了数学在实际中的应用能力。这就提示我们数学的教学要来源实际,回归生活,既有基础与创新的结合,又能增

加学生的自信心,发挥自己的最佳水平。 试题的变化: 有些复课中的重点“二项式定理”,“线性规划”,“定积分”。“均值不等式”等知识点并没有被纳入,而“条件概率”则出现在大题中,这也对试题的难度进行区分。 在难度方面,选择题的12题,填空题的16题,对学生造成较大困扰。这也有利于对人才的选拔。解答题中的20,21题第一问难度适中,第二问都提高了难度。这也体现了入口易,出口难,对人才的选拔非常有利。 今年的高考数学试题更注重了试题的广度,而简化了试题的深度。而这对陕西高考使用全国卷的过度上起到了承上启下的作用。平稳过度已是事实。给学生,教师都增加了信心。 试题的详细分析: 选择题部分 (1),考查复数,注重的是知识点的考查。对负数的运算量则降低要求,这要求我们不仅要求对运算过关,更强调知识点的全面性(2)集合的运算:集合的交并补三种运算应是同等对待。在平时的教学中,出现的交集运算比较多,。并集,补集易被忽略。(而

高考文科数学试题解析分类汇编

2013年高考解析分类汇编16:选修部分 一、选择题 1 .(2013年高考大纲卷(文4))不等式 222x -<的解集是 ( ) A .()-1,1 B .()-2,2 C .()()-1,00,1U D .()()-2,00,2U 【答案】D 2|2|2 <-x ,所以?????->-<-222222 x x ,所以402 <2, 则关于实数x 的不等式||||2x a x b -+->的解集是______. 【答案】R 考察绝对值不等式的基本知识。函数||||)(b x a x x f -+-=的值域为:

全国Ⅰ卷高考数学试卷解析

全国Ⅰ卷高考数学试卷解析 下面是小编为大家带来的_全国Ⅰ卷高考数学试卷解析大全,希望你喜欢. 今年全国Ⅰ卷高考数学试卷命题符合高中数学课程标准和考试大纲说明的要求,符合课程改革方向和广东中学数学的教学实际,难度与梯度设置合理,总体难度较往年有所下降.试题结构保持稳定,但着重考查了数学建模.数据运算的能力.试题中的金字塔结合生活实际,考查了学生发现问题.提出问题.分析问题.解决问题的能力;后面大题考法较为常规,体现了回归基础的教学导向. 1.试卷各板块占比——稳中有变,难度降低 从上图可以看出,对比去年,_年高考全国Ⅰ卷文科数学试题的模块占比.整体比重稍有改动,概率统计模块的比重增加,函数导数模块.数列模块的比重减少,考查学生的数学运算与数学抽象核心素养.在题目设置上,注重对数学基础知识.数学思想方法和数学能力的考查,加强与实际生活的结合. 2.试卷各部分解析 ①选填题: 卓越教育高考改革研究委员会数学团队认为,今年选择填空的考点设置与_年全国Ⅰ卷大体一致,选填难度偏低,考点常规,充分体现了新高考回归课本的导向,符合新课标全国卷的要求. 选择题以及填空题前3题,主要考查学生对基础知识的掌握程度,渗透数学文化并注重数学应用.其中第_._题涉及向量垂直.导数求切线问题,均是去年出现的热门题型,考生应注重常规题型的熟练求解;第8题考查指对互化,体现新高考回归课本的趋势;第3题胡夫金字塔类比去年的断臂维纳斯,对学生的阅读理解能力.计算能力要求较高;第5题结合统计案例与函数图象,考查方式较为灵活;第_题考查数列综合问题,需要挖掘式子规律,技巧性较强,计算难度较大. ②解答题: 今年解答题的考点有所波动,时隔四年,解三角形重返大题舞台.立体几何大题

相关文档
最新文档